首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The main vector for transmission of malaria in Mexico is the Anopheles albimanus mosquito. The midgut of disease-transmitting mosquitoes carries out a variety of functions that are related to blood feeding. We analyzed the midgut of A. albimanus infected with Plasmodium berghei (resistant mosquito) using a proteomic approach to identify putative short peptides that are enriched in the midgut after blood feeding. Mosquito midguts were analyzed by two-dimensional electrophoresis to determine the changes in protein profiles. We identified 21 spot proteins that are differentially expressed in the blood of mosquitoes during the immune challenge. Molecular weight of the spots varied from 13 to 36 kDa, with a broad isoelectric point range of 3.92–8.90. We identified the differentially expressed proteins using mass spectrometry and constructed a proteomic data base of the A. albimanus midgut with diverse functions, some of them proteins with digestive and immunologic functions. Identification of these proteins may have important implications for understanding the blood meal digestion process, as well as developing novel vector control strategies and understanding parasite vector interactions.  相似文献   

2.
Using a proteomic approach we identified polypeptides from Anopheles gambiae and Drosophila melanogaster protein extracts that selectively bind purified Plasmodium berghei ookinetes in vitro; these were two and three distinct polypeptides, respectively, with an apparent molecular weight of about 36 kDa. Combining two-dimensional electrophoresis and MALDI-TOF (matrix-associated laser desorption ionization time of flight) mass spectrometry we determined that the polypeptides correspond to isomorphs of the annexin B11 protein of the fruit fly. When protein extracts derived from A. gambiae and D. melanogaster tissue culture cells were further fractionated, the binding activity matching the annexin protein could be localized in the fraction derived from cell membranes in both diptera. Antibody staining showed that annexin also binds to ookinetes during the invasion of the mosquito midgut. Finally, inclusion of antiannexin antisera in a mosquito blood meal impaired parasite development, suggesting a facilitating role for annexins in the infection of the mosquito by Plasmodium.  相似文献   

3.
Hamsters blood infected with Plasmodium berghei was cultured in vitro for the development of ookinetes. The ookinetes were separated from blood components, suspended in various defined media and fed to Anopheles stephensi through a membrane. The development of the oocysts and infective sporozoites was recorded. Mosquitoes infected with ookinetes suspended in L15 formulated into L15-B, L15-D (a medium specially modified for this purpose), IPL-41 or 199 media with no proteins added, developed at least as many oocysts as the control mosquitoes fed ookinetes suspended in blood. Ookinetes suspended in the L15-B medium yielded more oocysts than after feeding ookinetes suspended in L15-B with 5% casein. Sporozoites from mosquitoes maintained on blood, L15-B, L15-D, or L15-B with 5% casein were shown to be infective to hamsters. Mosquitoes fed ookinetes suspended in sucrose solutions showed very few oocysts, but the yield was increased when a blood meal was given 2-4 days after the infective meal. Some of the oocysts which had developed from the ookinetes suspended in artificial media were found to have degenerated. The described system could be potentially useful for a study of the interaction between the vector physiology and the parasite. The possible use of the system to learn which media should be developed in the future for in vitro cultivation of oocysts is discussed.  相似文献   

4.
The Anopheles pseudopunctipennis nitric oxide synthase gene (ApNOS) was identified and its partial sequence showed high homology with NOS from A. stephensi, A. gambiae (putative sequence), and Drosophila melanogaster. ApNOS was mainly expressed in male and female adult mosquitoes and was induced by a blood meal. Nitric oxide (NO) was produced by in vitro-cultured mosquito midguts inoculated by enema with Plasmodium berghei ookinetes, Saccharomyces cerevisiae, Gram-positive bacteria (Micrococcus luteus), but not with Gram-negative bacteria (Klebsiella pneumoniae, Escherichia coli or Serratia marcescens). Dihydroxyphenylalanine (L-DOPA) oxidation induced the generation of NO in midguts in vitro, and hydrogen peroxide generated during its oxidation induced ApNOS expression. P. berghei ookinetes exposed in vitro to L-DOPA and sodium nitroprusside (a NO generator) were killed. These observations demonstrate that reactive oxygen and nitrogen intermediates constitute a part of the cytotoxic arsenal employed by Anopheles mosquitoes against microbial pathogens and Plasmodium ookinetes.  相似文献   

