首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It was shown previously that the tridecapeptide neurotensin is inactivated by rat brain synaptic membranes and that one of the primary inactivating cleavages occurs at the Pro10-Try11 peptide bond, leading to the formation of NT1-10 and NT11-13. The present study was designed to investigate the possibility that this cleavage was catalyzed by proline endopeptidase and/or endopeptidase 24.11 (enkephalinase). Purified rat brain synaptic membranes were found to contain a N-benzyloxycarbonyl-Gly-Pro-4-methyl-coumarinyl-7-amide-hydrolyzin g activity that was markedly inhibited (93%) by the proline endopeptidase inhibitor N-benzyloxycarbonyl-Pro-Prolinal and partially blocked (25%) by an antiproline endopeptidase antiserum. In contrast, the cleavage of neurotensin at the Pro10-Tyr11 bond by synaptic membranes was not affected by N-benzyloxycarbonyl-Pro-Prolinal and the antiserum. When the conversion of NT1-10 to NT1-8 by angiotensin converting enzyme was blocked by captopril and when the processing of NT11-13 by aminopeptidase(s) was inhibited by bestatin, it was found that thiorphan, a potent endopeptidase 24.11 inhibitor, partially decreased the formation of NT1-10 and NT11-13 by synaptic membranes. In conclusion: (1) proline endopeptidase, although it is present in synaptic membranes, is not involved in the cleavage of neurotensin at the Pro10-Tyr11 bond; (2) endopeptidase 24.11 only partially contributes to this cleavage; (3) there exists in rat brain synaptic membranes a peptidase different from proline endopeptidase and endopeptidase 24.11 that is mainly responsible for inactivating neurotensin by cleaving at the Pro10-Tyr11 bond.  相似文献   

2.
The present article describes the interaction of neurotensin with specific receptors in pure primary cultured neurons and the mechanisms by which this peptide is inactivated by these cells. Neurotensin binding sites are not detectable in nondifferentiated neurons and appear during maturation. The binding at 37 degrees C of [monoiodo-Tyr3]neurotensin to monolayers of neurons 96 h after plating is saturable and characterized by a dissociation constant of 300 pM and a maximal binding capacity of 178 fmol/mg of protein. The binding parameters as well as the specificity of these receptors toward neurotensin analogues reveal close similarities between the binding sites present in primary cultured neurons and those described in other membrane preparations or cells. Neurotensin is rapidly degraded by primary cultured neurons. The sites of primary inactivating cleavages are the Pro7-Arg8, Arg8-Arg9, and Pro10-Tyr11 bonds. Proline endopeptidase is totally responsible for the cleavage at the Pro7-Arg8 bond and contributes to the hydrolysis mainly at the Pro10-Tyr11 site. However, the latter breakdown is also generated by a neurotensin-degrading neutral metallopeptidase. The cleavage at the Arg8-Arg9 bond is due to a peptidase that can be specifically inhibited by N-[1(R,S)-carboxy-2-phenylethyl]-alanyl-alanyl-phenylalanyl-p- aminobenzoate. The secondary processing occurring on neurotensin degradation products are: a bestatin-sensitive aminopeptidasic conversion of neurotensin11-13 to free Tyr11, and a rapid cleavage of neurotensin8-13 by proline endopeptidase. A model for the inactivation of neurotensin in primary cultured neurons is proposed and compared to that previously described for purified rat brain synaptic membranes.  相似文献   

