首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于18S基因序列的姬小蜂分子系统发育   总被引:4,自引:0,他引:4  
本文基于18S rDNA部分序列,用MP和Baysian方法研究了姬小蜂科的系统发育,对姬小蜂科的单系性及其与其它小蜂科间的关系进行了讨论。姬小蜂亚科、灿姬小蜂亚科和啮姬小蜂亚科形成三个独立的支系,研究结果支持它们各自的单系性,但本结果没有明确姬小蜂科的单系性。研究结果同时还支持瑟姬小蜂族、扁股姬小蜂族和狭面姬小蜂族三个族的地位,但不支持姬小蜂族的地位。姬小蜂科的单系性及其与其它小蜂间的关系还需更多的形态学数据和更多的基因序列来进一步研究[动物学报52 (2) : 288 -301 , 2006]。  相似文献   

2.
基于两个叶绿体基因(matK和rbcL)和一个核糖体基因(18S rDNA)的序列分析,对代表了基部被子植物和单子叶植物主要谱系分支的86科126属151种被子植物(单子叶植物58科86属101种)进行了系统演化关系分析。研究结果表明由胡椒目Piperales、樟目Laurales、木兰目Magnoliales和林仙目Canellales构成的真木兰类复合群是单子叶植物的姐妹群。单子叶植物的单系性在3个序列联合分析中得到98%的强烈自展支持。联合分析鉴定出9个单子叶植物主要谱系(广义泽泻目Alismatales、薯蓣目Dioscorcales、露兜树目Pandanales、天门冬目Asparagalcs、百合目Liliales、棕榈目Arecales、禾本目Poales、姜目Zingiberales、鸭跖草目Commelinales)和6个其他被子植物主要谱系(睡莲目Nymphaeales、真双子叶植物、木兰目、樟目、胡椒目、林仙目)。在单子叶植物内,菖蒲目Acorales(菖蒲属Acorus)是单子叶植物最早分化的一个谱系,广义泽泻目(包括天南星科Araceae和岩菖蒲科Toficldiaccae)紧随其后分化出来,二者依次和其余单子叶植物类群构成姐妹群关系。无叶莲科Petrosaviaceac紧随广义的泽泻目之后分化出来,无叶莲科和剩余的单子叶植物类群形成姐妹群关系,并得到了较高的支持率。继无叶莲科之后分化的类群形成两个大的分支:一支是由露兜树目和薯蓣目构成,二者形成姐妹群关系:另一支是由天门冬目、百合目和鸭跖草类复合群组成,三者之间的关系在单个序列分析和联合分析中不稳定,需要进一步扩大取样范围来确定。在鸭跖草类复合群分支内,鸭跖草目和姜目的姐妹群关系在3个序列联合分析和2个序列联合分析的严格一致树中均得到强烈的自展支持,获得的支持率均是100%。但是,对于棕榈目和禾本目在鸭跖草类中的系统位置以及它们和鸭跖草目-姜目之间的关系,有待进一步解决。值得注意的是,无叶莲科与其他单子叶植物类群(除菖蒲目和泽泻目外)的系统关系在本文中获得较高的自展支持率,薯蓣目和天门冬目的单系性在序列联合分析中都得到了较好的自展支持,而这些在以往的研究中通常支持率较低。鉴于菖蒲科和无叶莲科独特的系统演化位置,本文支持将其分别独立成菖蒲目和无叶莲目Petrosavialcs的分类学界定。  相似文献   

3.
The Haptophyta is a common algal group in many marine environments, but only a few species have been observed in freshwaters, with DNA sequences available from just a single species, Crysochromulina parva Lackey, 1939. Here we investigate the haptophyte diversity in a high mountain lake, Lake Finsevatn, Norway, targeting the variable V4 region of the 18S rDNA gene with PCR and 454 pyrosequencing. In addition, the freshwater diversity of Pavlovophyceae was investigated by lineage-specific PCR-primers and clone library sequencing from another Norwegian lake, Lake Svaersvann. We present new freshwater phylotypes belonging to the classes Prymnesiophyceae and Pavlovophyceae, as well as a distinct group here named HAP-1. This is the first molecular evidence of a freshwater species belonging to the class Pavlovophyceae. The HAP-1 and another recently detected marine group (i.e. HAP-2) are separated from both Pavlovophyceae and Prymnesiophyceae and may constitute new higher order taxonomic lineages. As all obtained freshwater sequences of haptophytes are distantly related to the freshwater species C. parva, the phylogeny demonstrates that haptophytes colonized freshwater on multiple independent occasions. One of these colonizations, which gave rise to HAP-1, took place very early in the history of haptophytes, before the radiation of the Prymnesiophyceae.  相似文献   

