首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The responses of the field mouse Mus booduga to shifts in schedules of LD cycles were monitored and the results were interpreted with the help of a PRC constructed for the same species. The results reveal that, M. booduga reentrained faster with a lesser number of transients after delay shifts than advance shifts, thus exhibiting “asymmetry effect.” A positive correlation was observed between the number of transients and the number of hours of shift. In most of the shifts, the sign of the transients (negative for delaying transients and positive for advancing transients) coincided with the direction of the shift. Interestingly, 11 and 12 h of advance shifting resulted in delaying transients. An 11-h advance shift can also be interpreted as a 13-h delay. Reentrainment through delaying transients is faster as compared to reentrainment through advancing transients. Thus, this animal might have taken a “shorter route,” as proved by the fact that an 11-h advance shift has evoked delaying transients. But a 13-h advance shift evoked only advancing transients. This prompts us to speculate that there may be a “phase jump” in M. booduga. Further, irrespective of whether L or D has been doubled in a 12-h shift, both evoked only delaying transients.  相似文献   

2.
Changes in intracellular calcium concentration ([Ca2+]i) and focal adhesion sites of cultured bovine aortic endothelial cells (BAECs) were simultaneously visualized in real time. Local [Ca2+]i transients were observed at the rear edges of spontaneously migrating BAECs. Furthermore, the majority of starting regions of [Ca2+]i transients retracted continuously. Frequency of [Ca2+]i transients increased with the application of fluid flow. The majority of starting regions of flow-induced [Ca2+]i transients retracted following the occurrence of [Ca2+]i transients. In addition, retracted areas were distributed in the upstream regions of the cell. Application of GdCl3, a mechanosensitive cation channel blocker, resulted in a clear reduction of [Ca2+]i transients and rear retractions in cases of spontaneous and flow-induced BAEC migration. Flow-induced directional rear retractions were also inhibited. Consequently, we conclude that local [Ca2+]i transients play an important role in the migration of BAECs with respect to rear retraction. Furthermore, flow-induced [Ca2+]i transients regulate directional rear retraction under flow conditions.  相似文献   

3.
Aequorin measurements of cytosolic free Ca2+ in single rat hepatocytes show that ADP and ATP, thought to act through the same P2Y purinoceptor, elicited very different responses in the majority of cells tested. ADP invariably induced transients of short duration (approx. 9 s), whereas ATP induced either similar transients or transients with a much longer duration (approx. 49 s). We explain this variability in terms of two separate purinoceptors on rat hepatocytes, one of which responds to either ATP or ADP to generate free-Ca2+ transients of short duration, and the other responds to ATP only, with transients of longer duration.  相似文献   

4.
Intracellular calcium transients were studied prior, during and after 30 min of global ischemia in control and aortic constricted rat hearts, with and without acute treatment with verapamil. Calcium transients [Ca2+]i continued to occur in verapamil treated animals for 18-20 min following the onset of global ischemia, whereas untreated hearts demonstrated calcium transients for only 3-8 min following global ischemia. Following the onset of global ischemia calcium transients continued to occur even though there was no measurable developed pressure. When calcium transients occurred for shorter periods of time during global ischemia the rise in diastolic calcium was greater and recovery was less. Addition of bradykinin to the perfusate showed that an increase in diastolic [Ca2+]i was related to a decrease in amplitude of developed [Ca2+]i transients and a decrease in developed pressure, but not to a change in coronary flow.  相似文献   

5.
Titin has a Ca2+-dependent kinase domain and may act as a molecular template for myofibrillogenesis. Therefore, we examined the relationship between endogenous Ca2+ transients and titin organization in embryonic myocytes. When transients were blocked during sarcomere assembly, titin organization was disrupted. Titin was distributed in punctate aggregates on an otherwise diffuse background, resulting in a 66% decrease in organization. Myosin, as reported previously, was also disrupted in a similar manner (75% decrease). In titin-actin-myosin triple-labeling experiments, myosin and titin were highly colocalized, although titin aggregates without significant myosin accumulation were also observed. This suggests that myosin-titin association is not dependent on Ca2+ transients, although terminal aspects of titin-myosin organization require transients. We also examined whether titin organization is dependent on actin filament dynamics. The data indicate that (1) the normal sarcomeric arrangement of titin depends on Ca2+ transients, (2) titin-myosin association does not require Ca2+ transients, and (3) titin filament organization does not depend on barbed-end actin dynamics.  相似文献   