3.
Neurotensin was inactivated by membrane-bound and soluble degrading activities present in purified preparations of rat brain synaptic membranes. Degradation products were identified by HPLC and amino acid analysis. The major points of cleavage of neurotensin were the Arg8-Arg9, Pro10-Tyr11, and Tyr11-Ile12 peptide bonds with the membrane-bound activity and the Arg8-Arg9 and Pro10-Tyr11 bonds with the soluble activity. Several lines of evidence indicated that the cleavage of the Arg8-Arg9 bond by the membrane-bound activity resulted mainly from the conversion of neurotensin1-10 to neurotensin1-8 by a dipeptidyl carboxypeptidase. In particular, captopril inhibited this cleavage with an IC50 (5.7 nM) close to its K1 (7 nM) for angiotensin-converting enzyme. Thiorphan inhibited the cleavage at the Tyr11-Ile12 bond by the membrane-bound activity with an IC50 (17 nM) similar to its K1 (4.7 nM) for enkephalinase. Both cleavages were inhibited by 1,10-phenanthroline. These and other data suggested that angiotensin-converting enzyme and a thermolysin-like metalloendopeptidase (enkephalinase) were the membrane-bound peptidases responsible for cleavages at the Arg8-Arg9 and Tyr11-Ile12 bonds, respectively. In contrast, captopril had no effect on the cleavage at the Arg8-Arg9 bond by the soluble activity, indicating that the enzyme responsible for this cleavage was different from angiotensin-converting enzyme. The cleavage at the Pro10-Tyr11 bond by both the membrane-bound and the soluble activities appeared to be catalyzed by an endopeptidase different from known brain proline endopeptidases. The possibility is discussed that the enzymes described here participate in physiological mechanisms of neurotensin inactivation at the synaptic level.  相似文献   

4.
The metabolism of neurotensin in vitro, in various membrane preparations and cell lines of central and peripheral origins was studied. Neurotensin degradation products were separated by HPLC and identified by either amino acid analysis or by their retention times. Peptidases responsible for the cleavages were identified by means of specific fluorigenic substrates or inhibitors. Although the patterns of neurotensin inactivation varied according to the tissue source in all cases, a major primary cleavage occurred at the Pro10-Tyr11 bond, leading to the biologically inactive fragments NT1-10 and NT11-13. A novel neurotensin-degrading metallopeptidase was responsible for this cleavage. Interestingly, it was the only peptidase that was ubiquitously detected. In addition, endopeptidase 24.11 (EC 3.4.24.11) contributed to this cleavage in rat brain synaptic membranes as well as in circular and longitudinal smooth muscle plasma membranes from dog ileum.  相似文献   

5.
One of the primary inactivating cleavages of neurotensin (NT) by rat brain synaptic membranes occurs at the Arg8-Arg9 peptide bond, leading to the formation of NT1-8 and NT9-13. The involvement at this site of a recently purified metalloendopeptidase was demonstrated by the use of its specific inhibitor, N-[1(R,S)-carboxy-2-phenylethyl]-alanylalanylphenylalanine-p-amino -benzoate, which exerts an inhibition on NT1-8 formation with an IC50 (0.6 microM) close to its Ki for the purified metalloendopeptidase (1.94 microM). Furthermore, we established the role of a postproline dipeptidyl-aminopeptidase in the secondary processing of NT9-13 formation.  相似文献   

6.
The mechanisms by which neurotensin (NT) was inactivated by differentiated neuroblastoma and HT29 cells were characterized. In both cell lines, the sites of primary cleavages of NT were Pro7-Arg8, Arg8-Arg9 and Pro10-Tyr11 bonds. The cleavage at the Pro7-Arg8 bond was totally inhibited by N-benzyloxycarbonyl-Prolyl-Prolinal and therefore resulted from the action of proline endopeptidase. This peptidase also contributed in a major way to the cleavage at the Pro10-Tyr11 bond. However the latter breakdown was partly due to an NT-degrading neutral metallopeptidase. Finally, we demonstrated the involvement of a recently purified rat brain soluble metalloendopeptidase at the Arg8-Arg9 site by the use of its specific inhibitor N-[1(R,S)-carboxy-2-Phenylethyl]-alanylalanylphenylalanine-p-aminobenzoate. The secondary processing of NT degradation products revealed differences between HT29 and N1E115 cells. Angiotensin converting enzyme was shown to degrade NT1–10 and NT1–7 in N1E115 cells but was not detected in HT29 cells. A post-proline dipeptidyl aminopeptidase activity converted NT9–13 into NT11–13 in HT29 cells but not in N1E115 cells. Finally bestatin-sensitive aminopeptidases rapidly broke down NT11–13 to Tyr in both cell lines. Models for the inactivation of NT in HT29 and N1E115 cells are proposed and compared to that previously described for purified rat brain synaptic membranes.  相似文献   