4.
To infer the monophyletic origin and phylogenetic relationships of the order Desmoscolecida, a unique and puzzling group of mainly free-living marine nematodes, we newly determined nearly complete 18S rDNA sequences for six marine desmoscolecid nematodes belonging to four genera (Desmoscolex, Greeffiella, Tricoma and Paratricoma). Based on the present data and those of 72 nematode species previously reported, the first molecular phylogenetic analysis focusing on Desmoscolecida was done by using neighbor joining (NJ), maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) methods. All four resultant trees consistently and strongly supported that the family Desmoscolecidae forms a monophyletic group with very high node confidence values. The monophyletic clade of desmocolecid nematodes was placed as a sister group of the clade including some members of Monhysterida and Araeolaimida, Cyartonema elegans (Cyartonematidae) and Terschellingia longicaudata (Linhomoeidae) in all the analyses. However, the present phylogenetic trees do not show any direct attraction between the families Desmoscolecidae and Cyartonematidae. Within the monophyletic clade of the family Desmoscolecidae in all of the present phylogenetic trees, there were consistently observed two distinct sub-groups which correspond to the subfamilies Desmoscolecinae [Greeffiella sp. + Desmoscolex sp.] and Tricominae [Paratricoma sp. + Tricoma sp].  相似文献   

5.
The series Staphyliniformia is one of the mega‐diverse groups of Coleoptera, but the relationships among the main families are still poorly understood. In this paper we address the interrelationships of staphyliniform groups, with special emphasis on Hydrophiloidea and Hydraenidae, based on partial sequences of the ribosomal genes 18S rDNA and 28S rDNA. Sequence data were analysed with parsimony and Bayesian posterior probabilities, in an attempt to overcome the likely effect of some branches longer than the 95% cumulative probability of the estimated normal distribution of the path lengths of the species. The inter‐family relationships in the trees obtained with both methods were in general poorly supported, although most of the results based on the sequence data are in good agreement with morphological studies. In none of our analyses a close relationship between Hydraenidae and Hydrophiloidea was supported, contrary to the traditional view but in agreement with recent morphological investigations. Hydraenidae form a clade with Ptiliidae and Scydmaenidae in the tree obtained with Bayesian probabilities, but are placed as basal group of Staphyliniformia (with Silphidae as subordinate group) in the parsimony tree. Based on the analysed data with a limited set of outgroups Scarabaeoidea are nested within Staphyliniformia. However, this needs further support. Hydrophiloidea s.str., Sphaeridiinae, Histeroidea (Histeridae + Sphaeritidae), and all staphylinoid families included are confirmed as monophyletic, with the exception of Hydraenidae in the parsimony tree. Spercheidae are not a basal group within Hydrophiloidea, as has been previously suggested, but included in a polytomy with other Hydrophilidae in the Bayesian analyses, or its sistergroup (with the inclusion of Epimetopidae) in the parsimony tree. Helophorus is placed at the base of Hydrophiloidea in the parsimony tree. The monophyly of Hydrophiloidea s.l. (including the histeroid families) and Staphylinoidea could not be confirmed by the analysed data. Some results, such as a placement of Silphidae as subordinate group of Hydraenidae (parsimony tree), or a sistergroup relationship between Ptiliidae and Scydmaenidae, appear unlikely from a morphological point of view.  相似文献   

