首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Although we have previously shown drastic cell death by pyruvate deficiency in osteoblasts at the proliferative stage, the exact mechanism remains unclear so far. Cell survivability was significantly decreased in rat calvarial osteoblasts cultured for 0 to 3 days in vitro (DIV) following replacement of the eutrophic alpha-modified minimum essential medium (alpha-MEM) with Dulbecco's modified eagle medium (DMEM) for cultivation. The addition of pyruvate enriched in alpha-MEM, but not in MEM, entirely prevented cell death induced by the medium replacement throughout a culture period from 0 to 3 DIV. Both cysteine and reduced glutathione protected cell death in cells cultured for 3 DIV without significantly affecting that in cells cultured for 1 DIV, however, while none of lactate, acetate and insulin significantly prevented the cell death irrespective of the culture period up to 3 DIV. A marked increase was detected in intracellular reactive oxygen species (ROS) levels 4 h after the medium replacement. In osteoblasts cultured in alpha-MEM for 3 DIV, but not in those for 7 DIV, hydrogen peroxide (H2O2) markedly decreased cell survivability when exposed for 2 to 24 h. Furthermore, H2O2 was effective in significantly decreasing cell survivability in osteoblasts cultured in DMEM for 7 DIV. Pyruvate at 1 mM not only prevented cell death by H2O2, but also suppressed the generation of intracellular ROS in osteoblasts exposed to H2O2. These results suggest that pyruvate could be cytoprotective through a mechanism associated with the anti-oxidative property rather than an energy fuel in cultured rat calvarial osteoblasts.  相似文献   

2.
3.
In mammalian cell culture technology glutamine is required for biomass synthesis and as a major energy source together with glucose. Different pathways for glutamine metabolism are possible, resulting in different energy output and ammonia release. The accumulation of ammonia in the medium can limit cell growth and product formation. Therefore, numerous ideas to reduce ammonia concentration in cultivation broths have been developed. Here we present new aspects on the energy metabolism of mammalian cells. The replacement of glutamine (2 mM) by pyruvate (10 mM) supported cell growth without adaptation for at least 19 passages without reduction in growth rate of different adherent commercial cell lines (MDCK, BHK21, CHO-K1) in serum-containing and serum-free media. The changes in metabolism of MDCK cells due to pyruvate uptake instead of glutamine were investigated in detail (on the amino acid level) for an influenza vaccine production process in large-scale microcarrier culture. In addition, metabolite profiles from variations of this new medium formulation (1-10 mM pyruvate) were compared for MDCK cell growth in roller bottles. Even at very low levels of pyruvate (1 mM) MDCK cells grew to confluency without glutamine and accumulation of ammonia. Also glucose uptake was reduced, which resulted in lower lactate production. However, pyruvate and glutamine were both metabolized when present together. Amino acid profiles from the cell growth phase for pyruvate medium showed a reduced uptake of serine, cysteine, and methionine, an increased uptake of leucine and isoleucine and a higher release of glycine compared to glutamine medium. After virus infection completely different profiles were found for essential and nonessential amino acids.  相似文献   

4.
C L Baugh  R K Bowersock 《Life sciences》1974,15(11):1955-1960
Under specific conditions utilized, Eagle's minimum essential medium containing “substantially glucose-free” galactose instead of glucose supported the growth of every cell culture tested with the exception of embryonic cells. Growth of various primary kidney cultures in galactose-EMEM was greater or, at least, equal to that obtained with the same medium containing glucose. Cell lines of non-human origin showed extensive growth in galactose-EMEM and were further stimulated by supplemental pyruvate. Only limited, if any, growth of human cell lines occurred in galactose-EMEM under routine conditions of culture. The growth response of these cells was greatly increased and approached that with glucose if the initial pH of the galactose medium was adjusted in the acid pH range or, with WISH cells, if the galactose medium was supplemented with pyruvate.  相似文献   

