首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The failure of hamster 2-cell embryos to develop in vitro (2-cell block) was examined with experiments in which concentrations of glucose and phosphate in the culture medium were varied. Embryos were cultured in a protein-free modified Tyrode's solution that normally contains 5.0 mM glucose and 0.35 mM sodium dihydrogen phosphate. In the presence of 0.35 mM phosphate but without glucose, 23% of 2-cell embryos reached the 4-cell stage or further after culture for 1 day and 27% after 2 days. Glucose inhibited embryo development even at 0.1 mM (4% development to greater than or equal to 4-cells after culture for 2 days); there was no dose-related inhibition above this glucose concentration. In a second experiment, phosphate levels were varied in the absence of glucose. Phosphate was highly inhibitory to development, with 97% of 2-cell embryos reaching the 4-cell stage or further after culture for 1 day in the absence of phosphate compared to 9-21% in the presence of 0.1-1.05 mM phosphate. After culture for 2 days, 26% of embryos reached the 8-cell stage or further when phosphate was absent compared to 0% development to 8-cells with 0.1 mM phosphate or higher. In a factorial experiment, phosphate blocked development when glucose was present or absent, whereas glucose did not block embryo development in the absence of phosphate. However, 2-deoxyglucose (a non-metabolizable analogue of glucose) inhibited embryo development in the absence of phosphate. These data show that the in vitro block to development of hamster 2-cell embryos is caused at least in part by glucose and/or phosphate. Deletion of these compounds from the culture medium eliminates the 2-cell block to development in virtually all embryos, and approximately 25-75% of embryos develop to the 8-cell or morula stages in vitro. The observations provide a possible explanation for the 2-cell and 4-cell blocks that occur in conventional culture media: stimulation of glycolysis by glucose and/or phosphate may result in inefficient adenosine triphosphate (ATP) production. The data indicate marked dissimilarities in the regulation of in vitro development of early cleavage stage hamster embryos compared with embryos of inbred mice, since the latter have an inactive glycolytic pathway prior to the 8-cell stage of development and will grow from 1-cell to blastocyst with both phosphate and glucose in the culture medium.  相似文献   

3.
1. Protein degradation was studied in the glucose (5 mM)-perfused working rat heart preparation of Taegtmeyer, Hems & Krebs [(1980) Biochem. J. 186. 701-711]. 2. The effects of cardiac workload were investigated in three different preparations: (a) control (low workload), (b) increased pressure workload (simulating conditions of aortic pressure in vivo) and (c) increased volume workload. There was no effect of increased workload on protein degradation in preparation (b) or (c) when compared with preparation (a). Insulin inhibited protein degradation in all three preparations. Significantly greater inhibition by insulin was observed in the increased-pressure-workload preparation (b). 3. Hypoxia was induced by the partial replacement of O2 in the gaseous phase by N2. Hearts maintained their cardiac output when O2 content was decreased from 95% to 55% by volume, but the stability of the preparation was less at 50% O2. Lactate output was significantly increased at O2 contents of 65% or less. The rate of protein degradation was not different from control values (95% O2) in perfusions with 65, 55 or 50% O2. 4. We conclude that acutely increased workload or acute hypoxia does not affect protein degradation in the perfused working rat heart when cardiac output is relatively stable.  相似文献   

