首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
The effect of four saturated long-chain fatty acids (caprylic, capric, lauric, and myristic) and one unsaturated long-chain fatty acid (oleic) on the microbial formation of methane from acetate was investigated in batch anaerobic toxicity assays. The tests were carried out with granular sludge from an upflow anaerobic sludge bed reactor. In this sludge, Methanothrix spp. are the predominant acetoclastic methanogens. Lauric acid appeared to be the most versatile inhibitor: inhibition started at 1.6 mM, and at 4.3 mM the maximum specific acetoclastic methanogenic activity had been reduced to 50%. Caprylic acid appeared to be only slightly inhibitory. Oleic acid was almost as inhibitory as lauric acid. Although adsorption of the inhibitor on the cell wall might play an important role in the mechanism of inhibition, the inhibition was found to be correlated with concentration rather than with the amount per unit of biomass. In practical situations, as in anaerobic waste treatment processes, synergism can be expected to enhance the inhibition of methanogenesis. In the present research a background concentration of lauric acid below its MIC strongly enhanced the toxicity of capric acid and (to an even greater extent) myristic acid.  相似文献   

2.
Medium- and long-chain fatty acids are present in organisms in esterified forms that serve as cell membrane constituents and storage compounds. A large number of organisms are known to accumulate lipophilic materials as a source of energy and carbon. We found a bacterium, designated GK12, that intrinsically accumulates free fatty acids (FFAs) as intracellular droplets without exhibiting cytotoxicity. GK12 is an obligatory anaerobic, mesophilic lactic acid bacterium that was isolated from a methanogenic reactor. Phylogenetic analysis based on 16S rRNA gene sequences showed that GK12 is affiliated with the family Erysipelotrichaceae in the phylum Firmicutes but is distantly related to type species in this family (less than 92% similarity in 16S rRNA gene sequence). Saturated fatty acids with carbon chain lengths of 14, 16, 18, and 20 were produced from glucose under stress conditions, including higher-than-optimum temperatures and the presence of organic solvents that affect cell membrane integrity. FFAs were produced at levels corresponding to up to 25% (wt/wt) of the dry cell mass. Our data suggest that FFA accumulation is a result of an imbalance between excess membrane fatty acid biosynthesis due to homeoviscous adaptation and limited β-oxidation activity due to anaerobic growth involving lactic acid fermentation. FFA droplets were not further utilized as an energy and carbon source, even under conditions of starvation. A naturally occurring bacterium that accumulates significant amounts of long-chain FFAs with noncytotoxicity would provide useful strategies for microbial biodiesel production.  相似文献   

3.
A portion of the rbcS gene that encoded the transit peptideand 20 amino acid residues of the N-tenninal region of the smallsubunit of ribulosebisphosphate carb-oxylase/oxygenase was fusedto the 5' end of the psbA gene which encodes the Dl proteinof PSII reaction center. The chimeric gene was expressed invitro as a 42-kDa protein, which was imported into chloroplastsisolated from pea leaves. The imported protein was processedsuch that the transit peptide was lost in the stroma, the resultantprotein was translocated into thylakoid membranes, and the C-ter-minalpeptide was then removed to yield a mature protein with an N-terminalextension originated from the small sub-unit. The mature proteinappeared to be assembled into the PSII core complex, resemblingthe native Dl protein in terms of protein structure and topologywithin the membrane. Our observations indicate that the structureof the precursor to the Dl protein includes information forthe proper assembly of the protein into the PSII core complex. (Received September 10, 1996; Revision received December 14, 1996. )  相似文献   