5.
HgCl2 is extremely cytotoxic to Chinese hamster ovary (CHO) cells in culture since a 1-h exposure to a 75- microM concentration of this compound reduced cell plating efficiency to 0 and cell growth was completely inhibited at 7.5 microM . The level of HgCl2 toxicity depended upon the culture incubation medium and has previously been shown to be inversely proportional to the extracellular concentration of metal chelating amino acids such as cysteine. Thus, HgCl2 toxicity in a minimal salts/glucose maintenance medium was about 10-fold greater than the toxicity in McCoy's culture medium. The HgCl2 toxicity in the latter medium was 3-fold greater than that in alpha-MEM which contains more of the metal chelating amino acids. When cells were exposed to HgCl2 there was a rapid and pronounced induction of single strand breaks in the DNA at time intervals and concentrations that paralleled the cellular toxicity. The DNA damage was shown to be true single strand breaks and not alkaline sensitive sites or double strand breaks by a variety of techniques. Consistent with the toxicity of HgCl2, the DNA damage under an equivalent exposure situation was more pronounced in the salts/glucose than in the McCoy's medium and more striking in the latter medium than in alpha-MEM. Most of the single strand breaks occurred within 1 h of exposure to the metal. We believe that the DNA damage caused by HgCl2 leads to cell death because the DNA single strand breaks are not readily repaired. DNA repair activity measured by CsCl density gradient techniques was elevated above the untreated levels at HgCl2 concentrations that produced little measurable binding of the metal to DNA or few single strand breaks assessed by the alkaline elution procedure. DNA repair activity decreased at HgCl2 concentrations that produced measurable DNA binding and single strand breaks. These irreversible interactions of HgCl2 with DNA may be responsible for its cytotoxic action in cells.  相似文献   

6.
The activation of cytotoxic T lymphocytes (CTL) in allogeneic mixed-lymphocyte cultures was found to be strongly inhibited if 1-3 X 10(-2) M L-alanine or the structurally and biochemically related substance pyruvate was present in the period from 7 to 19 or from 19 to 120 hr. The cytotoxic response was not inhibited when L-alanine or pyruvate was present during the first 7 hr of the culture period. L-Alanine produced also little or no suppression, if added on Day 3 of the culture. L-Lactate or D-alanine at similar concentrations was not suppressive during the entire culture period. The suppression by pyruvate and L-alanine was strongly reduced by 1 X 10(-4) M adenosine. Adenosine in combination with an interleukin-2 (IL-2)-containing EL-4-cell supernatant was even more effective. Pyruvate and alanine (1-3 X 10(-2) M) also inhibited the DNA synthesis in mixed-lymphocyte cultures on Day 5 by about 50%, but both substances had practically no effect on DNA synthesis in cultures that had been supplemented with an IL-2-containing EL-4 supernatant. They had also no effect on the IL-2-dependent proliferation of several T-cell clones or of concanavalin A-activated thymocytes. These relatively selective regulatory effects of pyruvate and L-alanine may be useful for the analysis of the biochemical pathways during lymphocyte activation and/or for a selective manipulation of the immune response.  相似文献   

7.
Although the rat pineal is an endocrine organ and has no photoreceptor activity, pineals from neonatal rats contain cells that can differentiate into rod-like cells with rhodopsin immunoreactivity (Rho-I), when cultured in vitro. Norepinephrine (NE) reduces the number of Rho-I cells in a dose-dependent manner and has a considerable effect even at 20 nM. When cultured in vitro, pineals removed up to Postnatal Day 4 differentiated into Rho-I cells to the same extent as did those removed at Day 1 (neonatal), but those removed at Day 5 showed a sharp reduction in the number of differentiated Rho-I cells. This suggests that either pineal cells in situ lose their potential to differentiate by Day 5 or the subpopulation of cells involved normally disappears in pineals older than Day 5. The effect of NE was examined in cultures of neonatal pineals by administering it for 1 or 2 days at different stages during a 9-day culture period. NE was most effective when present in the culture medium at an early culture phase and was not efficacious if present only later than Culture Day 7. This indicates that presumptive pineal photoreceptors may become sensitive to NE only for a limited period and that once they are exposed to NE within this period they are irreversibly affected, possibly to degenerate. These cells are similarly and severely affected by potassium ion concentrations as low as 15 mM, suggesting that NE may act at the adrenoreceptor to modify the membrane properties. Serotonin-immunoreactive cells, another cell type (endocrine) found in the cultures, appeared to be regulated by NE by a separate mechanism. NE suppresses process extension by serotonin cells in a reversible manner, and KCl does not have this effect. These findings further evidence that neurotransmitters may have essential roles, other than the transmission of signals, in modulating the developing nervous system.  相似文献   

