首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Eicosanoid receptors exhibit a highly conserved ERY(C)XXV(I)XXPL sequence in the second intracellular loop. The carboxyl end of this motif contains a bulky hydrophobic amino acid (L,I,V, or F). In human thromboxane A2 receptor (TXA(2)R), phenylalanine 138 is located at the carboxyl end of this highly conserved motif. This study examined the function of the F138 in G protein coupling. F138 was mutated to aspartic acid (D) and tyrosine (Y), respectively. Both mutants F138D and F138Y showed similar ligand binding activity to that of the wild type TXA(2)R. The Kd and Bmax values of either mutant were comparable to those of the wild type receptor. However, both mutants showed significant impairment of agonist induced Ca(2+) signaling and phospholipase C activation. These results suggest that the F138 plays a key role in G protein coupling.  相似文献   

2.
3.
Some physico-chemical properties of R140G and K141Q mutants of human small heat shock protein HspB1 associated with hereditary peripheral neuropathy were analyzed. Mutation K141Q did not affect intrinsic Trp fluorescence and interaction with hydrophobic probe bis-ANS, whereas mutation R140G decreased both intrinsic fluorescence and fluorescence of bis-ANS bound to HspB1. Both mutations decreased thermal stability of HspB1. Mutation R140G increased, whereas mutation K141Q decreased the rate of trypsinolysis of the central part (residues 5–188) of HspB1. Both the wild type HspB1 and its K141Q mutant formed large oligomers with apparent molecular weight ∼560 kDa. The R140G mutant formed two types of oligomers, i.e. large oligomers tending to aggregate and small oligomers with apparent molecular weight ∼70 kDa. The wild type HspB1 formed mixed homooligomers with R140G mutant with apparent molecular weight ∼610 kDa. The R140G mutant was unable to form high molecular weight heterooligomers with HspB6, whereas the K141Q mutant formed two types of heterooligomers with HspB6. In vitro measured chaperone-like activity of the wild type HspB1 was comparable with that of K141Q mutant and was much higher than that of R140G mutant. Mutations of homologous hot-spot Arg (R140G of HspB1 and R120G of αB-crystallin) induced similar changes in the properties of two small heat shock proteins, whereas mutations of two neighboring residues (R140 and K141) induced different changes in the properties of HspB1.  相似文献   

4.
Previous research in our laboratory comparing the three-dimensional structural elements of two highly homologous alcohol dehydrogenases, one from the mesophile Clostridium beijerinckii (CbADH) and the other from the extreme thermophile Thermoanaerobacter brockii (TbADH), suggested that in the thermophilic enzyme, an extra intrasubunit ion pair (Glu224-Lys254) and a short ion-pair network (Lys257-Asp237-Arg304-Glu165) at the intersubunit interface might contribute to the extreme thermal stability of TbADH. In the present study, we used site-directed mutagenesis to replace these structurally strategic residues in CbADH with the corresponding amino acids from TbADH, and we determined the effect of such replacements on the thermal stability of CbADH. Mutations in the intrasubunit ion pair region increased thermostability in the single mutant S254K- and in the double mutant V224E/S254K-CbADH, but not in the single mutant V224E-CbADH. Both single amino acid replacements, M304R- and Q165E-CbADH, in the region of the intersubunit ion pair network augmented thermal stability, with an additive effect in the double mutant M304R/Q165E-CbADH. To investigate the precise mechanism by which such mutations alter the molecular structure of CbADH to achieve enhanced thermostability, we constructed a quadruple mutant V224E/S254K/Q165E/M304R-CbADH and solved its three-dimensional structure. The overall results indicate that the amino acid substitutions in CbADH mutants with enhanced thermal stability reinforce the quaternary structure of the enzyme by formation of an extended network of intersubunit ion pairs and salt bridges, mediated by water molecules, and by forming a new intrasubunit salt bridge.  相似文献   