7.
A peptidase that cleaved neurotensin at the Pro10-Tyr11 peptide bond, leading to the formation of neurotensin-(1-10) and neurotensin-(11-13), was purified nearly to homogeneity from rat brain synaptic membranes. The enzyme appeared to be monomeric with a molecular weight of about 70,000-75,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and high pressure liquid chromatography filtration. Isoelectrofocusing indicated a pI of 5.9-6. The purified peptidase could be classified as a neutral metallopeptidase with respect to its sensitivity to pH and metal chelators. Thiol-blocking agents and acidic and serine protease inhibitors had no effect. Studies with specific peptidase inhibitors clearly indicated that the purified enzyme was distinct from enzymes capable of cleaving neurotensin at the Pro10-Tyr11 bond such as proline endopeptidase and endopeptidase 24-11. The enzyme was also distinct from other neurotensin-degrading peptidases such as angiotensin-converting enzyme and a recently purified rat brain soluble metalloendopeptidase. The peptidase displayed a high affinity for neurotensin (Km = 2.6 microM). Studies on its specificity revealed that neurotensin-(9-13) was the shortest neurotensin partial sequence that was able to fully inhibit [3H]neurotensin degradation. Shortening the C-terminal end of the neurotensin molecule as well as substitutions in positions 8, 9, and 11 by D-amino acids strongly decreased the inhibitory potency of neurotensin. Among 20 natural peptides, only angiotensin I and the neurotensin-related peptides (xenopsin and neuromedin N) were found as potent as unlabeled neurotensin.  相似文献   

8.
We established the content in neuropeptide-metabolizing peptidases present in highly purified plasma membranes prepared from the circular and longitudinal muscles of dog ileum. Activities were measured by the use of fluorigenic substrates and the identities of enzymes were confirmed by the use of specific peptidase inhibitors. Endopeptidase 24.11, angiotensin-converting enzyme, post-proline dipeptidyl aminopeptidase and aminopeptidases were found in both membrane preparations. Proline endopeptidase was only detected in circular smooth muscle plasma membranes while pyroglutamyl-peptide hydrolase was not observed in either tissue. The relative contribution of these peptidases to the inactivation of neurotensin was assessed. The enzymes involved in the primary inactivating cleavages occurring on the neurotensin molecule were as follows. In both membrane preparations, endopeptidase 24.11 was responsible for the formation of neurotensin-(1-11) and contributed to the formation of neurotensin-(1-10); a recently purified neurotensin-degrading neutral metallopeptidase was also involved in the formation of neurotensin-(1-10). A carboxypeptidase-like activity hydrolysed neurotensin at the Ile12-Leu13 peptide bond, leading to the formation of neurotensin-(1-12). Proline endopeptidase and endopeptidase 24.15 only occurred in circular muscle plasma membranes, yielding neurotensin-(1-7) and neurotensin-(1-8), respectively. In addition, the secondary processing of neurotensin degradation products was catalyzed by the following peptidases. In circular and longitudinal muscle membranes, angiotensin-converting enzyme converted neurotensin-(1-10) into neurotensin-(1-8) and tyrosine resulted from the rapid hydrolysis of neurotensin-(11-13) by bestatin-sensitive aminopeptidases. A post-proline dipeptidyl aminopeptidase activity converted neurotensin-(9-13) into neurotensin-(11-13) in circular muscle plasma membranes. The mechanism of neurotensin inactivation occurring in these membranes will be compared to that previously established for membranes from central origin.  相似文献   