6.
Ca2+ currents (ICa) and myoplasmic Ca2+ transients were simultaneously recorded in single muscle fibers from the semitendinosus muscle of Rana pipiens. The vaseline-gap voltage-clamp technique was used. Ca2+ transients were recorded with the metallochromic indicator dye antipyrylazo III. Ca2+ transients consisted of an early fast rising phase followed by a late slower one. The second phase was increased by experimental maneuvers that enlarged ICa, such as augmenting [Ca2+]o (from 2 to 10 mM) or adding (-)-Bay K 8644 (2 microM). When [Ca2+]o was increased, the second phase of the Ca2+ transients and ICa showed an average increase at 0 mV of 2 +/- 0.9 microM (4) and 1.4 +/- 0.3 mA/ml (4), respectively. (-)-Bay K 8644 increased the late phase of the Ca2+ transients and ICa at 0 mV by 0.8 +/- 0.3 microM (3) and 6.7 +/- 2.0 mA/ml (4), respectively. The initial fast rising phase of the Ca2+ transients was not modified. (-)-Bay K 8644 slowed the time constant of decay of the transients by 57 +/- 6 ms. In other experimental conditions, Ca2+ release from the sarcoplasmic reticulum (SR) was impaired with repetitive stimulation in 1 mM [EGTA]i-containing fibers. Under those circumstances, Ca2+ transients directly followed the time integral of ICa. Pulses to 0 mV caused a large Ca2+ transient that became suppressed when large pulses to 100 mV were applied. In fibers with functioning SR, pulses to 100 mV elicited somewhat smaller or similar amplitude Ca2+ transients when compared with those elicited by pulses to 0 mV. The increase in ICa after raising [Ca2+]o or adding (-)-Bay K 8644 cannot directly explain the change in Ca2+ transients in fibers with functioning SR. On the other hand, when Ca2+ release from the SR is impaired Ca2+ transients depend on ICa.  相似文献   

7.
Oxytocin-induced Ca(2+) transients play an important role in myometrial contractions. Here, using a knockout model, we found that the enzyme CD38, responsible for the synthesis of the second messenger cyclic ADP-ribose (cADPR), plays an important role in the oxytocin-induced Ca(2+) transients and contraction. We also observed that CD38 is necessary for TNF-alpha-increased agonist-stimulated Ca(2+) transients in human myometrial cells. We provide experimental evidence that the TNF-alpha effect is mediated by increased expression of the enzyme CD38. First, we observed that TNF-alpha increased oxytocin-induced Ca(2+) transients and CD38 expression in human myometrial cells. Moreover, using small interference RNA technology, we observed that TNF-alpha stimulation of agonist-induced Ca(2+) transients was abolished by blocking the expression of CD38. In control experiments, we observed that activation of the component of the TNF-alpha signaling pathway, NF-kappaB, was not affected by the treatments. Finally, we observed that the effects of TNF-alpha on CD38 cyclase and oxytocin-induced Ca(2+) transients are abolished by progesterone. In conclusion, we provide the first experimental evidence that CD38 is important for myometrial Ca(2+) transients and contraction. Moreover, CD38 is necessary for the TNF-alpha-mediated augmentation of agonist-induced Ca(2+) transients in myometrial cells. We propose that the balance between cytokines and placental steroids regulates the expression of CD38 in vivo and cell responsiveness to oxytocin.  相似文献   

8.
目的:研究胞外不同浓度的镁离子对SD成年大鼠心肌细胞钙瞬变的影响。方法:采用激光共聚焦显微镜系统同步配合阈上电刺激探测心肌细胞钙瞬变。结果:胞外低浓度的镁离子(0 mmol /L,0.5 mmol /L; 正常镁离子浓度为1 mmol/L)可以升高钙瞬变的峰值(P〈0.05),但不影响钙瞬变的持续时间(以钙瞬变的半高宽表示)(P〉0.05);胞外高浓度的镁离子(2.5 mmol /L,5 mmol /L,10 mmol /L)均可抑制钙瞬变的峰值(P〈0.05);其中5 mmol/L和10 mmol/L的胞外镁还能延长钙瞬变的持续时间(P〈0.05)。结论:正常情况下镁对心肌细胞钙瞬变有抑制作用。  相似文献   