4.
A fatty acyl coenzyme A synthetase (FadD) from Pseudomonas putida CA-3 is capable of activating a wide range of phenylalkanoic and alkanoic acids. It exhibits the highest rates of reaction and catalytic efficiency with long-chain aromatic and aliphatic substrates. FadD exhibits higher kcat and Km values for aromatic substrates than for the aliphatic equivalents (e.g., 15-phenylpentadecanoic acid versus pentadecanoic acid). FadD is inhibited noncompetitively by both acrylic acid and 2-bromooctanoic acid. The deletion of the fadD gene from P. putida CA-3 resulted in no detectable growth or polyhydroxyalkanoate (PHA) accumulation with 10-phenyldecanoic acid, decanoic acid, and longer-chain substrates. The results suggest that FadD is solely responsible for the activation of long-chain phenylalkanoic and alkanoic acids. While the CA-3ΔfadD mutant could grow on medium-chain substrates, a decrease in growth yield and PHA accumulation was observed. The PHA accumulated by CA-3ΔfadD contained a greater proportion of short-chain monomers than did wild-type PHA. Growth of CA-3ΔfadD was unaffected, but PHA accumulation decreased modestly with shorter-chain substrates. The complemented mutant regained 70% to 90% of the growth and PHA-accumulating ability of the wild-type strain depending on the substrate. The expression of an extra copy of fadD in P. putida CA-3 resulted in increased levels of PHA accumulation (up to 1.6-fold) and an increase in the incorporation of longer-monomer units into the PHA polymer.Fatty acyl coenzyme A (CoA) synthetases (FACS; fatty acid:CoA ligases; EC 6.2.1.3) are ATP-, CoA-, and Mg2+-dependent enzymes that activate alkanoic acids to CoA esters for β oxidation (Fig. (Fig.11 ) (2, 17). FACS are widely distributed in both prokaryotic and eukaryotic organisms and exhibit a broad substrate specificity (34). FadD is a cytoplasmic membrane-associated FACS (7), with sizes ranging from 47 kDa to 62 kDa (2, 14). There is a lack of biochemical information on FadD with a preference for long-chain aromatic and aliphatic substrates. In the current study we purify and characterize for the first time a true long-chain FadD with activity toward both phenylalkanoic and alkanoic acids.Open in a separate windowFIG. 1.FadD activation of fatty acids to their CoA derivatives proceeds through ATP-dependent covalent binding of AMP to fatty acid with the release of inorganic pyrophosphate, followed by C-S bond formation to obtain fatty acyl-CoA ester and subsequent release of AMP. FadD requires the presence of Mg2+ ions to be active (2, 17).It is known that bacteria such as Pseudomonas putida can accumulate the biological polyester polyhydroxyalkanoate (PHA) from aromatic as well as aliphatic alkanoic acids (5, 6, 42, 45). The presence of aromatic monomers in the PHA polymer suggests that a FadD with activity toward aromatic substrates is present in these PHA-accumulating strains. Garcia et al. knocked out an acyl-CoA synthetase in P. putida U with a high homology to long-chain fadD products from Escherichia coli and Pseudomonas fragi (6). Garcia et al. also showed that the mutant was not capable of growth or PHA accumulation with aromatic and aliphatic substrates having between 5 and 10 carbons in their acyl chain, indicating that it is a general and not a long-chain acyl-CoA ligase (6). In a follow-up study, Olivera et al. showed that the fadD mutants reverted to wild-type characteristics within 3 days of incubation, indicating that fadD could be replaced by the activity of a second enzyme (25). Indeed, two fadD gene homologues have been identified in P. putida U, namely, fadD1 and fadD2, with fadD2 being expressed only when fadD1 is inactivated (25). A putative FadD in P. putida KT2440 is encoded by PP_4549 (24), but the protein has not been studied nor has the effect of fadD (PP_4549) expression/disruption been examined. In the current study the knockout and complementation of fadD from P. putida CA-3 demonstrated that its activity is critical for growth and PHA accumulation with long-chain aromatic and aliphatic alkanoic acids and that the activity is not replaced by a second enzyme. While reports have shown that PHA polymerase greatly affects PHA monomer composition (30, 40), no evidence of the specific effect of FACS on PHA accumulation so far exists.We describe here the purification, kinetic characterization, gene deletion, and homologous expression of FadD from P. putida CA-3. This is a fundamental study of the activity and physiological role of FACS activity in aromatic and aliphatic alkanoic acid activation and PHA accumulation.  相似文献   

5.
A thermophilic, long-chain fatty acid-oxidizing culture was enriched. Stearate was used as the substrate, and methane and carbon dioxide were the sole end products. Cultivation was possible only when a fed-batch system was used or with addition of activated carbon or bentonite. The enrichment culture consisted of a short rod and two bacteria antigenically related to Methanobacterium thermoautotrophicum (Delta)H and Methanosarcina thermophila TM-1.  相似文献   