8.
B A Laishes  G M Williams 《In vitro》1976,12(12):821-832
Primary monolayer cell cultures of adult rat hepatocytes underwent change in morphology and substantial cell loss between 1 and 3 days postinoculation. Dexamethasone-supplementation (1 micronM) of the culture medium maintained the polygonal epithelial morphology of the hepatocytes and increased longevity such that over 80% of the cells survived for 3 days and at least 30% for 8 or 9 days. This enhancement of survival was obtained up to 48 hr postinoculation, but the earlier the time of dexamethason supplementation the greater the effect. Removal of dexamethasone resulted in a decrease in longevity. The positive effect of dexamethasone on longevity was observed following dexamethasone replacement of insulin in supplemented cultures, but the combination of insulin and dexamethasone resulted in poorer survival than with dexamethasone alone. The results are interpreted to indicate that dexamethasone provided a requirement of the in vitro environment for survival and suggest that elaboration of a complex medium is required to maintain hepatocytes in culture.  相似文献   

9.
Lactate and ammonia are the most important waste products of central carbon metabolism in mammalian cell cultures. In particular during batch and fed-batch cultivations these toxic by-products are excreted into the medium in large amounts, and not only affect cell viability and productivity but often also prevent growth to high cell densities. The most promising approach to overcome such a metabolic imbalance is the replacement of one or several components in the culture medium. It has been previously shown that pyruvate can be substituted for glutamine in cultures of adherent Madin-Darby canine kidney (MDCK) cells. As a consequence, the cells not only released no ammonia but glucose consumption and lactate production were also reduced significantly. In this work, the impact of media changes on glucose and glutamine metabolism was further elucidated by using a high-throughput platform for enzyme activity measurements of mammalian cells. Adherent MDCK cells were grown to stationary and exponential phase in six-well plates in serum-containing GMEM supplemented with glutamine or pyruvate. A total number of 28 key metabolic enzyme activities of cell extracts were analyzed. The overall activity of the pentose phosphate pathway was up-regulated during exponential cell growth in pyruvate-containing medium suggesting that more glucose-6-phosphate was channeled into the oxidative branch. Furthermore, the anaplerotic enzymes pyruvate carboxylase and pyruvate dehydrogenase showed higher cell specific activities with pyruvate. An increase in cell specific activity was also found for NAD(+)-dependent isocitrate dehydrogenase, glutamate dehydrogenase, and glutamine synthetase in MDCK cells grown with pyruvate. It can be assumed that the increase in enzyme activities was required to compensate for the energy demand and to replenish the glutamine pool. On the other hand, the activities of glutaminolytic enzymes (e.g., alanine and aspartate transaminase) were decreased in cells grown with pyruvate, which seems to be related to a decreased glutamine metabolism.  相似文献   

10.
The addition of pyruvate to the culture medium has been reported to improve the maintenance of P450-dependent enzyme expression in primary rat hepatocyte cultures. In this study, the effects of 30mM pyruvate on cell morphology, albumin secretion and glutathione S-transferase (GST) expression were investigated as a function of the time in culture. The effect of triiodothyronine (T3) exposure on GST expression was also measured in pyruvate-treated cultures. Transmission electron microscopy showed that untreated hepatocytes deteriorated after culture for 7 days, whereas the morphology of the pyruvate-treated cells was similar to that observed in intact liver tissue. The albumin secretion rate was significantly higher in rat hepatocytes exposed to pyruvate than in control cells. In the presence of pyruvate, mu and alpha class GST activities were well maintained, whereas GST pi activity was increased over the entire culture period. HPLC analysis revealed that the complement of GST subunits present in hepatocytes is altered during culture with pyruvate: mu,class proteins remained relatively constant, whereas a decrease in the alpha class content was accompanied by a strong increase in GST subunit P1 (GSTP1). The induction of GSTP1 was confirmed at the mRNA level. In control cultures, pi class GST activity was increased, but total, mu, and alpha class GST activities continuously declined as a function of culture time and became undetectable beyond 7 days in culture. At the protein and mRNA levels, a much smaller increase in GSTP1 was observed than in the pyruvate cultures. When the pyruvate-treated cell cultures were exposed to T3, an inhibitory effect on GST activities and proteins was found. These results indicate that this simple culture model could be useful for studying the expression and regulation of GST.  相似文献   