5.
6.
Complete dissociation of dimeric plasma sex steroid-binding protein (SBP or SHBG) was obtained in 6 M urea at 10 degrees C. Removal of urea resulted in the refolding of monomers, followed by reformation of dimeric SBP, which migrates with the same mobility as the native protein. Dimerization does not require Ca+2 or steroid. Renatured monomers yield dimers with dissociation constants for 5 alpha-dihydrotesterone (DHT) and 17 beta-estradiol (E2) indistinguishable from those of native human SBP. This phenomenon was also demonstrated by mixing human and rabbit SBPs that, upon renaturation, form a hybrid dimer composed of one human subunit and one rabbit subunit. The hybrid binds both DHT and E2 in contrast to rSBP, which only binds the androgen. Therefore, we conclude that (1) docking of the two subunits creates an asymmetric steroid-binding site located at the interface between the subunits, and (2) only one face of the dimer defines the specificity for binding E2 by encompassing portion of a structural motif that recognizes the flat ring A of E2. The remaining portion, which recognizes the saturated ring A of DHT, is shared by both faces of the dimer. Because native monomers do not exist alone, the often-asked question of whether the SBP monomer binds steroid can be considered meaningless; steroid-binding activity is expressed only in the dimeric state. Finally, formation of the hybrid indicates that SBP dimerization represents a conserved event during the molecular evolution of SBP, suggesting that the structural elements responsible for dimerization will be homologous in SBPs from other species.  相似文献   

7.
Tyrosine-57 (Y57) and methionine-107 (M107) have been identified in the binding site of the sex steroid binding protein (SBP) (or sex hormone binding globulin) of human plasma by replacing the two amino acids with a number of residues of varying structure. Replacement of Y57 with phenylalanine resulted in a fourfold increase in the K(d) of 5 alpha-dihydrotestosterone but left the K(d) of 17 beta-estradiol unchanged. Except in two cases, no further loss in binding took place when replacing Y57 with other residues, suggesting that the phenolic group of Y57 may form a hydrogen bond with the ligand. Replacement of M107 with isoleucine increased the 5 alpha-dihydrotestosterone K(d) fourfold to a value equal to that of rabbit SBP, which contains isoleucine at the corresponding position; however, the K(d) of 17 beta-estradiol remained unchanged. Replacement of M107 with threonine resulted in a tenfold decrease in 5 alpha-dihydrotestosterone binding affinity, whereas replacement with leucine left the K(d) unchanged. These data indicate that substitutions on the beta-carbon of the amino acid side-chain at position 107 causes significant loss of binding affinity but, as in the case of Y57, the activity was not totally eliminated. We conclude that Y57 and M107 form part of a structural motif within the steroid binding site and specifically contribute binding energy to ring A of 5 alpha-dihydrotestosterone but not to ring A of 17 beta-estradiol. We also propose that the integrated contribution of several side chains may be required to optimize the ligand affinity of the steroid binding site. This proposal may fit a 'lock and key' model where little movement of the side chains occurs during binding as might be expected for a rigid structure like the steroid nucleus.  相似文献   

8.
A small combinatorial library of LDTI mutants (5.2 x 10(4)) restricted to the P1-P4' positions of the reactive site was displayed on the pCANTAB 5E phagemid, and LDTI fusion phages were produced and selected for potent neutrophil elastase and plasmin inhibitors. Strong fusion phage binders were analyzed by ELISA on enzyme-coated microtiter plates and the positive phages had their DNA sequenced. The LDTI variants: 29E (K8A, I9A, L10F, and K11F) and 19E (K8A, K11Q, and P12Y) for elastase and 2Pl (K11W and P12N), 8Pl (I9V, K11W, and P12E), and 10Pl (I9T, K11L, and P12L) for plasmin were produced with a Saccharomyces cerevisiae expression system. New strong elastase and plasmin inhibitors were 29E and 2Pl, respectively. LDTI-29E was a potent and specific neutrophil elastase inhibitor K(i) =0.5 nM), affecting no other tested enzymes. LDTI-2Pl was the strongest plasmin inhibitor ( K(i) =1.7nM) in the LDTI mutant library. This approach allowed selection of new specific serine proteinase inhibitors for neutrophil elastase and plasmin (a thrombin inhibitor variant was previously described), from a unique template molecule, LDTI, a Kazal type one domain inhibitor, by only 2-4 amino acid replacements. Our data validate this small LDTI combinatorial library as a tool to generate specific serine proteinase inhibitors suitable for drug design and enzyme-inhibitor interaction studies.  相似文献   