6.
Intact spinach and barley chloroplast normally incorporate 14C-acetate into palmitate and oleate as the major 14C fatty acids. Addition of nitrite markedly altered the relative patterns of the products with the appearance of stearate, a drop in oleate, but no marked change in palmitate. Arsenite greatly increased appearance of palmitate with a concomitant decrease in the C18 fatty acids. The effect of other anions was also examined. Spinach and barley plants grown under different nitrogen nutritional conditions also served as sources of chloroplasts, and their activities suggest a correlation between nitrite reductase activity and stearate accumulation.  相似文献   

7.
Isolated tea chloroplasts utilized linoleic acid, linolenicacid and their 13-hydroperoxides as substrates for volatileC6-aldehyde formation. Optimal pH values for oxygen uptake,hydroperoxide lyase and the overall reaction from C18-fattyacids to C6-aldehydes were 6.3, 7.0 and 6.3, respectively. Methyllinoleate, linoleyl alcohol and -linolenic acid were poor substratesfor the overall reaction, but linoleic and linolenic acids weregood substrates. The 13-hydroperoxides of the above fatty acidsand alcohol also showed substrate specificity similar to thatof fatty acids. Oxygen uptakes (relative Vmax) with methyl linoleate,linoleyl alcohol, linolenic acid, -linolenic acid and arachidonicacid were comparable to or higher than that with linoleic acid.In winter leaves, the activity for C6-aldehyde formation fromC18-fatty acids was raduced to almost zero. This was due tothe reduction in oxygenation. The findings presented here provideevidence for the involvement of lipoxygenase and hydroperoxidelyase in C6-aldehyde formation in isolated chloroplasts. (Received July 11, 1981; Accepted November 5, 1981)  相似文献   

8.
In a mixture of chloroplasts and microsomes from spinach leaves,all the leaf lipids were synthesized from (1-14C)-acetate. Inthis system, all the lipids contained labelled oleate, linoleateand linolenate but labelled linolenate was mainly concentratedinto diacylgalactosylglycerol (MGDG). A small but significantlabelling was found in the linolenate of the diacyldigalactosylglycerol(DGDG). On the other hand, labelled hexadecamonoenoic acid (C16:1),hexadecadienoic acid (C16:2) and hexadecatrienoic acid (C16:3)were only found into MGDG. In such a reconstituted system, atthe end of the incubation period, labelled MGDG was almost exclusivelyrecovered into the chloroplast while the labelled phosphatidylcholine(PC) was found highly concentrated in the microsomes In the MGDG of the chloroplast, C16:1, C16:2 and C16:3 werefound at the C2 position of the glycerol while oleic acid (C18:1),linoleic acid (C18:2) and a-linolenic acid (18:3) esterifiedspecifically the position 1 of the glycerol. No C18 acids werefound in position 2. In the PC of the microsomes, C18:1, C18:2and C18:3 were found at the Cl and C2 positions of the glycerolwhile palmitic acid esterified exclusively the Cl of the glycerol. The biosynthetic pathway of trienoic fatty acids in leaves ofhigher plants is discussed. (Received July 19, 1982; Accepted October 18, 1982)  相似文献   

9.
Studies on the composition of total fatty acids of Alcaligenes faecalis harvested at different growth phases have been carried out. Ability of the organism to desaturate palmitic and stearic acid has also been tested. The organism contained palmitic (16:0), stearic (18:0), palmitoleic (16:1), cis-vaccenic (18:1), cyclopropane (17: big dn tri, open and 19: big dn tri, open), and three hydroxy acids. Increase in cyclopropane acids and corresponding decrease in monounsaturated acids in direct proportion to the age of the culture were observed, whereas other fatty acids remained relatively unaltered. A growing culture of the organism was found to desaturate [1-(14)C]palmitic acid supplied in the medium to hexadecanoic acid. Resting cells desaturated [1-(14)C]palmitic and [1-(14)C]stearic acid giving rise to about 50% of (14)C in the COOH group of corresponding monounsaturated fatty acids.  相似文献   