11.
These studies examined the effect of exogenous pyruvate on the growth and differentiation of primary cell cultures of rat tracheal epithelial cells. The cell cultures were derived from outgrowths of tracheal explants, and require pyruvate for survival and growth in the presence of 10% FBS. In pyruvate-supplemented (2 mM) medium, the number of cells attached to the dish increased rapidly, while exfoliation of cells into the medium as well as formation of cornified envelopes were relatively low. The growth response to pyruvate was concentration-dependent in these cell cultures. In the absence of pyruvate, the extent of terminal differentiation to keratinization gradually increased. This was characterized by a cessation of growth after one week, and an increase in exfoliation until all cells had sloughed from the dish. Accompanying these changes was a marked increase in the formation of cornified envelopes. Cells undergoing DNA synthesis were present throughout 2 weeks of culture in pyruvate-deprived medium, even as the total number of cells was diminishing. Several compounds, including other 2-oxocarboxylic acids, were ineffective growth substitutes for pyruvate. These results indicate that the requirement for pyruvate is quite stringent in these cultures and that one way pyruvate promotes the growth of tracheal epithelial cells is by inhibiting terminal differentiation.  相似文献   

12.
Abstract: The synthesis of hypotaurine and taurine was investigated in astroglia-rich primary cultures obtained from brains of neonatal Wistar rats using 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. Cell extracts of astroglial cultures analyzed by 1H NMR spectroscopy show prominent signals of hypotaurine. To identify cysteine as precursor for hypotaurine and taurine synthesis in astroglial cells, primary cultures were incubated with [3-13C]cysteine for 24 or 72 h. Cell extracts and incubation media were then analyzed with 13C NMR spectroscopy. Labeled hypotaurine, taurine, glutathione, and lactate were identified in the cell extracts. Within 72 h, 35.0% of the total intracellular hypotaurine and 22.5% of taurine were newly synthesized from [3-13C]cysteine. The presence of [1-13C]hypotaurine and [1-13C]taurine in the incubation medium proves the release of those products of cysteine metabolism into the medium. Minor amounts of the [3-13C]cysteine were used for the synthesis of glutathione in astroglial cells or metabolized to [3-13C]lactate, which was found in cell extracts and media. These results indicate that the formation of hypotaurine and taurine is a major pathway of cysteine metabolism in astroglial cells.  相似文献   

13.
Summary Primary cultures of mouse neural precursor cells were established by enzymatic dissociation of embryonic Day 10 fetal heads followed by negative selection of non-neural contaminating cells. The latter were allowed to attach and spread on a plastic substrate under conditions that permitted neural precursor cells to remain suspended in the culture medium. The resulting neuroepithelial cell enriched suspension then was plated on dishes coated with poly-d-lysine. Growth of fibroblastic cells was inhibited in a selective medium. Cell proliferation was measured by immunoperoxidase staining of nuclei after bromodeoxyuridine labeling. The proportion of labeled cells declined from 50% on Day 1 until Day 5 when it approached zero, and after 7 days in culture a fourfold increase in cell number was achieved in medium containing 1% fetal bovine serum, transferrin, insulin, cholera toxin, and sodium selenite. Differentiation of neural precursor cells was studied by indirect immunofluorescence microscopy for the appearance of neuron- and astrocyte-specific cytoskeletal proteins at successive intervals in culture. Cells bearing neuritic processes and expressing neurofilaments as well as microtubule-associated protein 2 were present in low numbers on Day 1, increasing through Day 14. Stellate cells with morphologic features of astrocytes and immunoreactive for glial fibrillary acidic protein were not detected until Day 5 and did not become abundant until Day 11. No differences in morphology or immunocytochemical staining characteristics were found between neural precursor cells processed by enzymatic dissociation of whole fetal heads and those recovered by manual dissection of fetal neuroepithelia. The large number of neural precursor cells obtained by this rapid, simple method makes possible the production of mass cultures for molecular analysis of the regulatory factors that control proliferation and differentiation during early development of the mouse central nervous system. This study was entrusted to the Institute of Physical and Chemical Research (RIKEN) by the Science and Technology Agency (STA) and was financially supported by the Special Coordination Funds for Promoting Science and Technology. R. Shiurba is a recipient of a STA fellowship award from the Japanese Union of Scientists and Engineers.  相似文献   