5.
Motility of Plasmodium berghei ookinetes, which developed in primary and established cell line cultures obtained from Anopheles stephensi mosquitoes, was studied by using still photomicrographs and normal speed cinephotomicrography. At 18–72 hr after inoculation of P. berghei infected blood from hamsters or mice, motile ookinetes were seen in both mosquito cell cultures; the most active specimens were observed at 24–30 hr. Ookinetes underwent a sporadic forward gliding movement, during which a variable degree of rotation of the body upon its longitudinal axis usually occurred. Some specimens rotated repeatedly upon their axes without any forward progression. The direction of the gliding movement always coincided with the curvature of the ookinete body. In those specimens in which no rotation of the body occurred, a circular course resulted. Ookinetes covered a distance of as much as 50 μm during a single gliding movement. A few ookinetes undergoing locomotion appeared to leave a path or trail on the substrate. Occasionally, an ookinete penetrated a red cell with its slender anterior projection, resulting in lysis of the cell. After red cells had been penetrated by ookinetes, the parasites already within these cells fused with each other to form larger spheroidal bodies. Penetration of cultured cells was not observed.  相似文献   

6.
During its life cycle the malarial parasite Plasmodium forms three invasive stages which have to invade different and specific cells for replication to ensue. Invasion is vital to parasite survival and consequently proteins responsible for invasion are considered to be candidate vaccine/drug targets. Plasmodium perforin-like proteins (PPLPs) have been implicated in invasion because they contain a predicted pore-forming domain. Ookinetes express three PPLPs, and one of them (PPLP3) has previously been shown to be essential for mosquito midgut invasion. In this study we show through phenotypic analysis of loss-of-function mutants that PPLP5 is equally essential for mosquito infection. Deltapplp5 ookinetes cannot invade midgut epithelial cells, but subsequent parasite development is rescued if the midgut is bypassed by injection of ookinetes into the hemocoel. The indistinguishable phenotypes of Deltapplp5 and Deltapplp3 ookinetes strongly suggest that these two proteins contribute to a common process.  相似文献   

7.
We have used confocal microscopy and an antibody against Anopheles gambiae beta integrin to study this protein's distribution in the mosquito midgut and its relationship to invading Plasmodium berghei parasites. An extensive reorganization of integrin is seen to take place in the midgut epithelial cells following the uptake of either non-infected or parasite-infected blood meal, probably reflecting the reshaping of the gut due to the presence of the food bolus and the peritrophic membrane that surrounds it. Furthermore, malaria parasites are coated with beta integrin immediately upon entry into the epithelium, independent of whether they develop intra- or extracellularly. Although this coat is shed a few days after the invasion, beta integrin remains concentrated in the cells surrounding the maturing oocyst for several days. Finally, the antibody detects a structural change in the midgut epithelial cells in the immediate vicinity of the invading ookinete, which is consistent with Plasmodium-induced apoptosis followed by wound healing. This intimate association suggests a specific role of beta integrin in the invasion process.  相似文献   

8.
The mosquito stage of Plasmodium berghei was cultivated in vitro, with special attention to ookinete transformation into early oocyst. The ookinetes were obtained by in vitro culture of gametocytes taken from infected mice, purified by density gradient of metrizoic acid or a lymphocyte separation medium, and incubated either in acellular culture or in co-cultivations with mosquito cells. In acellular culture, the ookinetes were found to aggregate with each other and transformed from banana to round shapes. Their inner pellicular membranes and subpellicular microtubules partially disappeared, indicating that development to early oocyst had occurred. Co-cultivation wtih Aedes albopictus cells (C6/36 clone) revealed that ookinetes transformed into early oocyst in the medium, or invaded the cells and then transformed to early oocysts within the cell cytoplasm as well. However all of these transformed cells failed to develop further, i.e., neither deposition of the oocyst capsule nor nuclear division was observed. Many ookinetes which failed to penetrate the Aedes cells were phagocytized within three days of culture. A significant difference between invaded and transformed oocysts and phagocytized ookinetes was seen in that the former lacked vacuole membrane. Co-cultivation with Toxorhynchites amboinensis cells (TRA-284-SFG clone) permitted transformation of ookinetes into early oocysts in the medium as in the acellular culture, but no ookinete invasion nor phagocytosis by the cell was observed.  相似文献   