9.
1. Bradykinin (Bk; Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg8) inactivation by bulk isolated neurons from rat brain is described. 2. Bk is rapidly inactivated by neuronal perikarya (4.2 +/- 0.6 fmol/min/cell body). 3. Sites of inactivating cleavages, determined by a kininase bioassay combined with a time-course Bk-product analysis, were the Phe5-Ser6, Pro7-Phe8, Gly4-Phe5, and Pro3-Gly4 peptide bonds. The cleavage of the Phe5-Ser6 bond inactivated Bk at least five fold faster than the other observed cleavages. 4. Inactivating peptidases were identified by the effect of inhibitors on Bk-product formation. The Phe5-Ser6 bond cleavage is attributed mainly to a calcium-activated thiol-endopeptidase, a predominantly soluble enzyme which did not behave as a metalloenzyme upon dialysis and was strongly inhibited by N-[1(R,S)-carboxy-2-phenylethyl]-Ala-Ala-Phe-p-aminobenzoate and endo-oligopeptidase A antiserum. Thus, neuronal perikarya thiol-endopeptidase seems to differ from endo-oligopeptidase A and endopeptidase 24.15. 5. Endopeptidase 24.11 cleaves Bk at the Gly4-Phe5 and, to a larger extent, at the Pro7-Phe8 bond. The latter bond is also cleaved by angiotensin-converting enzyme (ACE) and prolyl endopeptidase (PE). PE also hydrolyzes Bk at the Pro3-Gly4 bond. 6. Secondary processing of Bk inactivation products occurs by (1) a rapid cleavage of Ser6-Pro7-Phe8-Arg8 at the Pro7-Phe8 bond by endopeptidase 24.11, 3820ACE, and PE; (2) a bestatin-sensitive breakdown of Phe8-Arg9; and (3) conversion of Arg1-Pro7 to Arg1-Phe5, of Gly4-Arg9 to both Gly4-Pro7 and Ser6-Arg9, and of Phe5-Arg9 to Ser6-Arg9, Phe8-Arg9, and Ser6-Pro7, by unidentified peptidases. 7. A model for the enzymatic inactivation of bradykinin by rat brain neuronal perikarya is proposed.  相似文献   

10.
The products of degradation of LH-RH and neurotensin by synaptosomes isolated from rat hypothalamus and cortex have been identified. LH-RH is cleaved at Tyr5-Gly6 and Pro9-Gly10 giving rise to LH-RH (1-5), LH-RH (6-10) and LH-RH (1-9). Neurotensin is cleaved at Arg8-Arg9, Pro10-Tyr11 and Ile12-Leu13, giving neurotensin (1-8), neurotensin (1-10), neurotensin (1-12) and neurotensin (9-13) as major products. While most of the peptidase activity is localized in the cytoplasmic fraction, a small but significant proportion is membrane bound. For LH-RH, the specificity of the membrane-bound activity is similar to that in the cytosol fraction; for neurotensin, the membrane fraction preferentially gives rise to the (1-10) and (1-11) peptides. The most potent inhibitors of the LH-RH and neurotensin degrading enzymes in synaptosomes are heavy metal ions (mercury and copper), p-chloromercuribenzoate and 1,10 phenanthroline.  相似文献   

11.
Angiotensin I converting enzyme (ACE) and neutral endopeptidase ("enkephalinase"; NEP), were purified to homogeneity from human kidney. NEP cleaved substance P (SP) at Gln6-Phe7,-Phe8, and Gly9-Leu10 and neurotensin (NT) at Pro10-Tyr11 and Tyr11-Ile12. NEP hydrolyzed 0.1 mM SP, NT and their C-terminal fragments at the following rates (mumol/min/mg): SP1-11 = 7.8, SP4-11 = 11.7, SP5-11 = 15.4, SP6-11 = 15.6, SP8-11 = 6.7, NT1-13 = 2.9, and NT8-13 = 4.0. Purified ACE rapidly inactivated SP as measured in bioassay. HPLC analysis showed that ACE cleaved SP at Phe8-Gly9 and Gly9-Leu10 to release C-terminal tri- and dipeptide (ratio = 4:1). The hydrolysis was Cl- dependent and inhibited by captopril. ACE released mainly C-terminal tripeptide from SP methyl ester, but only dipeptide from SP free acid. Modification of arginine residues in ACE with cyclohexanedione or butanedione similarly inhibited hydrolysis of SP, bradykinin and Bz-Gly-Phe-Arg (80-93%) indicating an active site arginine is required for hydrolysis of SP. ACE hydrolyzed NT at Tyr11-Ile12 to release Ile12-Leu13. SP, NT and their derivatives (0.1 mM) were cleaved by ACE at the following rates (mumol/min/mg): SP1-11 = 1.2, SP methyl ester = 0.7, SP free acid = 8.5, SP4-11 = 2.4, SP5-11 = 0.9, SP6-11 = 1.4, SP8-11 = 0, NT1-13 = 0.2, and NT8-13 = 1.3. Peptide substrates were used as inhibitors of ACE (substrate = FA-Phe-Gly-Gly) and NEP (substrate = Leu5-enkephalin).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The main somatostatin-degrading proteases were purified from rat and pig brain homogenates and characterized as thiol- and metal-dependent endoproteases. Two types of proteases with apparent native and subunit molecular masses of 70 kDa and 68 kDa could be differentiated in both species. Beside somatostatin, both hydrolyzed several other neuropeptides with chain lengths between 8 and 30 amino acid residues. Cleavage sites were generally similar or identical, but some clear exceptions were observed for enzymes from both species which could be used to differentiate between the two proteases. The 68-kDa protease cleaved somatostatin at three bonds (Asn5-Phe6, Phe6-Phe7 and Thr10-Phe11) and neurotensin only at the Arg8-Arg9 bond, whereas the 70-kDa protease digested somatostatin at only two bonds (Phe6-Phe7 and Thr10-Phe11) and neurotensin as well as acetylneurotensin-(8-13) additionally (pig protease) or almost exclusively (rat protease) at the Pro10-Tyr11 bond. Relative rates for the digestions of various peptides were, however, more dependent on the species than on the type of protease. Cleavage sites for angiotensin II, bradykinin, dynorphin, gonadoliberin and substance P were, apart from different rates, identical for both proteases. In both species the 68-kDa protease was found to be mainly, but not exclusively, soluble and not membrane-associated, whereas the inverse was detected for the 70-kDa protease. Based on distinct molecular and catalytic properties, the 68-kDa protease is supposed to be congruent with the endopeptidase 24.15 (EC 3.4.24.15), the 70-kDa protease with endopeptidase 24.16 (EC 3.4.24.16, neurotensin-degrading endopeptidase). This investigation demonstrates that both proteases hydrolyze various neuropeptides with similar cleavage sites, but with species-dependent activity. Species-independent distinctions are the exclusive action of endopeptidase 24.16 on acetylneurotensin-(8-13) and liberation of free Phe from somatostatin only by endopeptidase 24.15.  相似文献   