14.
Hybridoma cells usually grow to fairly low cell densities in batch cultures (1–3×106 cells/ml). The reason for this is either that essential nutritional components of the medium are consumed, or that the cells produce some kind of inhibitory or toxic metabolite. This investigation presents evidence for the latter. Spent medium from cultures of hybridoma cells did not support growth of cells at lower cell densities (1–3×105 cells/ml). The ability to support cell growth could not be restored by adding additional serum, energy sources (glucose, pyruvate) or L-glutamine. Furthermore, the consumption of amino acids could not account for this growth inhibition. On the contrary, the spent medium contained a substance that inhibited cell growth. This substance or metabolite was found in a fraction eluted from a gel filtration column when spent medium was applied to the column. This substance was found in the spent medium from all hybridoma and myeloma cell lines that were tested. The molecular weight of the substance was about 5 kD. Spent medium from two hybridoma cell lines also contained a substance that was eluted in the same fraction as albumin (67 kD). It is likely that this (or these) substance(s) is responsible for the growth limitation in hybridoma cell cultures.Abbreviations PBS phosphate buffered saline  相似文献   

15.
Transported l-[(35)S]cysteine was rapidly metabolized by cultured tobacco cells when supplied to the cells at 0.02 millimolar or 0.5 millimolar. The internal cysteine pool was expandable to approximately 2400 nmoles per gram fresh weight.The (35)S label derived from cysteine was found in several metabolites. The amount of label in glutathione and sulfate was directly proportional to the internal l-[(35)S]cysteine, while the levels of labeled methionine and protein were apparently independent of internal labeled cysteine. Cysteine was more rapidly metabolized when the external cysteine concentration was low (0.02 millimolar) with up to 90% of the (35)S label present as compounds other than cysteine.The initial step in cysteine degradation yielded pyruvate, sulfide, and presumably NH(4) (+). Stoichiometry studies using extracts prepared from acetone powders of tobacco cells indicated that pyruvate and sulfide were produced in a 1:1 ratio. The catabolic reaction was linear with respect to time and amount of protein and had a pH optimum of 8 in crude extracts. Preliminary kinetic data indicated the K(m) to be approximately 0.2 millimolar. The extractable degradative activity was enhanced 15- to 20-fold by preincubating the cells for 24 hours in 0.5 millimolar cysteine. The extractable specific enzyme activity roughly reflected the growth curve of the cells in culture. Maximal cysteine degradation was observed in extracts prepared from late log phase cultures that were preincubated in cysteine, while little activity was found in similar extracts from stationary phase cultures. These results are consistent with an inducible catabolic enzyme similar to the cysteine desulfhydrase from bacteria.  相似文献   

16.
We examined the effects of human purified interleukin-1 (IL-1) on DNA synthesis, cell growth, and alkaline phosphatase activity in the osteoblastic cell line MC3T3-E1 under both preconfluent and confluent culture conditions. Addition of IL-1 to the cells markedly inhibited their DNA synthesis and growth over the range 1-10 U/ml. Such significant inhibitory effects were observed in cells cultivated in 1 or 5% fetal calf serum (FCS)-containing alpha modification Eagle's medium (alpha-MEM), but not in alpha-MEM containing 10% FCS. In contrast, alkaline phosphatase activity was enhanced significantly by IL-1 in the cell line cultivated in 1% FCS-containing alpha-MEM. These results demonstrate that human purified IL-1 is effective in inducing the differentiation of osteoblastic cell MC3T3-E1.  相似文献   

17.
Ciliary neuronotrophic factor (CNTF) requirements for neuronal survival in the intact ciliary ganglion (CG) have been investigated in organ culture. Exogenous CNTF was not essential for neuronal survival until embryonic Day 8. Three-day cultures from 5-day ganglia were similar with or without CNTF, showing numerous neurons and extensive neuritic development. In 3-day cultures from 8-day-old ganglia, however, no neurons survived without CNTF, and the ganglia contained only nonneuronal cells and cell debris. Similar ganglia cultured with CNTF contained many neurons, surrounded by nonneuronal cells, and abundant neuritic processes. Morphologic maturation of the neurons was less advanced in CNTF-supported ganglia than in their in vivo counterparts.  相似文献   