4.
L-Glutamine (Gln) plays an important role in sustaining the intestinal mucosal mass of humans and animals. However, the underlying mechanisms are largely unknown. This study tested the hypothesis that Gln regulates protein turnover in intestinal epithelial cells. Intestinal porcine epithelial cells (IPEC-1) were cultured for 3 h (short-term study) or 96 h (long-term study) in Gln-free Dulbecco's modified Eagle-F12 Ham medium containing 0, 0.5 or 2.0 mM Gln. To determine effects of ammonia (a metabolite of Gln, i.e., 0.18 mM ammonia produced from 2 mM Gln in 3 h) on protein turnover, additional experiments were conducted in which medium contained 0.5 mM Gln and 0, 0.2, 0.5 or 2.0 mM NH(4)Cl. Variables of analysis included cell growth, protein synthesis, proteolysis and mammalian target of rapamycin (mTOR) signaling. IPEC-1 cell growth increased with extracellular Gln concentrations. Compared with 0 mM Gln, the addition of 0.5 and 2 mM Gln to medium stimulated protein synthesis and inhibited protein degradation in those cells in both the short- and long-term studies. Ammonia (0.05 to 2.0 mM) did not affect protein synthesis, although higher levels of ammonia (0.5 and 2.0 mM) reduced protein degradation in IPEC-1 cells. Consistent with the data on protein turnover, 0.5 and 2 mM Gln increased abundance of phosphorylated eIF4E-binding protein-1 and phosphorylated S6 kinase-1 proteins. Collectively, these results demonstrate that physiological levels of Gln regulate protein turnover independent of ammonia production in intestinal cells through the mTOR signaling pathway.  相似文献   

5.
A new yeast strain capable of degrading free and metallocyanides was isolated from coke-plant wastewater. The isolated strain designated MCN2 was identified as Cryptococcus humicolus by 26S rDNA sequencing and phylogenetic analysis. During growth of the isolate with KCN as a sole nitrogen source, formamide and formic acid were found as transient intermediates by [(13)C]nuclear magnetic resonance analysis and ammonia accumulated as a final product in the culture medium. The strain MCN2 could degrade high concentrations of tetracyanonickelate (II) (K(2)Ni(CN)(4), TCN) up to 65 mM CN within 60 h when a sufficient amount of glucose was supplied as a carbon source. The maximal degradation rate of TCN was 2.5 mM CN h(-1) at the initial concentration of 51 mM CN.  相似文献   

6.
Protein synthesis and degradation determine the cellular levels of proteins, and their control hence enables organisms to respond to environmental change. Experimentally, these are little known proteome parameters; however, recently, SILAC-based mass spectrometry studies have begun to quantify turnover in the proteomes of cell lines, yeast, and animals. Here, we present a proteome-scale method to quantify turnover and calculate synthesis and degradation rate constants of individual proteins in autotrophic organisms such as algae and plants. The workflow is based on the automated analysis of partial stable isotope incorporation with (15)N. We applied it in a study of the unicellular pico-alga Ostreococcus tauri and observed high relative turnover in chloroplast-encoded ATPases (0.42-0.58% h(-1)), core photosystem II proteins (0.34-0.51% h(-1)), and RbcL (0.47% h(-1)), while nuclear-encoded RbcS2 is more stable (0.23% h(-1)). Mitochondrial targeted ATPases (0.14-0.16% h(-1)), photosystem antennae (0.09-0.14% h(-1)), and histones (0.07-0.1% h(-1)) were comparatively stable. The calculation of degradation and synthesis rate constants k(deg) and k(syn) confirms RbcL as the bulk contributor to overall protein turnover. This study performed over 144 h of incorporation reveals dynamics of protein complex subunits as well as isoforms targeted to different organelles.  相似文献   

7.
Summary A method is given for the calculation of half-lives of proteins in vivo from the measurement of the decrease of radioactivity in pulse-labelled proteins with time. This method could be particularly useful for the study of the degradation of proteins in cells that have a low growth rate.The method applied to growing yeast indicates that there are two major classes of protein. The class with low turnover constitutes the bulk of yeast protein and has a half-life of 160 h in a medium with glucose or galactose and of 50 h in a medium with ethanol. The class of proteins with high turnover (half-life between 0.8 and 2.4 hours) represents from 1% of total protein in yeast growing on glucose to 7% in yeast growing on ethanol.It is shown that some proteins which are derepressed during growth on ethanol or induced during growth on galactose are particularly susceptible to degradation in a medium which contains glucose.It is proposed that protein degradation is regulated by a coarse control at the level of protease activity and a fine control on the susceptibility of individual proteins to proteases.  相似文献   