13.
Specific inhibition of endopeptidase 24.16 by dipeptides.   总被引:7,自引:0,他引:7  
The inhibitory effect of various dipeptides on the neurotensin-degrading metallopeptidase, endopeptidase 24.16, was examined. These dipeptides mimick the Pro10-Tyr11 bond of neurotensin that is hydrolyzed by endopeptidase 24.16. Among a series of Pro-Xaa dipeptides, the most potent inhibitory effect was elicited by Pro-Ile (Ki approximately 90 microM) with Pro-Ile greater than Pro-Met greater than Pro-Phe. All the Xaa-Tyr dipeptides were unable to inhibit endopeptidase 24.16. The effect of Pro-Ile on several purified peptidases was assessed by means of fluorigenic assays and HPLC analysis. A 5 mM concentration of Pro-Ile does not inhibit endopeptidase 24.11, endopeptidase 24.15, angiotensin-converting enzyme, proline endopeptidase, trypsin, leucine aminopeptidase, pyroglutamyl aminopeptidase I and carboxypeptidase B. The only enzyme that was affected by Pro-Ile was carboxypeptidase A, although it was with a 50-fold lower potency (Ki approximately 5 mM) than for endopeptidase 24.16. By means of fluorimetric substrates with a series of hydrolysing activities, we demonstrate that Pro-Ile can be used as a specific inhibitor of endopeptidase 24.16, even in a complex mixture of peptidase activities such as found in whole rat brain homogenate.  相似文献   

14.
Mouse Neuro-2a neuroblastoma and rat C6 glioma cloned cells were screened for neuropeptide-metabolizing peptidases using a kininase bioassay combined with a time-course bradykinin-product analysis, and a fluorimetric assay for prolyl endopeptidase. The complementary peptide products Arg1----Phe5/Ser6----Arg9 and Arg1----Pro7/Phe8-Arg9 were released during bradykinin (Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg9) inactivation by homogenates of Neuro-2a and C6 cells. The 1:1 stoichiometry of the complementary fragments and their high yields, at 10% bradykinin inactivation, demonstrated the sites of hydrolysis. The initial rate of Phe5-Ser6 bond cleavage was six-fold higher than that of the Pro7-Phe8 bond. These sites of cleavage can be attributed to enzymes similar to endopeptidase A (Phe5-Ser6) and prolyl endopeptidase (Pro7-Phe8) on the basis of the specificity and sensitivity to inhibitors of the kininase activity in Neuro-2a and C6 cell homogenates. Kininase and prolyl endopeptidase specific activities (fmol/min/cell) were 10.5 and 12.4 for Neuro-2a, and 1.5 and 2 for C6 homogenate, respectively. The recovery of kininase activity was 2.2-fold higher in the particulate than in the soluble (105,000 g for 1 h) neuronal fraction, whereas the amount of prolyl endopeptidase activity was about the same in both fractions. Kininase and prolyl endopeptidase activities in C6 cells were recovered mostly in the soluble fraction. Prolyl endopeptidase specific activity decreased 10-fold in serum-starved Neuro-2a cultured cells, with no change in activity in similarly treated C6 cells. In contrast, kininase specific activity in both cell types was essentially unaffected on serum-deprivation-induced differentiation.  相似文献   