9.
In order to identify residues required for the binding of interleukin-8 (IL-8) to its receptor, mutants were constructed in which clusters of charged amino acids were systematically replaced with alanine along the entire IL-8 sequence. The mutants were tested for their ability to induce a receptor-mediated rise in cytosolic free Ca2+, a property of wild-type IL-8 which can readily be detected by flow cytometry using neutrophils loaded with the calcium probe Indo-1. Eleven of the 12 mutants caused neutrophil calcium mobilization at 5 nM; the exception being a triple alanine mutant at positions K3, E4, and R6, which was inactive at all concentrations tested (150 nM maximum). A second set of mutants was generated in which residues 1-15 were individually mutated to alanine. Mutants E4A, L5A, or R6A were all inactive in the Ca2+ assay at 5 nM and competed poorly with 125I-IL-8 for neutrophil receptor binding; I10A, E4A, L5A, and R6A had approximately 30-, 100-, 100-, and 1000-fold reduced affinity, as compared with control IL-8, respectively. The nuclear magnetic resonance structure of IL-8 indicates that, in solution, the side chains of E4, L5, R6, and I10 point away from the core of the protein and do not participate in any intramolecular hydrogen bonds or salt bridges (Clore, G. M., and Gronenborn, A. M. (1991) J. Mol. Biol. 217, 611-620).  相似文献   

10.
Quadruple (Y115K/I116K/R118M/N119L) and double (Y115K/I116K) mutants of ammodytoxin A, a presynaptically toxic phospholipase A(2) from Vipera ammodytes ammodytes venom, were prepared and characterized. The enzymatic activity of the quadruple mutant on phosphatidylcholine micelles was threefold higher than that of AtxA, presumably due to higher phospholipid-binding affinity, whereas the activity of the double mutant was twofold lower. The substantial decrease by more than two orders of magnitude in the lethal potency of both mutants, together with their decreased binding affinity for neuronal receptors, indicates involvement of the amino acid region 115-119 in neurotoxicity. The similar decrease of toxicity for the two mutants points to the importance of the residues Y115 and I116.  相似文献   

11.
A full-length 1,209 bp cDNA encoding the human sex steroid-binding protein of plasma (SBP or SHBG) and testis (ABP) was constructed and expressed in BHK-21 cells. The sequence agrees with the published gene and protein sequences. The cells were found to secrete SBP following transfection and G418r selection. The recombinant protein binds 5 alpha-dihydrotestosterone with a Kd of 0.28 nM. It also binds testosterone and 17 beta-estradiol but not progesterone, estrone or cortisol revealing a steroid-binding specificity identical to that of human SBP. SDS-PAGE patterns are less complex than human SBP and show a monomeric molecular weight of about 43 kDa.  相似文献   

12.
An enzymatic procedure for the complete removal of the N-linked and O-linked oligosaccharide side chains of the sex steroid-binding proteins (SBP or SHBG) of human and rabbit plasma under native conditions is described. Deglycosylation was catalyzed by N-glycanase, neuraminidase, and O-glycanase and was monitored by SDS-PAGE, lectin blotting, and molecular weight analyses by electrospray mass spectrometry. Digestion of rabbit SBP with N-glycanase generated a major 39,777-Da protein and two minor ones of 39,389 and 39,545 Da. The molecular weight of the major protein agrees with the molecular weight calculated from the sequence of the sugar-free polypeptide monomer (39,769 Da: Griffin, P.R., Kumar, S., Shabanowitz, J., Charbonneau, H., Namkung, P.C., Walsh, K.A., Hunt, D.F., & Petra, P.H., 1989, J. Biol. Chem. 264, 19066-19075), whereas the other two are deglycosylated proteolytic cleavage products lacking the TQR and TQ sequences at the amino-terminus. The N- and O-linked side chains of human SBP were removed by sequential digestion with N-glycanase and neuraminidase/O-glycanase. A 38,771-Da protein was generated, which agrees well with the molecular weight of the sugar-free polypeptide monomer (Walsh, K.A., Titani, K., Kumar, S., Hayes, R., & Petra, P.H., 1986, Biochemistry 25, 7584-7590). N-deglycosylation of human and rabbit SBP has no effect on the steroid-binding activity, but removal of the O-linked side chains of N-deglycosylated human SBP results in an apparent 50% loss of steroid-binding activity and an increase in the Kd for the binding of 5 alpha-dihydrotestosterone from 0.3 mM to 0.9 nM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
To explore the functional interactions between apoA-I and ABCA1, we correlated the cross-linking properties of several apoA-I mutants with their ability to promote cholesterol efflux. In a competitive cross-linking assay, amino-terminal deletion and double amino- and carboxy-terminal deletion mutants of apoA-I competed effectively the cross-linking of WT (125)I-apoA-I to ABCA1, while the carboxy-terminal deletion mutant apoA-I[Delta(220-243)] competed poorly. Direct cross-linking of WT apoA-I, amino-terminal, and double deletion mutants of apoA-I to ABCA1 showed similar apparent K(d) values (49-74 nM), whereas the apparent K(d) values of the carboxy-terminal deletion mutants apoA-I[Delta(185-243)] and apoA-I[Delta(220-243)] were increased 3-fold. Analysis of several internal deletions and point mutants of apoA-I showed that apoA-I[Delta(61-78)], apoA-I[Delta(89-99)], apoA-I[Delta(136-143)], apoA-I[Delta(144-165)], apoA-I[D102A/D103A], apoA-I[E125K/E128K/K133E/E139K], apoA-I[L141R], apoA-I[R160V/H162A], and WT apoA-I had similar ABCA1-mediated lipid efflux, and all competed efficiently the cross-linking of WT (125)I-apoA-I to ABCA1. WT apoA-I and ABCA1 could be cross-linked with a 3 A cross-linker. The WT apoA-I, amino, carboxy and double deletion mutants of apoA-I showed differences in the cross-linking to WT ABCA1 and the mutant ABCA1[W590S]. The findings are consistent with a direct association of different combinations of apoA-I helices with a complementary ABCA1 domain. Mutations that alter ABCA1/apoA-I association affect cholesterol efflux and inhibit biogenesis of HDL.  相似文献   