8.
Ketone-body metabolism in tumour-bearing rats.   总被引:3,自引:3,他引:0       下载免费PDF全文
During starvation for 72 h, tumour-bearing rats showed accelerated ketonaemia and marked ketonuria. Total blood [ketone bodies] were 8.53 mM and 3.34 mM in tumour-bearing and control (non-tumour-bearing) rats respectively (P less than 0.001). The [3-hydroxybutyrate]/[acetoacetate] ratio was 1.3 in the tumour-bearing rats, compared with 3.2 in the controls at 72 h (P less than 0.001). Blood [glucose] and hepatic [glycogen] were lower at the start of starvation in tumour-bearing rats, whereas plasma [non-esterified fatty acids] were not increased above those in the control rats during starvation. After functional hepatectomy, blood [acetoacetate], but not [3-hydroxybutyrate], decreased rapidly in tumour-bearing rats, whereas both ketone bodies decreased, and at a slower rate, in the control rats. Blood [glucose] decreased more rapidly in the hepatectomized control rats. Hepatocytes prepared from 72 h-starved tumour-bearing and control rats showed similar rates of ketogenesis from palmitate, and the distribution of [1-14C] palmitate between oxidation (ketone bodies and CO2) and esterification was also unaffected by tumour-bearing, as was the rate of gluconeogenesis from lactate. The carcinoma itself showed rapid rates of glycolysis and a poor ability to metabolize ketone bodies in vitro. The results are consistent with the peripheral, normal, tissues in tumour-bearing rats having increased ketone-body and decreased glucose metabolic turnover rates.  相似文献   

9.
In this study, we tested the hypothesis that hexose transport regulation may involve proteins with relatively rapid turnover rates. 3T3-L1 adipocytes, which exhibit 10-fold increases in hexose transport rates within 30 min of the addition of 100 nM insulin, were utilized. Exposure of these cells to 300 microM anisomycin or 500 microM cycloheximide caused a maximal, 7-fold increase in 2-deoxyglucose transport rate after 4-8 h. The effects due to either insulin (0.5 h) or anisomycin (5 h) on the kinetics of zero-trans 3-O-methyl[14C]glucose transport were similar, resulting in 2.5-3-fold increases in apparent Vmax values (control Vmax = 1.6 +/- 0.3 x 10(-7) mmol/s/10(6) cells) coupled with approximately 2-fold decreases in apparent Km values (control Km = 23 +/- 3.3 mM). Insulin elicited the expected increases in plasma membrane levels of HepG2/erythrocyte (GLUT1) and muscle/adipocyte (GLUT4) transporters (1.6- and 2.8-fold, respectively) as determined by protein immunoblotting. In contrast, neither total cellular contents nor plasma membrane levels of these two transporter isoforms were increased when 3T3-L1 adipocytes were treated with either anisomycin or cycloheximide. 3-[125I]Iodo-4-azidophenethylamido-7-O-succinyldeacetylforskoli n labeling of glucose transporters in plasma membrane fractions of similarly treated cells was also unaffected by these agents. Thus, a striking discrepancy was observed between the marked increase in cellular hexose transport rates due to these protein synthesis inhibitors and the unaltered amounts of glucose transporter proteins in the plasma membrane fraction. These data indicate that short-term protein synthesis inhibition in 3T3-L1 adipocytes leads to large increases in the intrinsic catalytic activity of one or both of the GLUT1 and GLUT4 transporter isoforms.  相似文献   

10.
The effects of incubation time (15 min-4 h), rate of semen to buffer dilution (1/10-1/40), and concentration of glucose (5.5-22 mM) on the rate of protein synthesis by ejaculated washed ram spermatozoa were determined. The rate of protein synthesis increased linearly as incubation time, dilution rate, and the glucose concentration increased. Denaturation of sperm protein with 1% HgCl2 caused an almost complete inhibition of amino acid incorporation. Protein synthesis over a period of 4 h was also inhibited by chloramphenicol but was not affected by cycloheximide. Protein synthesis and uptake of [14C]cAMP by washed ram spermatozoa was also significantly inhibited by the inclusion of 2-8% seminal plasma in the buffer. The present results indicate that the authentic protein synthesis by mature ram spermatozoa is mainly of mitochondrial origin. The data also suggest a role for intracellular cAMP in the regulation of sperm protein synthetic activity.  相似文献   