6.
Maximum parsimony analyses of the genera of Podocarpaceae were conducted using sequence data from 18S ribosomal DNA. Trees from sequence, morphological, and combined data differ in taxon arrangement, but are similar in that Podocarpus sensu lato and Dacrydium s.l. are unnatural, while Podocarpaceae (including Phyllocladus) are monophyletic. The clade Microcachrys + Microstrobos is recognized in all analyses, but its placement differs, i.e., nested among other scale-leaved taxa in the morphological analysis, but associated with Nageia and other tropical genera in the sequence analyses. Trees from combined data reflect this ambiguity. Podocarpus sensu stricto is paraphyletic according to most trees. Inferences of plesiomorphic character states within the family are largely consistent between analyses and support the view that prototypical podocarps had bifacial leaves, cones with several fertile cone scales, and large epimatia (cone scales) that covered the inverted ovules.  相似文献   

7.
AIMS: To examine the diversity of protozoa in the rumen contents of cow. METHODS AND RESULTS: Protozoa that inhabit the rumen were detected by PCR using protozoan-specific primers. Libraries of protozoan rDNA sequences were constructed from rumen fluid, solid tissues and epithelium. Twenty-three clones isolated from rumen fluid fell into two genera identified as Entodinium (69.6% of clones) and Epidinium (31.4% of clones). Of the clones isolated from rumen fluid, a moderate number were unidentifiable (30.4%). CONCLUSIONS: The predominant protozoan genus identified in the whole rumen belonged to the Entodinium group (81.1%). Protozoa were not detected in the rumen epithelium. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings suggest that rumen fluid and solid tissues contain different protozoan populations that may play specific roles in rumen function. Quantitative PCR techniques and a more specific set of phylogenetic probes that distinguish between protozoan species are needed to determine the significance of newly identified groups and to determine the distribution of identified protozoan clusters in rumen microbial communities.  相似文献   

8.
Aims:  We performed a preliminary assessment of the eukaryotic 18S rDNA diversity present in finished drinking water samples from three different surface water treatment plants supplying water to the city of Paris (France).
Methods and Results:  A molecular analysis was performed on a sample from each site based on sequencing of PCR amplified and cloned 18S ribosomal RNA genes. Overall, the 18S rDNA sequences combined from all samples could be affiliated to the Amoebozoa (20·8% of the phylotypes), Ciliophora (25%), Metazoa (33·3%), Fungi (8·3%), Cercozoa (4·2%) and unclassified eukaryotes (8·3%) groups.
Conclusions:  The 18S rDNA sequences affiliated to the Amoebozoa, Ciliophora and Metazoa lineages were found to be the most abundant phylotypes observed in the drinking water samples. Phylotypes found to be present in two, or all three, samples (41·7% of the total) may represent groups with members adapted to drinking water treatment plant (DWTP) ecosystem conditions.
Significance and Impact of the Study:  This study shows that finished drinking water can contain 18S rDNA sequences representing a variety of eukaryotic taxa. Further research is needed to better characterize the eukaryotic biodiversity of DWTPs and the effects of the finished drinking water diversity on the downstream water distribution network.  相似文献   

9.
The phylogeny of the Tubificidae, and of most of its subfamilies and some of its genera, is revisited, on the basis of sequences of 18S ribosomal DNA in a selection of species. Forty-six new 18S sequences of Naididae (6), Tubificidae (37), Phreodrilidae (1), Lumbriculidae (1), and Enchytraeidae (1) are reported and aligned together with corresponding sequences of 21 previously studied taxa. The 18S gene of Insulodrilus bifidus provides the first molecular evidence that phreodrilids are closely related to tubificids, corroborating previous conclusions based on morphology. The data further support the monophyletic status of Tubificidae, provided that the "Naididae" is regarded a part of this family; "naidids" may not even constitute a monophyletic group. It is thus suggested that the family name Naididae is formally suppressed as a junior synonym of the Tubificidae. The 18S gene also resolves a number of relationships within the tubificids. Among the subfamilies, Tubificinae is supported, Rhyacodrilinae and Phallodrilinae are revealed as nonmonophyletic, and Limnodriloidinae remains unresolved. Most tubificid genera tested for monophyly are corroborated by the data, only one (Tubifex) is refuted, and two (Tubificoides and Limnodriloides) are unresolved from other taxa. It is concluded that it will be valuable to expand the taxonomic sampling for 18S rDNA in clitellates, and in annelids in general, as this is likely to improve the resolution at many levels. However, it will be equally important to combine the annelid 18S data with other gene sequences and nonmolecular characters, to estimate the phylogeny of these common and diverse worms with greater precision.  相似文献   