14.
A study of the binding of three different 125I-labeled, galactose-terminated ligands to the hepatic galactose/N-acetylgalactosamine-specific lectin found on the surface of rabbit hepatocytes revealed that the different ligands manifest different physical parameters of binding. Asialoorosomucoid (125I-ASOR) binding was best described as involving two independent classes of binding sites on rabbit hepatocytes, with 161 000 sites/cell with a dissociation constant of 0.44 nM and 292 000 sites/cell with a Kd of 9.7 nM. Asialotriantennary glycopeptide purified from human alpha-1 protease inhibitor and modified with tyrosine at the N-terminus to permit radioiodination (TRI) [Lee, Y. C., Townsend, R. R., Hardy, M. R., L?nngren, J., Arnarp, J., Haraldsson, M., & L?nn, H. (1983) J. Biol. Chem. 258, 199-202] was also found to bind to two apparent classes of binding sites but with different binding parameters: 292 000 sites/cell of Kd = 1.47 nM and 982 000 sites/cell of Kd = 25.3 nM. A synthetic ligand, alpha,beta-diaspartamide of tris[(beta-lactosyloxy)methyl](6-aminohexanamido)methane (di-tris-lac) containing six nonreducing galactose residues [Lee, R. T., Lin, P., & Lee, Y. C. (1984) Biochemistry 23, 4255-4261], was found to bind to 817 000 sites/cell of Kd = 0.63 nM and 1.23 X 10(6) sites/cell of Kd = 25.3 nM. Thus, there were many more total binding sites for TRI or di-tris-lac on the surface of rabbit hepatocytes than there were for asialoorosomucoid, although the dissociation constants were similar for all three ligands.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The expression of the DNA repair protein human O(6)-alkylguanine-DNA alkyltransferase (AGT) in Escherichia coli strains GWR109 or TRG8 that lack endogenous AGT greatly increased the toxicity and mutagenicity of 1,2-dibromoethane (DBE). Pretreatment of strain TRG8 expressing human AGT, which is permeable to exogenous drugs, with the AGT inhibitor O(6)-benzylguanine (BG) abolished the lethal and mutagenic effects of DBE, indicating that an active AGT is required for promoting DBE genotoxicity. This was confirmed by the observation that E. coli expressing either the C145A AGT mutant, which is inactive due to loss of the alkyl acceptor site, or mutants Y114E and R128A, which are inactive due to alteration of the DNA binding domain, did not enhance the action of DBE. However, the AGT mutant protein P138M/V139L/P140K, which is active in repairing methylated DNA but is totally resistant to inactivation by BG due to alterations in the active site pocket, was unable to enhance the genotoxicity of DBE. Similarly, other mutants, G156P, Y158H and K165R that are strongly resistant to BG, were much less effective than wild type AGT in mediating the genotoxicity of DBE. Mutant P140A, which is moderately resistant to BG, did increase mutations in response to DBE but was less active than wild type. These results suggest that human AGT is able to interact with a DNA lesion produced by DBE but, instead of repairing it, converts it to a more genotoxic adduct. This interaction is prevented by mutations that modify the active site of AGT to exclude BG.  相似文献   