11.
Previously we reported that stable transfection of human UDP-glucose pyrophosphorylase (hUGP2) rescued galactose-1-phosphate uridyltransferase (GALT)-deficient yeast from "galactose toxicity." Here we test in human cell lines the hypothesis that galactose toxicity was caused by excess accumulation of galactose-1-phosphate (Gal-1-P), inhibition of hUGP2, and UDP-hexose deficiency. We found that SV40-transformed fibroblasts derived from a galactosemic patient accumulated Gal-1-P from 1.2+/-0.4 to 5.2+/-0.5 mM and stopped growing when transferred from 0.1% glucose to 0.1% galactose. Control fibroblasts accumulated little Gal-1-P and continued to grow. The GALT-deficient cells had 157+/-10 micromoles UDP-glucose/100 g protein and 25+/-5 micromoles UDP-galactose/100 g protein when grown in 0.1% glucose. The control cells had 236+/-25 micromoles UDP- glucose/100 g protein and 82+/-10 micromoles UDP-galactose/100 g protein when grown in identical medium. When we transfected the GALT-deficient cells with either the hUGP2 or GALT gene, their UDP-glucose content increased to 305+/-28 micromoles/100 g protein (hUGP2-transfected) and 210+/-13 micromoles/100 g protein (GALT-transfected), respectively. Similarly, UDP-galactose content increased to 75+/-12 micromoles/100 g protein (hUGP2-transfected) and 55+/-9 micromoles/100 g protein (GALT-transfected), respectively. Though the GALT-transfected cells grew in 0.1% galactose with little accumulation of Gal-1-P (0.2+/-0.02 mM), the hUGP2-transfected cells grew but accumulated some Gal-1-P (3.1+/-0.4 mM). We found that 2.5 mM Gal-1-P increased the apparent KM of purified hUGP2 for glucose-1-phosphate from 19.7 microM to 169 microM, without changes in apparent Vmax. The Ki of the reaction was 0.47 mM. Gal-1-P also inhibited UDP-N-acetylglucosamine pyrophosphorylase, which catalyzes the formation of UDP-N-acetylglucosamine. We conclude that intracellular concentrations of Gal-1-P found in classic galactosemia inhibit UDP-hexose pyrophosphorylases and reduce the intracellular concentrations of UDP-hexoses. Reduced Sambucus nigra agglutinin binding to glycoproteins isolated from cells with increased Gal-1-P is consistent with the resultant inhibition of glycoprotein glycosylation.  相似文献   

12.
1. At least 95% of the total protein of A31-3T3 cell cultures undergoes turnover. 2. First-order exponential kinetics were used to provide a crude approximation of averaged protein synthesis, Ks, degradation, Kd, and net accumulation, Ka, as cells ceased growth at near-confluent density in unchanged Dulbecco's medium containing 10% serum. The values of the relationship Ka = Ks - Kd were : 5%/h = 6%/h - 1%/h in growing cells, and 0%/h = 3%/h - 3%/h in steady-state resting cells. 3. As determined by comparison of the progress of protein synthesis and net protein accumulation, the time course of increase in protein degradation coincided with the onset of an increase in lysosomal proteinase activity and decrease in thymidine incorporation after approx. 2 days of exponential growth. 4. After acute serum deprivation, rapid increases in protein degradation of less than 1%/h could be superimposed on the prevailing degradation rate in either growing or resting cells. The results indicate that two proteolytic mechanisms can be distinguished on the basis of the kinetics of their alterations. A slow mechanism changes in relation to proliferative status and lysosomal enzyme elevation. A prompt mechanism, previously described by others, changes before changes in cell-cycle distribution or lysosomal proteinase activity. 5. When the serum concentration of growing cultures was decreased to 1% or 0.25%, then cessation of growth was accompanied by a lower steady-state protein turnover rate of 2.0%/h or 1.5%/h respectively. When growth ceased under conditions of overcrowded cultures, or severe nutrient insufficiency, protein turnover did not attain a final steady state, but declined continually into the death of the culture.  相似文献   