10.
The ubiquitous arbuscular mycorrhizal fungi consume significant amounts of plant assimilated C, but this C flow has been difficult to quantify. The neutral lipid fatty acid 16:1ω5 is a quantitative signature for most arbuscular mycorrhizal fungi in roots and soil. We measured carbon transfer from four plant species to the arbuscular mycorrhizal fungus Glomus intraradices by estimating 13C enrichment of 16:1ω5 and compared it with 13C enrichment of total root and mycelial C. Carbon allocation to mycelia was detected within 1 day in monoxenic arbuscular mycorrhizal root cultures labeled with [13C]glucose. The 13C enrichment of neutral lipid fatty acid 16:1ω5 extracted from roots increased from 0.14% 1 day after labeling to 2.2% 7 days after labeling. The colonized roots usually were more enriched for 13C in the arbuscular mycorrhizal fungal neutral lipid fatty acid 16:1ω5 than for the root specific neutral lipid fatty acid 18:2ω6,9. We labeled plant assimilates by using 13CO2 in whole-plant experiments. The extraradical mycelium often was more enriched for 13C than was the intraradical mycelium, suggesting rapid translocation of carbon to and more active growth by the extraradical mycelium. Since there was a good correlation between 13C enrichment in neutral lipid fatty acid 16:1ω5 and total 13C in extraradical mycelia in different systems (r2 = 0.94), we propose that the total amount of labeled C in intraradical and extraradical mycelium can be calculated from the 13C enrichment of 16:1ω5. The method described enables evaluation of C flow from plants to arbuscular mycorrhizal fungi to be made without extraction, purification and identification of fungal mycelia.  相似文献   

11.
Long-chain 14C-fatty acids applied to the surface of expanding spinach leaves were incorporated into all major lipid classes. When applied in diethyleneglycol monomethyl ether solution, as done by previous workers, [14C]palmitic acid uptake was much lower than that of [14C] oleic acid. However, when applied in a thin film of liquid paraffin the rate of [14C] palmitic acid metabolism was rapid and virtually complete. Considerable radioactivity from [14C]palmitate incorporated into lipids following either application method gradually appeared in polyunsaturated C16 fatty acids esterified to those molecular species of galactolipids previously thought to be made using only fatty acids synthesized and retained within the chloroplast. Evidence for the incorporation of radioactivity from exogenous [14C]oleate into those same molecular species of galactolipids was less compelling. The unexpected availability of fatty acids bound to extrachloroplastidal lipids for incorporation into galactolipids characteristically assembled entirely within the chloroplast emphasizes the need to reassess interrelations between the “prokaryotic” and “eukaryotic” pathways of galactolipid formation.  相似文献   

12.
Photosynthesis, stroma-pH, and internal K+ and Cl concentrations of isolated intact chloroplasts from Spinacia oleracea, as well as ion (K+, H+, Cl) movements across the envelope, were measured over a wide range of external KCl concentrations (1-100 millimolar).

Isolated intact chloroplasts are a Donnan system which accumulates cations (K+ or added Tetraphenylphosphonium+) and excludes anions (Cl) at low ionic strength of the medium. The internally negative dark potential becomes still more negative in the light as estimated by Tetraphenylphosphonium+ distribution. At 100 millimolar external KCl, potentials both in the light and in the dark and also the light-induced uptake of K+ or Na+ and the release of protons all become very small. Light-induced K+ uptake is not abolished by valinomycin suggesting that the K+ uptake is not primarily active. Intact chloroplasts contain higher K+ concentrations (112-157 millimolar) than chloroplasts isolated in standard media. Photosynthetic activity of intact chloroplasts is higher at 100 millimolar external KCl than at 5 to 25 millimolar. The pH optimum of CO2 fixation at high K+ concentrations is broadened towards low pH values. This can be correlated with the observation that high external KCl concentrations at a constant pH of the suspending medium produce an increase of stroma-pH both in the light and in the dark. These results demonstrate a requirement of high external concentrations of monovalent cations for CO2 fixation in intact chloroplasts.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号