16.
Pyrazinamide (PZA) is an important component of first-line antituberculosis drugs activated by Mycobacterium tuberculosis pyrazinamidase (PZase) into its active form pyrazinoic acid. Mutations in the pncA gene have been recognized as the major cause of PZA resistance. We detected some novel mutations, Leucine19Arginine (L19R), Arginine140Histidine (R140H), and Glutamic acid144 Lysine (E144K), in the pncA gene of PZA-resistant isolates in our wet lab PZA drug susceptibility testing and sequencing. As the molecular mechanism of resistance of these variants has not been reported earlier, we have performed multiple analyses to unveil different mechanisms of resistance because of PZase mutations L19R, R140H, and E144K. The mutants and native PZase structures were subjected to comprehensive computational molecular dynamics (MD) simulations at 100 nanoseconds in apo and drug-bound form. Mutants and native PZase binding pocket were compared to observe the consequence of mutations on the binding pocket size. Hydrogen bonding, Gibbs free energy, and natural ligand Fe +2 effect were also analyzed between native and mutants. A significant variation between native and mutant PZase structure activity was observed. The native PZase protein docking score was found to be the maximum, showing strong binding affinity in comparison with mutants. MD simulations explored the effect of the variants on the biological function of PZase. Hydrogen bonding, metal ion Fe +2 deviation, and fluctuation also seemed to be affected because of the mutations L19R, R140H, and E144K. The variants L19R, R140H, and E144K play a significant role in PZA resistance, altering the overall activity of native PZase, including metal ion Fe +2 displacement and free energy. This study offers valuable evidence for better management of drug-resistant tuberculosis.  相似文献   

17.
In this work we analyze the antigenic properties and the stability in cell culture of virus mutants recovered upon challenge of peptide-vaccinated cattle with foot-and-mouth disease virus (FMDV) C3 Arg85. Previously, we showed that a significant proportion of 29 lesions analyzed (41%) contained viruses with single amino acid replacements (R141G, L144P, or L147P) within a major antigenic site located at the G-H loop of VP1, known to participate also in interactions with integrin receptors. Here we document that no replacements at this site were found in viruses from 12 lesions developed in six control animals upon challenge with FMDV C3 Arg85. Sera from unprotected, vaccinated animals exhibited poor neutralization titers against mutants recovered from them. Sequence analyses of the viruses recovered upon 10 serial passages in BHK-21 and FBK-2 cells in the presence of preimmune (nonneutralizing) sera revealed that mutants reverted to the parental sequence, suggesting an effect of the amino acid replacements in the interaction of the viruses with cells. Parallel passages in the presence of subneutralizing concentrations of immune homologous sera resulted in the maintenance of mutations R141G and L147P, while mutation L144P reverted to the C3 Arg85 sequence. Reactivity with a panel of FMDV type C-specific monoclonal antibodies indicated that mutant viruses showed altered antigenicity. These results suggest that the selective pressure exerted by host humoral immune response can play a role in both the selection and stability of antigenic FMDV variants and that such variants can manifest alterations in cell tropism.  相似文献   

18.
We performed genome-wide mutagenesis in C57BL/6J mice using N-ethyl-N-nitrosourea to identify mutations causing high blood glucose early in life and to produce new animal models of diabetes. Of a total of 13 new lines confirmed by heritability testing, we identified two semi-dominant pedigrees with novel missense mutations (Gck(K140E) and Gck(P417R)) in the gene encoding glucokinase (Gck), the mammalian glucose sensor that is mutated in human maturity onset diabetes of the young type 2 and the target of emerging anti-hyperglycemic agents that function as glucokinase activators (GKAs). Diabetes phenotype corresponded with genotype (mild-to-severe: Gck(+/+) < Gck(P417R/+), Gck(K140E)(/+) < Gck(P417R/P417R), Gck(P417R/K140E), and Gck(K140E/K140E)) and with the level of expression of GCK in liver. Each mutant was produced as the recombinant enzyme in Escherichia coli, and analysis of k(cat) and tryptophan fluorescence (I(320/360)) during thermal shift unfolding revealed a correlation between thermostability and the severity of hyperglycemia in the whole animal. Disruption of the glucokinase regulatory protein-binding site (GCK(K140E)), but not the ATP binding cassette (GCK(P417R)), prevented inhibition of enzyme activity by glucokinase regulatory protein and corresponded with reduced responsiveness to the GKA drug. Surprisingly, extracts from liver of diabetic GCK mutants inhibited activity of the recombinant enzyme, a property that was also observed in liver extracts from mice with streptozotocin-induced diabetes. These results indicate a relationship between genotype, phenotype, and GKA efficacy. The integration of forward genetic screening and biochemical profiling opens a pathway for preclinical development of mechanism-based diabetes therapies.  相似文献   