15.
R R Joshi  K N Ganesh 《FEBS letters》1992,313(3):303-306
Hydrolysis of endothelin 1 by rat kidney membranes was investigated using a reverse-phase HPLC and an automated gas-phase protein sequencer. Endothelin 1 was hydrolyzed into four major fragments which were detected by HPLC. Phosphoramidon, an inhibitor of neutral endopeptidase 24,11, almost completely suppressed the production of three fragments, but one fragment was not affected by the inhibitor. Analysis of N-terminal sequences of the degradation products revealed that the phosphoramidon-sensitive fragments were generated by cleavage at the Ser5-Leu6 bond of endothelin 1 that was identical with its cleavage site by purified rat endopeptidase 24,11, reported previously. The phosphoramidon-insensitive fragment was produced by cleavage at Leu17-Asp18, which was distinct from the sites by endopeptidase 24,11, but corresponded to that by a phosphoramidon-insensitive metallo-endopeptidase recently isolated from rat kidney membranes by us [(1992) Eur. J. Biochem. 204, 547-552]. Kinetic determination of endothelin 1 hydrolysis by the isolated enzyme yielded values of Km = 71.5 microM and kcat = 1.49 s-1, giving a ratio of kcat/Km = 2.08 x 10(4) s-1.M-1. The Km value was much higher and the kcat/Km value was much lower than those for rat endopeptidase 24,11 reported previously. Thus, endopeptidase 24,11 appears to hydrolyze endothelin 1 more efficiently than the isolated enzyme does. Both enzymes may play physiological roles in the metabolism of endothelin 1 by rat kidney membranes in vivo.  相似文献   

16.
In order to identify which peptidases are involved in the catabolism of neurotensin in the CNS, [3H-Tyr3,11]-neurotensin was superfused over rat hypothalamic slices in the presence and absence of peptidase inhibitors. The degree of degradation of the peptide was determined by reverse phase HPLC separation of 3H-labelled neurotensin from 3H-labelled products. Very little degrading activity was released from the slice into the medium during the superfusion. In the absence of inhibitors, 20 to 50% of 3H-neurotensin was degraded giving mainly 3H-Tyr along with other unidentified 3H-labelled products. Inhibitors of endopeptidase 24.11 (phosphoramidon) and proline endopeptidase (antibody) had no effect on the degradation. Captopril, an inhibitor of angiotensin converting enzyme, had a small inhibitory effect. In contrast, dynorphin(1-13), an inhibitor of a soluble, thiol dependent metallopeptidase which hydrolyses neurotensin at Arg8-Arg9, gave greater than 80% inhibition of 3H-neurotensin degradation in the slice preparation. 1,10-Phenanthroline, an inhibitor of metallopeptidases, was also an effective inhibitor. The dynorphin sequence responsible for the inhibition contains the Arg6-Arg7 bond. Other peptides (bradykinin and angiotensin) which are substrates of the soluble metallopeptidase also inhibited neurotensin breakdown by the slice. This evidence suggests that this thiol dependent metalloendopeptidase is the major neurotensin catabolizing enzyme in hypothalamic slices.  相似文献   

17.
Brain natriuretic peptide (BNP) from 3 different species was cleaved by neutral endopeptidase (NEP) and the products separated by HPLC. The newly formed products were identified by fast atom bombardment or nebulizer-assisted electrospray mass spectrometry to elucidate the sites of proteolysis. Porcine BNP was cleaved at the Arg8-Leu9 and Ser14-Leu15 bonds. Rat BNP was cleaved at the Arg23-Leu24 and Arg30-Leu31 bonds. Human BNP was cleaved at the Pro2-Lys3, Met4-Val5 and Arg17-Leu18 bonds. The Cys-Phe bond which is present in all species of BNP is not cleaved by NEP.  相似文献   