9.
Plasmodium berghei ookinetes were cultured from hamster blood as described previously (Kurtti and Munderloh, 1986). An average of 7.3 X 10(6) ookinetes was harvested from each ml of blood. Ookinetes were purified by centrifugation on first a 40% and then a 36% Percoll gradient. The final preparation comprised 32.8% of the ookinetes initially obtained, and contained 3.3 other parasite stages or blood cells per ookinete. Unpurified and purified ookinetes were resuspended in hamster blood and fed to Anopheles stephensi. There was a strong linear correlation between the concentration of purified or unpurified ookinetes and the number of oocysts formed. With unpurified ookinetes, a maximum was reached when preparations containing 1 X 10(7) ookinetes/ml were fed, and feeding preparations containing a higher concentration did not produce more oocysts. Sporozoites were found in the salivary glands of mosquitoes fed ookinetes by days 14 (unpurified) or 15 (purified) PI. Approximately 5 times as many purified as unpurified ookinetes were required to produce each oocyst.  相似文献   

10.
Previous studies indicated that gnotobiotic Anopheles stephensi mosquitoes were less susceptible to infection with Plasmodium berghei than xenobiotic ones (Munderloh and Kurtti, 1985). Groups of 100 to 200 mosquitoes were fed on infected hamsters, heparinized gametocytemic blood (via a membrane feeder), and in vitro-formed ookinetes suspended in blood (membrane feeder). Xenobiotic A. stephensi were readily infected by all 3 routes. Gnotobiotic mosquitoes consistently acquired infection after engorging on hamsters (average level of infected females in 8 experiments: 54.1%), but the parasite yield was low (average number of oocysts per infected female: 21.6). In 7 experiments where gnotobiotic A. stephensi were membrane-fed infected hamster blood, an average of only 8.8% of the females became infected, harboring a mean of 2.4 oocysts, and in 7 additional cases no infection was achieved. This pattern was reversed when gnotobiotic A. stephensi were fed ookinetes. A larger proportion of them became infected (mean level of infection in 8 experiments: 76.2%) and they acquired a higher mean number of oocysts per female (94.4) than did xenobiotic mosquitoes. Thus, gnotobiotic A. stephensi are as able as xenobiotic ones to support the sporogonic development of P. berghei, but are less able to support ookinete development.  相似文献   

11.
We report on a phylogenetic and functional analysis of genes encoding three mosquito serpins (SRPN1, SRPN2 and SRPN3), which resemble known inhibitors of prophenoloxidase-activating enzymes in other insects. Following RNA interference induction by double-stranded RNA injection, knockdown of SRPN2 in adult Anopheles gambiae produced a notable phenotype: the appearance of melanotic pseudotumours, which increased in size and number with time, indicating spontaneous melanization and association with an observed lifespan reduction. Furthermore, knockdown of SRPN2 strongly interfered with the invasion of A. gambiae midguts by the rodent malaria parasite Plasmodium berghei. It did not affect ookinete formation, but markedly reduced oocyst numbers, by 97%, as a result of increased ookinete lysis and melanization.  相似文献   

12.
It is well documented that the density of Plasmodium in its vertebrate host modulates the physiological response induced; this in turn regulates parasite survival and transmission. It is less clear that parasite density in the mosquito regulates survival and transmission of this important pathogen. Numerous studies have described conversion rates of Plasmodium from one life stage to the next within the mosquito, yet few have considered that these rates might vary with parasite density. Here we establish infections with defined numbers of the rodent malaria parasite Plasmodium berghei to examine how parasite density at each stage of development (gametocytes; ookinetes; oocysts and sporozoites) influences development to the ensuing stage in Anopheles stephensi, and thus the delivery of infectious sporozoites to the vertebrate host. We show that every developmental transition exhibits strong density dependence, with numbers of the ensuing stages saturating at high density. We further show that when fed ookinetes at very low densities, oocyst development is facilitated by increasing ookinete number (i.e., the efficiency of ookinete-oocyst transformation follows a sigmoid relationship). We discuss how observations on this model system generate important hypotheses for the understanding of malaria biology, and how these might guide the rational analysis of interventions against the transmission of the malaria parasites of humans by their diverse vector species.  相似文献   