10.
基于18S rDNA序列的蝽次目(半翅目:异翅亚目)   总被引:4,自引:0,他引:4  
利用18SrDNA分子约1 912 bp的序列对蝽次目21个科53个种进行系统发育分析。运用MP法、ML法和NJ法分析后的结果表明:蝽次目的单系性得到很高的支持;扁蝽总科成为毛点类的姐妹群;毛点类基本确定为两大分支:一支包含蝽总科和红蝽总科;另一支主要由长蝽总科、缘蝽总科和南蝽总科组成;长蝽总科和缘蝽总科都是多系;长蝽总科中,跷蝽科和皮蝽科的关系最近,构成姐妹群,位于整个毛点类的基部;与长蝽总科中另外两个科长蝽科和地长蝽科的关系很远。说明利用18SrDNA分子对研究蝽次目的系统发育关系是适合的,能够重建蝽次目;扁蝽总科和蝽总科单系性的结果与形态学的研究以及Li et al (2005)的研究一致;但较Li et al(2005)的研究更进一步把红蝽总科从广义的缘蝽总科中分出来;并建议皮蝽科作为一个独立的总科更合适。  相似文献   

11.
The phylogenic relationships existing among 14 parasitic Platyhelminthes in the Republic of Korea were investigated via the use of the partial 28S ribosomal DNA (rDNA) D1 region and the partial mitochondrial cytochrome c oxidase subunit 1 (mCOI) DNA sequences. The nucleotide sequences were analyzed by length, G + C %, nucleotide differences and gaps in order to determine the analyzed phylogenic relationships. The phylogenic patterns of the 28S rDNA D1 and mCOI regions were closely related within the same class and order as analyzed by the PAUP 4.0 program, with the exception of a few species. These findings indicate that the 28S rDNA gene sequence is more highly conserved than are the mCOI gene sequences. The 28S rDNA gene may prove useful in studies of the systematics and population genetic structures of parasitic Platyhelminthes.  相似文献   

12.
The community of myxosporeans and actinosporeans inhabiting a typical Scottish highland stream and the outflow area of an adjacent salmon hatchery was analysed on the basis of their 18S rDNA sequences. Nine myxosporeans belonging to the genera Sphaerospora, Chloromyxum, Zschokkella, Myxidium, Hoferellus and Myxobilatus were identified from mature spores in different organs of the fish species present. Twelve actinosporean types belonging to the collective groups of neoactinomyxum, aurantiactinomyxon, raabeia, echinactinomyxon and synactinomyxon were found to be released from oligochaete worms collected from sediments. Twenty of the 21 sequences obtained from these myxozoans are new entries to the myxozoan database, and the genera Chloromyxum, Hoferellus and Myxobilatus were entered for the first time. Study of the molecular relationships between the different taxa and with other myxozoan sequences available showed that the myxosporeans inhabiting the urinary system clearly cluster together, independently of host species or spore morphology. However, the sequences of the two Sphaerospora species encountered show considerable differences from other members of this group and all other freshwater myxosporeans, and they were found to occupy an ancestral marine position. Three actinosporeans, i.e. Neoactinomyxum eiseniellae, Aurantiactinomyxon pavinsis and Raabeia 'type 3' were found to represent alternate life cycle stages of Chloromyxum sp., Chloromyxum truttae and Myxidium truttae, respectively (approximately 1400 identical base pairs each). Three other actinosporeans encountered (two echinactinomyxon and one raabeia type) showed over 92% sequence identity with myxosporeans from GenBank, whereas all other actinosporeans formed a closely related group devoid of any known myxosporeans.  相似文献   