18.
R Kerouac  S St-Pierre  F Rioux 《Peptides》1984,5(4):695-699
Histamine releasing effects of neurotensin (NT) and several NT fragments and structural analogues were measured in the rat perfused hindquarter. The results show that the chemical groups responsible for histamine release are located in the C-terminal sequence Arg9-Pro10-Tyr11-Ile12-Leu13-OH. Both the spatial configuration and positive charge of Arg8 and Arg9 appear to contribute to the histamine releasing effect of NT. Optimization of the histamine releasing effect of NT requires both a free C-terminal carboxyl group and the presence in position 11 of NT of an aromatic residue, with the L-configuration, bearing an heteroatom capable of hydrogen bonding with the receptor. The results indicate that the structural requirements of NT to induce histamine release from the rat perfused hindquarter are similar to those involved in other peripheral biological actions of NT.  相似文献   

19.
The proteolytic conversion of oxytocin and vasopressin by purified rat brain synaptic membranes was studied at 37 degrees C and physiological pH 7.4. The formed peptide fragments were isolated by high performance liquid chromatography and characterized by amino acid analysis. When oxytocin was incubated with synaptic membranes, either C- or N-terminal fragments were found. The most abundant were [Cyt6]oxytocin(4-9), [Cyt6]oxytocin(3-9), [Cyt6]oxytocin(2-9), oxytocin(1-8) and oxytocin(1-7). In contrast, only C-terminal fragments, [Cyt6-Arg8]vasopressin(4-9), [Cyt6-Arg8]vasopressin(3-9) and [Cyt6-Arg8]vasopressin(2-9), were found by incubating [Arg8]vasopressin. The formation of C-terminal oxytocin and vasopressin fragments was inhibited by the aminopeptidase inhibitors amastatin and bestatin, while the formation of oxytocin(1-7) and (1-8) was inhibited by the divalent cations Hg(2+) and Zn(2+). The formation of oxytocin(1-7) was also partially prevented by the endopeptidase inhibitor phosphoramidon. The formation of both C- and N-terminal fragments was inhibited by o-phenanthroline. The results suggest that, while [Arg8]vasopressin is metabolized only by membrane-bound aminopeptidases, oxytocin is also metabolized by membrane-bound endopeptidases.  相似文献   

20.
The hydrolysis of the porcine 26-residue brain natriuretic peptide (BNP-26) and its counterpart human 28-residue atrial natriuretic peptide (alpha-hANP) by pig membrane preparations and purified membrane peptidases was studied. When the two peptides were incubated with choroid plexus membranes, the products being analysed by h.p.l.c., alpha-hANP was degraded twice as fast as BNP. The h.p.l.c. profiles of alpha-hANP hydrolysis, in short incubations with choroid plexus membranes, yielded alpha hANP' as the main product, this having been previously shown to be the result of hydrolysis at the Cys7-Phe8 bond. In short incubations this cleavage was inhibited 84% by 1 microM-phosphoramidon, a specific inhibitor of endopeptidase-24.11. BNP-26 was hydrolysed by choroid plexus membranes, kidney microvillar membranes and purified endopeptidase-24.11 in a manner that yielded identical h.p.l.c. profiles. In the presence of phosphoramidon, hydrolysis by the choroid plexus membranes was 94% inhibited. Captopril had no effect and, indeed, no hydrolysis of BNP-26 by peptidyl dipeptidase A (angiotensin-converting enzyme) was observed even after prolonged incubation with the purified enzyme. The stepwise hydrolysis of BNP-26 by endopeptidase-24.11 was investigated by sequencing the peptides produced during incubation. The initial product resulted from hydrolysis at Ser14-Leu15, thereby opening the ring. This product (BNP') was short-lived; further degradation involved hydrolysis at Ile12-Gly13, Arg8-Leu9, Gly17-Leu18, Val22-Leu23, Arg11-Ile12 and Cys4-Phe5. Thus endopeptidase-24.11 is the principal enzyme in renal microvillar and choroid plexus membranes hydrolysing BNP-26 and alpha-hANP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号