9.
Emptage NJ  Reid CA  Fine A 《Neuron》2001,29(1):197-208
Evoked transmitter release depends upon calcium influx into synaptic boutons, but mechanisms regulating bouton calcium levels and spontaneous transmitter release are obscure. To understand these processes better, we monitored calcium transients in axons and presynaptic terminals of pyramidal neurons in hippocampal slice cultures. Action potentials reliably evoke calcium transients in axons and boutons. Calcium-induced calcium release (CICR) from internal stores contributes to the transients in boutons and to paired-pulse facilitation of EPSPs. Store depletion activates store-operated calcium channels, influencing the frequency of spontaneous transmitter release. Boutons display spontaneous Ca2+ transients; blocking CICR reduces the frequency of these transients and of spontaneous miniature synaptic events. Thus, spontaneous transmitter release is largely calcium mediated, driven by Ca2+ release from internal stores. Bouton store release is important for short-term synaptic plasticity and may also contribute to long-term plasticity.  相似文献   

10.
It is of paramount importance to investigate the relation between the time-dependent change in intracellular Ca2+ concentration ([Ca2+]i) (Ca2+ transients) and the mechanical activity of isolated single myocytes to understand the regulatory mechanisms of heart function. However, because of technical difficulties in performing mechanical measurements with single myocytes, the simultaneous recording of Ca2+ transients and mechanical activity has mainly been performed with multicellular cardiac preparations that give conflicting results concerning Ca2+ transients during isometric twitches and during twitches with unloaded shortening. In the present study, we coupled intracellular Ca2+ measurement optics with a force measurement system using carbon fibers to examine the relation between Ca2+ transients and the mechanical activity of rat single ventricular myocytes over a wide range of load. To minimize the possible load dependence of sarcoplasmic reticulum Ca2+ loading, contraction mode was switched at every twitch from unloaded shortening to isometric contraction. During a twitch with unloaded shortening, the Ca2+ transients exhibited a higher peak and a higher rate of decay than transients during an isometric twitch. Similarly, when we changed the contraction mode in every pair of twitches, Ca2+ transients were dependent only on the mode of contraction. Mechanical uncoupling with 2,3-butanedione monoxime abolished this dependence on the mode of contraction. Our results suggest that Ca2+ transients reflect the affinity of troponin C for Ca2+, which is influenced by the change in strain on the thin filament but not by the length change per se.  相似文献   

11.
Embryonic Xenopus myocytes generate spontaneous calcium (Ca(2+)) transients during differentiation in culture. Suppression of these transients disrupts myofibril organization and the formation of sarcomeres through an identified signal transduction cascade. Since transients often occur during myocyte polarization and migration in culture, we hypothesized they might play additional roles in vivo during tissue formation. We have tested this hypothesis by examining Ca(2+) dynamics in the intact Xenopus paraxial mesoderm as it differentiates into the mature myotome. We find that Ca(2+) transients occur in cells of the developing myotome with characteristics remarkably similar to those in cultured myocytes. Transients produced within the myotome are correlated with somitogenesis as well as myocyte maturation. Since transients arise from intracellular stores in cultured myocytes, we examined the functional distribution of both IP(3) and ryanodine receptors in the intact myotome by eliciting Ca(2+) elevations in response to photorelease of caged IP(3) and superfusion of caffeine, respectively. As in culture, transients in vivo depend on Ca(2+) release from ryanodine receptor (RyR) stores, and blocking RyR during development interferes with somite maturation.  相似文献   