13.
Relationships among the morphologically diverse members of Saxifragaceae sensu lato were inferred using 130 18S rDNA sequences. Phylogenetic analyses were conducted using representatives of all 17 subfamilies of Saxifragaceae sensu lato, as well as numerous additional taxa traditionally assigned to subclasses Magnoliidae, Caryophyllidae, Hamamelidae, Dilleniidae, Rosidae, and Asteridae. This analysis indicates that Saxifragaceae should be narrowly defined (Saxifragaceae sensu stricto) to consist of ~30 herbaceous genera. Furthermore, Saxifragaceae s. s. are part of a well-supported clade (referred to herein as Saxifragales) that also comprises lteoideae, Pterostemonoideae, Ribesioideae, Penthoroideae, and Tetracarpaeoideae, all traditional subfamilies of Saxifragaceae sensu lato, as well as Crassulaceae and Haloragaceae (both of subclass Rosidae). Paeoniaceae (Dilleniideae), and Hamamelidaceae, Cercidiphyllaceae, and Daphniphyllaceae (all of Hamamelidae). The remaining subfamilies of Saxifragaceae sensu lato fall outside this clade. Francoa (Francooideae) and Bauera (Baueroideae) are allied, respectively, with the rosid families Greyiaceae and Cunoniaceae. Brexia (Brexioideae), Parnassia (Parnassioideae), and Lepuropetolon (Lepuropetaloideae) appear in a clade with Celastraceae. Representatives of Phyllonomoideae, Eremosynoideae, Hydrangeoideae, Escallonioideae, Montinioideae, and Vahlioideae are related to taxa belonging to an expanded asterid clade (Asteridae sensu lato). The relationships suggested by analysis of 18S rDNA sequences are highly concordant with those suggested by analysis of rbcL sequences. Furthermore, these relationships are also supported in large part by other lines of evidence, including embryology. serology, and iridoid chemistry.  相似文献   

14.
戴仁怀  陈学新  李子忠 《昆虫学报》2008,51(10):1055-1064
首次在国内利用28S rDNA D2区段和16S rDNA基因序列,结合50个形态特征对角顶叶蝉亚科(Deltocephalinae)[半翅目(Hemiptera): 叶蝉科(Cicadellidae)]19个属进行系统发育分析研究。从无水乙醇浸泡保存的标本中提取基因组DNA并扩增了19个内群和1种外群Typhlocybinae[半翅目(Hemiptera): 叶蝉科(Cicadellidae)]种类的28S rDNA D2基因片段并测序,同时扩增了16S rDNA基因片段并测序11条,采用了GenBank中1个种类的16S rDNA同源序列。采用PAUP*4.0和MrBayes3.0两个分析软件和3种建树方法,利用同源28S D2 rDNA和16S rDNA两个基因序列与形态特征结合进行系统发育分析研究。分析结果表明,二叉叶蝉族Macrostelini是一个单系,并在角顶叶蝉亚科的系统发育中处于基部的位置,是内群中最原始的族;角顶叶蝉族Deltocephalini中除了纹翅叶蝉属Nakaharanus,其余各属构成单系;殃叶蝉族Euscelini内属的归属比较混乱,可能是一个并系群,属间差异有待进一步研究。隆额叶蝉族Paralimnini与顶带叶蝉族Athysanini是姐妹群。带叶蝉属Scaphoideus与纹翅叶蝉属Nakaharanus是姐妹群,二者与木叶蝉属Phlogotettix的关系最近,三者构成一个单系,建议将三者归为带叶蝉族Scaphoideini。研究结果还表明,小眼叶蝉族Xestocephalini和Balcluthini的系统发育位置不明,有待进一步研究。  相似文献   

15.
The phylogenetic relationships of Amur sturgeon A. schrenckii Brandt, 1869 with related species have been analyzed based on sequencing of the 18S rDNA small subunit. The complete sequence (1746 bp) of 18S rDNA has been estimated in seven individual A. schrenckii clones. The results show that the rDNA mutation profile of A. schrenckii 18S is very similar to that of A. fulvescens (Genbank data). Structural-functional and phylogenetic analyses allowed us to identify a presumably expressed variant, as well as taxon-specific mutation (adenine insertion after position 658 bp), for A. schrenckii 18S rDNA. Phylogenetic reconstructions performed with various approaches (NJ, MP, ML and Bayesian) support the monophyly of the genus Acipenser and point (1), based on which, in accordance with the classification based on ecological and morphological data (Artyukhin, 2006), the Amur sturgeon is closer to the sterlet than the Baltic sturgeon and (2) to substantial differentiation between North American (A. fulvescens) and Eurasian (A. schrenckii, A. ruthenus, and A. sturio) species of Acipenseridae.  相似文献   