19.
Efficient catalysis in the second step of the pyruvate dehydrogenase (E1) component reaction requires a lipoyl group to be attached to a lipoyl domain that displays appropriately positioned specificity residues. As substrates, the human dihydrolipoyl acetyltransferase provides an N-terminal (L1) and an inner (L2) lipoyl domain. We evaluated the specificity requirements for the E1 reaction with 27 mutant L2 (including four substitutions for the lipoylated lysine, Lys(173)), with three analogs substituted for the lipoyl group on Lys(173), and with selected L1 mutants. Besides Lys(173) mutants, only E170Q mutation prevented lipoylation. Based on analysis of the structural stability of mutants by differential scanning calorimetry, alanine substitutions of residues with aromatic side chains in terminal regions outside the folded portion of the L2 domain significantly decreased the stability of mutant L2, suggesting specific interactions of these terminal regions with the folded domain. E1 reaction rates were markedly reduced by the following substitutions in the L2 domain (equivalent site-L1): L140A, S141A (S14A-L1), T143A, E162A, D172N, and E179A (E52A-L1). These mutants gave diverse changes in kinetic parameters. These residues are spread over >24 A on one side of the L2 structure, supporting extensive contact between E1 and L2 domain. Alignment of over 40 lipoyl domain sequences supports Ser(141), Thr(143), and Glu(179) serving as specificity residues for use by E1 from eukaryotic sources. Extensive interactions of the lipoyl-lysine prosthetic group within the active site are supported by the limited inhibition of E1 acetylation of native L2 by L2 domains altered either by mutation of Lys(173) or enzymatic addition of lipoate analogs to Lys(173). Thus, efficient use by mammalian E1 of cognate lipoyl domains derives from unique surface residues with critical interactions contributed by the universal lipoyl-lysine prosthetic group, key specificity residues, and some conserved residues, particularly Asp(172) adjacent to Lys(173).  相似文献   

20.
In the background of the recombinant K2 module of human plasminogen (K2(Pg)), a triple mutant, K2(Pg)[C4G/E56D/L72Y], was generated and expressed in Pichia pastoris cells in yields exceeding 100 mg/liter. The binding affinities of a series of lysine analogs, viz. 4-aminobutyric acid, 5-aminopentanoic acid, epsilon-aminocaproic acid, 7-aminoheptanoic acid, and t-4-aminomethylcyclohexane-1-carboxylic acid, to this mutant were measured and showed up to a 15-fold tighter interaction, as compared with wild-type K2(Pg) (K2(Pg)[C4G]). The variant, K2(Pg)[C4G/E56D], afforded up to a 4-fold increase in the binding affinity to these same ligands, whereas the K2(Pg)[C4G/L72Y] mutant decreased the same affinities up to 5-fold, as compared with K2(Pg)[C4G]. The thermal stability of K2(Pg)[C4G/E56D/L72Y] was increased by approximately 13 degrees C, as compared with K2(Pg)[C4G]. The functional consequence of up-regulating the lysine binding property of K2(Pg) was explored, as reflected by its ability to interact with an internal sequence of a plasminogen-binding protein (PAM) on the surface of group A streptococci. A 30-mer peptide of PAM, containing its K2(Pg)-specific binding region, was synthesized, and its binding to each mutant of K2(Pg) was assessed. Only a slight enhancement in peptide binding was observed for K2(Pg)[C4G/E56D], compared with K2(Pg)[C4G] (K(d) = 460 nM). A 5-fold decrease in binding affinity was observed for K2(Pg)[C4G/L72Y] (K(d) = 2200 nM). However, a 12-fold enhancement in binding to this peptide was observed for K2(Pg)[C4G/E56D/L72Y] (K(d) = 37 nM). Results of these PAM peptide binding studies parallel results of omega-amino acid binding to these K2(Pg) mutants, indicating that the high affinity PAM binding by plasminogen, mediated exclusively through K2(Pg), occurs through its lysine-binding site. This conclusion is supported by the 100-fold decrease in PAM peptide binding to K2(Pg)[C4G/E56D/L72Y] in the presence of 50 mM 6-aminohexanoic acid. Finally, a thermodynamic analysis of PAM peptide binding to each of these mutants reveals that the positions Asp(56) and Tyr(72) in the K2(Pg)[C4G/E56D/L72Y] mutant are synergistically coupled in terms of their contribution to the enhancement of PAM peptide binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号