13.
The culture levels of glucose and CO(2) have been reported to independently have important influences on mammalian cell processes. In this work the combined effects of glucose limitation and CO(2) partial pressure (pCO(2)) on monoclonal antibody (IgG) producing Chinese Hamster Ovary cells were investigated in a perfusion reactor operated with controlled cell specific medium feed rate, pH and osmolality. Under high glucose conditions (14.3 +/- 0.8 mM), the apparent growth rate decreased (from 0.021 to 0.009 h(-1)) as the pCO(2) increased to approximately 220 mmHg, while the cell specific IgG productivity was almost unchanged. The lactate yield from glucose was not affected by pCO(2) up to approximately 220 mmHg and glucose was mainly converted to lactate. A feed medium modification from high (33 mM) to low (6 mM) glucose resulted in <0.1 mM glucose in the culture. As a result of apparently shifting metabolism towards the conversion of pyruvate to CO(2), both the ratio of lactate to glucose and the alanine production rate were lowered (1.51-1.14 and 17.7-0.56 nmol/10(6) cells h, respectively). Interestingly, when the pCO(2) was increased to approximately 140 mmHg, limiting glucose resulted in 1.7-fold higher growth rates, compared to high glucose conditions. However, at approximately 220 mmHg pCO(2) this beneficial effect of glucose limitation on these CHO cells was lost as the growth rate dropped dramatically to 0.008 h(-1) and the IgG productivity was lowered by 15% (P < 0.01) relative to the high glucose condition. The IgG galactosylation increased under glucose- limited compared to high-glucose conditions.  相似文献   

14.
Changes in the level of glutathione (GSH), the turnover rate, and gamma-glutamyltransferase (GGT) activity were examined in newborn, weanling, and adult male Wistar rats, the objective being to elucidate the mechanisms which control the hepatic GSH level during maturation as well as under conditions of different degrees of protein ingestion. The hepatic GGT activity in the newborn rats was high at birth, decreased within a few days to 1 to 2% of the initial level, and remained unchanged thereafter, when these rats were fed a normal diet after 3 weeks of age. In contrast, the hepatic GSH level increased 3-4-fold while total GGT activity in the kidney increased 6-8-fold. When weanling rats were fed a low protein diet (containing 10% soy protein) for 3 weeks, the hepatic GSH level decreased markedly while the GGT activity increased 5-6-fold. The turnover rate of hepatic GSH also increased, as determined by the use of buthionine sulfoximine, a specific inhibitor of GSH synthesis; a value of 2.1 h was obtained in comparison with 3.5 h for that of rats fed the normal laboratory chow (CRF-1). On the other hand, feeding adult rats on the low protein diet resulted in a marked decrease in hepatic GSH level with no effect on either hepatic or renal GGT activity. These results together with other observations may suggest that GSH translocated out of liver cells in the newborn rats is degraded mainly by these cells, while the tripeptide secreted by hepatocytes of adult rats is metabolized predominantly in extrahepatic tissues, such as the kidney.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The effect of glucose/Cu2+ incubation on (a) pure methionine oxidation, (b) the oxidation of active-site methionine in alpha 1-proteinase inhibitor (alpha 1PI) and (c) the resulting activity and structural changes of this inhibitor was investigated. While no methionine was oxidized during a 24 day, 37 degrees C incubation with 0.01 M EDTA and 100 mM glucose, 64.2% oxidation occurred in 6 days when 0.01 mM Cu2+ was added to the 100 mM glucose. The first-order rate constant for oxidation in 10 mM glucose, 0.01 mM Cu2+ was 0.0218 day-1. Oxidation was inhibited by catalase, but accelerated by ascorbate ion. The active-site methionyl residue of alpha 1PI was oxidized 71.3% after a 4 day incubation in 100 mM glucose, 0.01 mM Cu2+ (pH 7.45), 0.1 M phosphate buffer. The elastase and trypsin inhibiting activities were lowered to 3.1 and 1.5% of control samples during this incubation. The inclusion of 1 mM DETAPAC, a transition metal chelator, resulted in a 98 + % retention of activity. Intrinsic fluorescence (350 nm excitation, 415 nm emission) of alpha 1PI increased 576% over control for the sample incubated in 100 mM glucose, 0.01 mM Cu2+ and SDS-PAGE revealed protein fragment molecular weights of 44.4 and 39.8 kDa. These studies suggest that both methionine oxidation and free radical induced fragmentation contribute to loss of alpha 1PI activity during glucose/Cu2+ incubations.  相似文献   