12.
The metallochrome calcium indicators arsenazo III and antipyrylazo III have been introduced individually into cut single frog skeletal muscle fibers from which calcium transients have been elicited either by action potential stimulation or by voltage-clamp pulses of up to 50 ms in duration. Calcium transients recorded with both dyes at selected wavelengths have similar characteristics when elicited by action potentials. Longer voltage-clamp pulse stimulation reveals differences in the late phases of the optical signals obtained with the two dyes. The effects of different tension blocking methods on Ca transients were compared experimentally. Internal application of EGTA at concentrations up to 3 mM was demonstrated to be efficient in blocking movement artifacts without affecting Ca transients. Higher EGTA concentrations affect the Ca signals' characteristics. Differential effects of internally applied EGTA on tension development as opposed to calcium transients suggest that diffusion with binding from Ca++ release sites to filament overlap sites may be significant. The spectral characteristics of the absorbance transients recorded with arsenazo III suggest that in situ recorded signals cannot be easily interpreted in terms of Ca concentration changes. A more exhaustic knowledge of the dye chemistry and/or in situ complications in the use of the dye will be necessary.  相似文献   

13.
Summary Both the natural metamorphic stimulus (an unidentified bacterial product) and an artificial trigger of metamorphosis (Cs+) cause large calcium transients in planula cells of the hydrozoanMitrocomella polydiademata. When these transients are inhibited with calcium channel blockers, metamorphosis is also inhibited. All cells of theMitrocomella planula contain a calcium-specific photoprotein. The cells where the calcium transients occur during natural- and Cs+-induced metamorphosis have been visualized in normal and entoderm free planulae that lack ganglion cells, using a compound microscope coupled to an image intensifier and video camera. During bacteria- and Cs+-induced metamorphosis, groups of contiguous cells, occupying from about 10% to the entire visible surface of the planula, simultaneously exhibit calcium transients. When the cells that initiate a transient comprise only part of the planula surface, the calcium transient frequently propagates and can eventually involve every cell on the visible planula surface. There is no special site on the planula surface where calcium transients are more apt to be initiated. There is no indication that propagation of a flash in one direction is more likely than in another. The velocity of propagation is virtually the same in all directions. The only feature of the spatial distribution of bacteria- and Cs+-induced calcium transients that appears to be necessary for the induction of metamorphosis is that at least one transient must involve all of the surface cells of the planula. The spatial behavior of calcium transients is the same in entoderm free planulae (lacking ganglion cells) as in normal planulae. The propagation of these calcium transients most probably occurs via epithelial conduction. This metamorphic step involving calcium transients is probably the intercellular communication system that informs the cells of the planula that metamorphosis will commence.Metamorphosis inMitrocomella planulae can also be induced with phorbol esters. Calcium transients do not occur during phorbol ester-induced metamorphosis, indicating that they act at a different point in the metamorphic pathway. Calcium channel blockers do not inhibit phorbol ester-induced metamorphosis. Inhibitors of protein kinase-C, inhibit both phorbol ester-induced metamorphosis and Cs+- and bacteria-induced metamorphosis, but have no effect on the calcium transients induced by Cs+. This indicates that the calcium transient mediated step in the metamorphic pathway occurs prior to protein kinase-C activation. Calcium transients probably play a major role in activating protein kinase-C.  相似文献   

14.
The present experiment examined the effect of the dopamine transporter blocker nomifensine on subsecond fluctuations in dopamine concentrations, or dopamine transients, in the nucleus accumbens and olfactory tubercle. Extracellular dopamine was measured in real time using fast-scan cyclic voltammetry at micron-dimension carbon fibers in freely-moving rats. Dopamine transients occurred spontaneously throughout the ventral striatum in the absence of apparent sensory input or change in behavioral response. The frequency of dopamine transients increased at the presentation of salient stimuli to the rat (food, novel odors and unexpected noises). Administration of 7 mg/kg nomifensine amplified spontaneous dopamine transients by increasing both amplitude and duration, consistent with its known action at the dopamine transporter and emphasizing the dopaminergic origin of the signals. Moreover, nomifensine increased the frequency of detected dopamine transients, both during baseline conditions and at the presentation of stimuli, but more profoundly in the nucleus accumbens than in the olfactory tubercle. This difference was not explained by nomifensine effects on the kinetics of dopamine release and uptake, as its effects on electrically-evoked dopamine signals were similar in both regions. These findings demonstrate the heterogeneity of dopamine transients in the ventral striatum and establish that nomifensine elevates the tone of rapid dopamine signals in the brain.  相似文献   