13.
The site in the midguts of Anopheles pseudopunctipennis where the development of Plasmodium vivax circumsporozoite protein Vk210 phenotype is blocked was investigated, and compared to its development in An. albimanus. Ookinete development was similar in time and numbers within the blood meal bolus of both mosquito species. But, compared to An. pseudopunctipennis, a higher proportion of An. albimanus were infected (P=0.0001) with higher ookinete (P=0.0001) and oocyst numbers (P=0.0001) on their internal and external midgut surfaces, respectively. Ookinetes were located in the peritrophic matrix (PM), but neither inside epithelial cells nor on the haemocoelic midgut surface by transmission electron microscopy in 24h p.i.-An. pseudopunctipennis mosquito samples. In contrast, no parasites were detected in the PM of An. albimanus at this time point. These results suggest that P. vivax Vk210 ookinetes cannot escape from and are destroyed within the midgut lumen of An. pseudopunctipennis.  相似文献   

14.
15.
The subcellular localization of Plasmodium berghei circumsporozoite protein and thrombospondin-related adhesive protein (PbCTRP) in the invasive stage ookinete of P. berghei was studied in the midgut of Anopheles stephensi by immuno-electron microscopic observations using polyclonal antibodies and immuno-gold labeling. PbCTRP was found to be associated with the micronemes of a mature ookinete throughout the movement from the endoperitrophic space to the basal lamina of the midgut epithelium. PbCTRP was also observed in the electron-dense area outside the ookinete, which might have been secreted from the apical pore. PbCTRP is found most abundantly at the site of contact between the apical end of an ookinete and the basal lamina of an epithelial cell. These results suggest that PbCTRP functions as an adhesion molecule for ookinete movement into the midgut lumen and epithelial cell and for ookinete association with the midgut basal lamina and transformation into an oocyst.  相似文献   

16.
17.
18.
19.
Plasmodium berghei-infected blood from mice was inoculated into primary cell cultures (PCC) obtained from the mosquito Anopheles stephensi. Immature and mature ookinetes of Plasmodium berghei, which developed in these cultures were studied with the scanning electron microscope. Immature ookinetes had a bulbous-like structure at the posterior end and a slightly wrinkled surface. Mature ookinetes were smoother in appearance and somewhat longer than immature forms. Shallow spiraling waves were observed on the surface of some ookinetes, especially in the anterior half of the body. Such waves may be involved in ookinete locomotion. Penetration of cultured cells by ookinetes was not observed. Infected red cells, which were present in the inoculum, had small depressions on the red cell surface, whereas some uninfected red cells had accentuated concavities. Mouse blood cells adhered closely to PCC cells; some attached red cells were irregular in shape.  相似文献   

20.
Previous studies have shown that the central American mosquito vector, Anopheles albimanus, is generally refractory to oocyst infection with allopatric isolates of the human malaria parasite Plasmodium falciparum. However, the reasons for the refractoriness of A. albimanus to infection with such isolates of P. falciparum are unknown. In the current study, we investigated the infectivity of the P. falciparum clone 3D7A to laboratory-reared A. albimanus and another natural vector of human malaria, Anopheles stephensi. Plasmodium falciparum gametocytes grown in vitro were simultaneously fed to both mosquito species and the progress of malaria infection compared. In 22 independent paired experimental feeds, no mature oocysts were observed on the midguts of A. albimanus 10days after bloodfeeding. In contrast, high levels of oocyst infection were found on the midguts of simultaneously fed A. stephensi. Direct immunofluorescence microscopy and light microscopical examination of Giemsa-stained histological sections were used to identify when the P. falciparum clone 3D7A failed to establish mature oocyst infections in A. albimanus. Similar densities of macrogametes/zygotes, and immature retort-form and mature ookinetes were found within the bloodmeals of both mosquito species. However, in A. albimanus, ookinetes were seldom associated with the peritrophic matrix, and were neither observed in the ectoperitrophic space nor the midgut epithelium. In contrast, ookinetes were frequently observed in these midgut compartments in A. stephensi. Additionally, young oocysts were observed on the midguts of A. stephensi but not A. albimanus 2days after bloodfeeding. Vital staining of the immature retort-form and mature ookinetes found within the luminal bloodmeal, demonstrated that a significantly greater proportion of these malaria parasite stages were non-viable in A. albimanus compared with A. stephensi. Overall, our observations indicate that ookinetes of the P. falciparum clone 3D7A are destroyed within the bloodmeal of A. albimanus and that the midgut lumen, rather than the midgut epithelium, is the site of mosquito refractoriness in this particular malaria parasite-mosquito vector combination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号