16.
To elucidate the mechanism by which phosphate induces developmental inhibition of rat 2-cell embryos, we examined the mutual effects of glucose and other glycolytic and non-glycolytic sugars, the non-metabolizable glucose analogue, and glycolytic inhibitors on the inhibitory effect of phosphate. In the absence of glucose, 30-49% of embryos treated with 10-500 microM phosphate were able to develop to morula and blastocysts. On the other hand, in the presence of 5 mM glucose, 10 microM phosphate decreased the developmental rate of 2-cell embryos to the 4-cell stage and completely inhibited the development beyond the 4-cell stage. In contrast, glucose showed no influence on development in phosphate-free medium. Similarly to glucose, the other glycolytic sugars fructose (5 mM) and mannose (5 mM) enhanced the inhibitory effect of 10 microM phosphate but had no influence in the absence of phosphate. In contrast, the non-glycolytic sugar and non-metabolizable glucose analogue N-acetylglucosamine and 3-O-methylglucose (3-O-MGlc), respectively, did not enhance the effects of phosphate. 2-Deoxyglucose (2DGlc), another glucose analogue that is non-metabolizable but is converted by hexokinase to 2DGlc 6-phosphate, at concentrations as low as 0.1 mM completely inhibited cell cycle progression of 2-cell embryos cultured in glucose-free (Glc(-)) medium with 10 microM phosphate. In contrast, in the absence of phosphate, 2DGlc at the same concentration allowed 55% of 2-cell embryos to develop to morula and blastocyst stages. Addition of an inhibitor of enolase in glycolysis, sodium fluoride (NaF), at 1 mM to the Glc(-) medium also enhanced the inhibitory effects of 10 microM phosphate, whereas 1 mM NaF in the absence of phosphate showed no inhibitory effects on the development of 2-cell embryos to morula and blastocyst stages. From these results, disturbance of glycolysis is a critical reason for the developmental inhibition caused by phosphate in early rat embryos in culture.  相似文献   

17.
Gamma-glutamylmetylamide synthetase (GMAS) of Methylovorus mays No. 9, produced by Eschericia coli AD494 (DE3) harboring pET21aGM, formed theanine from glutamic acid and ethylamine with coupling of the reaction with sugar fermentation of baker's yeast cells as an ATP-regeneration system. Theanine formation was stimulated by the addition of Mn(2+) to the reaction mixture, whereas Mg(2+) was less effective. Increases to a certain level in the concentrations of GMAS and the substrates in the mixture were effective in increasing theanine formation, but high concentrations of ethylamine (900 mM or more) inhibited yeast sugar fermentation, and eventually decreased theanine formation. The inhibitory effect of ethylamine was restored by increasing the concentration of potassium phosphate buffer in the mixture. Approximately 600 mM (110 mg/ml) theanine was formed in 48 h in an improved reaction mixture containing 600 mM sodium glutamate, 600 mM ethylamine.HCl, 300 mM glucose, 200 mM potassium phosphate buffer (pH 7.0), 30 mM MgCl(2), 5 mM MnCl(2), 5 mM AMP, 30 units/ml of GMAS, and 40 mg/ml of yeast cells. The yield of theanine was 100% on the substrates (glutamic acid and ethylamine) and also on the energy source (glucose consumed).  相似文献   