15.
The role of calcium signaling in cytokinesis has long remained ambiguous. Past studies of embryonic cell division discovered that calcium concentration increases transiently at the division plane just before cleavage furrow ingression, suggesting that these calcium transients could trigger contractile ring constriction. However, such calcium transients have only been found in animal embryos and their function remains controversial. We explored cytokinetic calcium transients in the fission yeast Schizosaccharomyces pombe by adopting GCaMP, a genetically encoded calcium indicator, to determine the intracellular calcium level of this model organism. We validated GCaMP as a highly sensitive calcium reporter in fission yeast, allowing us to capture calcium transients triggered by osmotic shocks. We identified a correlation between the intracellular calcium level and cell division, consistent with the existence of calcium transients during cytokinesis. Using time-lapse microscopy and quantitative image analysis, we discovered calcium spikes both at the start of cleavage furrow ingression and the end of cell separation. Inhibition of these calcium spikes slowed the furrow ingression and led to frequent lysis of daughter cells. We conclude that like the larger animal embryos, fission yeast triggers calcium transients that may play an important role in cytokinesis (197).  相似文献   

16.
Ca2+ signaling is essential for bone metabolism. Fluid shear stress (FSS), which can induce a rapid release of calcium from endoplasmic reticulum (ER) to produce calcium transients, plays a significant role in osteoblast proliferation and differentiation. However, it is still unclear of how calcium transients induced by FSS activating a number of downstream signals which subsequently regulate cell functions. In this study, we performed a group of Ca2+ transients models, which were induced by FSS to investigate the effects of different magnitudes of Ca2+ transients in osteoblast proliferation. Further, we performed a global proteomic profile of MC3T3-E1 cells in different Ca2+ transients models stimulated by FSS. GO enrichment and KEGG pathway analysis revealed that the TCA cycle was activated in the proliferating process. The activation of TCA needed mitochondrial Ca2+ uptake which were influenced by the amplitude of Ca2+ transients induced by FSS. Our work elucidate that osteoblast proliferation induced by FSS was related to the magnitude of calcium transients, which further activated energetic metabolism signaling pathway. This work revealed further understanding the mechanism of osteoblast proliferation induced by mechanic loading and help us to design new methods for osteoporosis therapy.  相似文献   

17.
We used fura-2 video imaging to characterize two Ca2+ influx pathways in mouse thymocytes. Most thymocytes (77%) superfused with hypoosmotic media (60% of isoosmotic) exhibited a sharp, transient rise in the concentration of intracellular free Ca2+ ([Ca2+]i). After a delay of approximately 70 s, these swelling-activated [Ca2+]i (SWAC) transients reached approximately 650 nM from resting levels of approximately 100 nM and declined from a time constant of 20 s. Peak [Ca2+]i during transients correlated with maximum volume during swelling. Regulatory volume decrease (RVD) was enhanced in thymocytes exhibiting SWAC transients. Three lines of evidence indicate that Ca2+ influx, and not the release of Ca2+ from intracellular stores, underlies SWAC transients in thymocytes. First, thymocytes swollen in Ca2+-free media failed to respond. Second, Gd3+ and La3+ inhibited SWAC influx with Kd's of 3.8 and 2.4 microM, respectively. Finally, the depletion of Ca2+ stores with thapsigargin (TG) before swelling did not inhibit the generation, nor decrease the amplitude, of SWAC transients. Cell phenotyping demonstrated that SWAC transients are primarily associated with immature CD4-CD8- and CD4+CD8+ thymocytes. Mature peripheral lymphocytes (mouse or human) did not exhibit SWAC transients. SWAC influx could be distinguished from the calcium release-activated Ca2+ (CRAC) influx pathway stimulated by store depletion with TG. In TG- treated thymocytes, [Ca2+]i rose steadily for approximately 100 s, peaked at approximately 900 nM, and then declined slowly. Simultaneous activation of both pathways produced an additive [Ca2+]i profile. Gd3+ and La3+ blocked Ca2+ entry during CRAC activation more potently (Kd's of 28 and 58 nM, respectively) than Ca2+ influx during SWAC transients. SWAC transients could be elicited in the presence of 1 microM Gd3+, after the complete inhibition of CRAC influx. Finally, whereas SWAC transients were principally restricted to immature thymocytes. TG stimulated the CRAC influx pathway in all four thymic CD4/CD8 subsets and in mature T cells. We conclude that SWAC and CRAC represent separate pathways for Ca2+ entry in thymocytes.  相似文献   