18.
The present study investigated the effect of lactate/pyruvate supplement in culture medium and of chemical activation after electric stimulus on in vitro development of porcine somatic cell nuclear transfer (SCNT) embryos. In vitro matured gilt oocytes were enucleated, reconstructed with fetal fibroblasts, and simultaneously fused/activated using a single pulse of 2.0 kV/cm for 30 microsec. In Experiment 1, reconstructed embryos were cultured in North Carolina State University (NCSU)-23 medium supplemented with either 5.5 mM glucose (Group A) or lactate (5.0 mM)/pyruvate (0.5 mM) (Group B). Compared to Group A, cleavage rate (64% vs. 47%) was higher and more blastocysts developed in Group B (17% vs. 6% at Day 6, 21% vs.11% at Day 7). Experiment 2, embryos reconstructed by electric stimulus (2.0 kV/cm for 30 microsec) were subjected to three activation protocols: (1) no chemical activation (Group C), (2) 7.5 microg/ml cytochalasin B treatment at 2 hr after electric stimulus (Group D), and (3) 5 microg/ml 6-dimethylaminopurine (Group E) treatment at 2 hr after electric stimulus. The reconstructed embryos were cultured for 7 days in NCSU-23 medium supplemented with lactate (5.0 mM)/pyruvate (0.5 mM). The rates of blastocyst formation on Day 6 and Day 7 in Group C (17 and 20%, respectively) or Group D (15, 20%, respectively) were higher than in Group E (9 and 12%, respectively). The percentage of two pseudo-pronucleus (PPN) formations in Group D (88%) was significantly higher than in Group C (71%) and Group E (72%). Mean cell numbers of blastocysts in Group D (63.4 +/- 15.8) were higher than in Group C (43.9 +/- 16.5) and Group E (32.9 +/- 17.9), due to increased trophectoderm (TE) cell numbers. Our results indicate that supplementing NCSU-23 medium with lactate/pyruvate and exposure of cytochalasin B after electrical stimulus can improve in vitro developmental competence of porcine SCNT embryos.  相似文献   

19.
Chick embryo fibroblasts on the 5th day of culture in proteinfree medium were stimulated to accelerated growth by supplementation of the medium with ATP (50 mumol/l, insulin (0.16 I.U./ml) or chick serum (5% v/v). Kinetics of the entry of cells into the S phase and later into the logarythmic phase of growth were found to be different in cultures treated with these three factors in spite that the final saturation densities reached after 30 days of culture were similar. No direct correlation between cell spreading and the cell transition from the stationary to the proliferation state was found. The proliferating cells showed the higher rate of locomotion than in stationary cultures. The initial protein-free medium, supporting the long survival of chick embryo fibroblasts and their susceptibility to growth accelerating factors, was further simplified by replacement of ADA buffer with EDTA (0.4 mmol/l).  相似文献   

20.
Cells maintained in basal growth medium with 0.2–1.0% serum often require citric acid cycle intermediates for optimal viability. We have found that pyruvate added to minimal growth medium causes cellular flattening and formation of external processes accompanied by increaded DNA synthesis in cultured hepatoma cells (HTC cells). Cells were cultured in plalstic T-flasks (0.5, 1.0, or 2.0 × 106 cells/flask) containing 5 ml medium (90% Eagle's Basal Medium (BME) and 10% Swim's S-77) with various concentrations of fetal calf serum (0.2,0.25, 0.5, 1.0, 2.0, 10%) and either pyruvate (50, 100, 250,500, 1,000μg/ml), or one of: dibutyryl cAMP (DBcAMP) or dibutyryl cGMP (DBcGMP) at 10?3, 10?4, or 10?5 M. At 44–48 hr cultures were pulsed with tritiated thymidine, uridine, or lecucine. Cells became attached to the plastic surface within 24hr. Cells in medium with 0.25 to 2.0% serum had a rounded appearance. With added pyruvate, cellular flattening, process formation, and an increased adherence to the substratum was absorbed. By 48 hr, culture without pyruvate grew in rounded clusters; with pyruvate, cells formed extensive interconnecting processes that appeared loosely attached to the monolayer surface. At the cell densities tested, process formation was maximal with 250 to 500 μg/ml pyruvate. Cytochalasin B blocked flattening and process formation; EDTA (1 mg/ml) caused retraction of processes within 3 min, and a slow dissolution of these structures within cells was observed. DBcAMP or DBcGMP did not induce process formation. Flattening and process foormation in pyruvate-enriched cultures were accompanied by marked stimulation of DNA synthesis and smaller increases in RNA and protein synthesis. Cell number was not affected. These pyruvate-induced changes suggest that alterations in energy metabolism, or precursors that enhance viability and macromolecular synthesis in mammalian cell cultures, may exert marked effects on cellular morphology without corresponding changes in growth of neoplastic liver cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号