18.
The bioenergetic basis by which the Krebs cycle substrate pyruvate increased cardiac contractile function over that observed with the Embden-Meyerhof substrate glucose was investigated in the isovolumic guinea pig heart. Alterations in the content of the high energy phosphate metabolites and the rate of high energy phosphate turnover were measured by 31P NMR. These were correlated to the changes in contractile function and rates of myocardial oxygen consumption. Maximum left ventricular developed pressure (LVDP) and high energy phosphates were observed with 16 mM glucose or 10 mM pyruvate. In hearts perfused with 16 mM glucose, the intracellular phosphocreatine (PCr) concentration was 15.2 +/- 0.6 mM with a PCr/Pi ratio of 10.3 +/- 0.9. The O2 consumption was 5.35 mumol/g wet weight/min, and these hearts exhibited a LVDP of 97 +/- 3.7 mm Hg at a constant paced rate of 200 beats/min. In contrast, when hearts were switched to 10 mM pyruvate, the PCr concentration was 18.3 +/- 0.4 mM, the PCr/Pi ratio was 30.4 +/- 2.2, the O2 consumption was 6.67 mumol/g wet weight/min, and the LDVP increased to 125 +/- 3.3 mm Hg. From NMR saturation transfer experiments, the steady-state flux of ATP synthesis from PCr was 4.9 mumol/s/g of cell water during glucose perfusion and 6.67 mumol/s/g of cell water during pyruvate perfusion. The flux of ATP synthesis from ADP was measured to be 0.99 mumol/s/g of cell water with glucose and calculated to be 1.33 mumol/s/g of cell water with pyruvate. These results suggest that pyruvate quite favorably alters myocardial metabolism in concert with the increased contractile performance. Thus, as a mechanism to augment myocardial performance, pyruvate appears to be unique.  相似文献   

19.
20.
When adipocytes were exposed to [3H]leucine for times ranging from 5 to 180 s, leucine was found to enter cells rapidly and equilibrate with the cell interior within 5 s. After an additional 15-30 s [3H]leucine was incorporated into nascent protein, and the rate of incorporation was linear for up to 6 h in both control and insulin-treated cells. Since treatment of adipocytes with 10 ng/ml insulin enhanced the rate of leucine incorporation 2-3-fold with minimal or no effect on the rate of protein degradation or leucine uptake, we conclude that the predominant effect of insulin is on enhancement of protein synthesis. To assess the time required for insulin to stimulate protein synthesis, we preincubated cells with 10 ng/ml of insulin for various times from 2 to 30 min and then measured [3H]leucine incorporation into protein during a 4-min assay. These results revealed that the insulin stimulation of protein synthesis is rapid (t 1/2 of 4.4 min), but 9-fold slower than insulin activation of glucose transport (t 1/2 less than 0.5 min under identical conditions). In contrast to the rapidity of insulin activation, we found that deactivation proceeded at much slower rates (t 1/2 of 32 and 21 min for protein synthesis and glucose transport, respectively). Desensitization of the glucose transport system has previously been shown to occur after adipocytes are exposed to high glucose and insulin. To examine the specificity of desensitization, we treated cells for 6 h with 20 mM glucose and 25 ng/ml insulin and then examined insulin sensitivity and maximal insulin responsiveness of both the glucose transport and protein synthesis systems. After treatment, the glucose transport was markedly insulin-resistant (60% loss in maximal insulin responsiveness and a marked loss in insulin sensitivity), whereas the protein synthesis system exhibited neither diminished insulin responsiveness nor loss of insulin sensitivity. In fact, insulin sensitivity actually increased, as indicated by the finding that less insulin was required to stimulate protein synthesis (insulin ED50 values of 0.25 and 18 ng/ml at 0 and 6 h of treatment). From these studies we conclude that desensitization of the glucose transport system by glucose and insulin treatment appears to be specific for this particular effector system and does not reflect a state of generalized cellular insulin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号