18.
Pancreatic beta-cells have an intrinsic oscillatory Ca2+ activity supposed to be synchronized among the islets by cytoplasmic Ca2+ transients elicited by nonadrenergic, noncholinergic (NANC) neurons. To improve the understanding of this process, the cytoplasmic Ca2+ concentration ([Ca2+]i) was measured in two insulin-releasing cell lines using dual wavelength microfluorometry and the indicator fura-2. INS-1 cells but not RINm5F cells were found to generate transients of [Ca2+]i in the presence of the Ca2+ channel blocker methoxyverapamil. These transients differed from those occurring in native beta-cells persisting in the presence of thapsigargin or during prolonged exposure to ATP. Moreover, the [Ca2+]i transients were poorly synchronized whether or not the INS-1 cells had physical contact. If appearing in native beta-cells, the type of [Ca2+]i transients now observed may interfere with the coordination of the beta-cell rhythmicity evoked by NANC neurons.  相似文献   

19.
We have used Ca2+-sensitive fluorescent dyes to monitor intracellular Ca2+ during mitosis in one-cell mouse embryos. We find that fertilized embryos generate Ca2+ transients at nuclear envelope breakdown (NEBD) and during mitosis. In addition, fertilized embryos arrested in metaphase using colcemid continue to generate Ca2+ transients. In contrast, parthenogenetic embryos produced by a 2-h exposure to strontium containing medium do not generate detectable Ca2+ transients at NEBD or in mitosis. However, when parthenogenetic embryos are cultured continuously in strontium containing medium Ca2+ transients are detected in mitosis but not in interphase. This suggests that mitotic Ca2+ transients are detected in the presence of an appropriate stimulus such as fertilization or strontium. The Ca2+ transient detected in fertilized embryos is not necessary for inducing NEBD since parthenogenetic embryos undergo nuclear envelope breakdown (NEBD). Also the first sign that NEBD is imminent occurs several minutes before the Ca2+ transient. The Ca2+ transient at NEBD appears to be associated with the nucleus since nuclear transfer experiments show that the presence of a karyoplast from a fertilized embryo is essential. Finally, we show that the intracellular Ca2+ chelator Bapta inhibits NEBD in fertilized and parthenogenetic embryos in a dose-dependent manner. These studies show that during mitosis there is an endogenous increase in Ca2+ releasing activity that leads to the generation of Ca2+ transients specifically during mitosis. The ability of Ca2+ buffers to inhibit NEBD regardless of the presence of global Ca2+ transients suggests that the underlying cell cycle-associated Ca2+ releasing activity may take the form of localized Ca2+ transients.  相似文献   

20.
The sinusoidal locomotion of Caenorhabditis elegans requires synchronous activities of neighboring body wall muscle cells. However, it is unknown whether the synchrony results from muscle electrical coupling or neural inputs. We analyzed the effects of mutating gap junction proteins and blocking neuromuscular transmission on the synchrony of action potentials (APs) and Ca2+ transients among neighboring body wall muscle cells. In wild-type worms, the percentage of synchronous APs between two neighboring cells varied depending on the anatomical relationship and junctional conductance (Gj) between them, and Ca2+ transients were synchronous among neighboring muscle cells. Compared with the wild type, knock-out of the gap junction gene unc-9 resulted in greatly reduced coupling coefficient and asynchronous APs and Ca2+ transients. Inhibition of unc-9 expression specifically in muscle by RNAi also reduced the synchrony of APs and Ca2+ transients, whereas expression of wild-type UNC-9 specifically in muscle rescued the synchrony defect. Loss of the stomatin-like protein UNC-1, which is a regulator of UNC-9-based gap junctions, similarly impaired muscle synchrony as unc-9 mutant did. The blockade of muscle ionotropic acetylcholine receptors by (+)-tubocurarine decreased the frequencies of APs and Ca2+ transients, whereas blockade of muscle GABAA receptors by gabazine had opposite effects. However, both APs and Ca2+ transients remained synchronous after the application of (+)-tubocurarine and/or gabazine. These observations suggest that gap junctions in C. elegans body wall muscle cells are responsible for synchronizing muscle APs and Ca2+ transients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号