16.
Ascidians exhibit two different modes of development. A tadpole larva is formed during urodele development, whereas the larval phase is modified or absent during anural development. Anural development is restricted to a small number of species in one or possibly two ascidian families and is probably derived from ancestors with urodele development. Anural and urodele ascidians constitute a model system in which to study the evolution of development, but the phylogeny of anural development has not been resolved. Classification based on larval characters suggests that anural species are monophyletic, whereas classification according to adult morphology suggests they are polyphyletic. In the present study, we have inferred the origin of anural development using rDNA sequences. The central region of 18S rDNA and the hypervariable D2 loop of 28S rDNA were amplified from the genomic DNA of anural and urodele ascidian species by the polymerase chain reaction and sequenced. Phylogenetic trees inferred from 18S rDNA sequences of 21 species placed anural developers into two discrete groups corresponding to the Styelidae and Molgulidae, suggesting that anural development evolved independently in these families. Furthermore, the 18S rDNA trees inferred at least four independent origins of anural development in the family Molgulidae. Phylogenetic trees inferred from the D2 loop sequences of 13 molgulid species confirmed the 18S rDNA phylogeny. Anural development appears to have evolved rapidly because some anural species are placed as closely related sister groups to urodele species. The phylogeny inferred from rDNA sequences is consistent with molgulid systematics according to adult morphology and supports the polyphyletic origin of anural development in ascidians. Correspondence to: W.R. Jeffery  相似文献   

17.
Small subunit rRNA gene sequences (18S rDNA), cell wall carbohydrate composition and ubiquinone components were analysed within a larger number of ascomycetous yeasts and dimorphic fungi to validate their congruence in predicting phylogenetic relationships. The glucose-mannose pattern distinguishes the Hemiascomycetes from the Euascomycetes and the Protomycetes which are characterised with the glucose-mannose-galactose-rhamnose-(fucose) profile. The glucose-mannose-galactose pattern was found in the cell walls of all the three classes. Different coenzyme Q component (CoQ5 to CoQ10) were found within the representatives of the Hemiascomycetes. Whereas CoQ9, CoQ10 and CoQ10H2 predominate within the Euascomycetes, CoQ9 and CoQ10 characterise the Protomycetes. Chemotaxonomic studies coupled with additional molecular and co-evolution studies support the idea that the Hemiascomycetes occupy a basal position in the phylogeny of Ascomycota. These results are not in line with the phylogenetic studies based on the sequences of 18S rRNA encoding gene. The maximum parsimony analysis indicated that Hemiascomycetes and Protomycetes might represent sister groups, opposing to the earlier reported results, where the Archiascomycetes (Protomycetes) or the Hemiascomycetes had been considered to be the most primitive ascomycetous fungi. Instead of the class Archiascomycetes, the term Protomycetes was introduced reflecting much better the properties of the whole class.  相似文献   

18.
基于部分18S rDNA, 28S rDNA和COI基因序列的索科线虫亲缘关系   总被引:1,自引:0,他引:1  
通过PCR扩增获得我国常见昆虫病原索科线虫6属10种18S rDNA、28S rDNA(D3区)和COI基因序列,结合来自GenBank中6属10种索科线虫的18S rDNA同源序列,用邻接法和最大简约法构建系统进化树。结果显示:12属索科线虫分为三大类群,第一大类群是三种罗索属线虫(Romanomermis)先聚在一起,再与两索属(Amphimermis)和蛛索属(Aranimermis)线虫聚为一支;在第二大类群中,六索属(Hexamermis)、卵索属线虫(Ovomermis)和多索属(Agamermis)亲缘关系最近,先聚在一起,再与八腱索属(Octomyomermis)和Thaumamermis线虫聚为一支。第三大类群由索属(Mermis)和异索属(Allomermis)线虫以显著水平的置信度先聚在一起,再与蠓索属(Heleidomermis)和施特克尔霍夫索属(Strelkovimermis)线虫聚为一支。从遗传距离看,基于3个基因的数据集均显示索科线虫属内种间差异明显小于属间差异,武昌罗索线虫(R.wuchangensis)和食蚊罗索线虫(R.culicivorax)同属蚊幼寄生罗索属线虫,其种间的遗传距离最小。  相似文献   

19.
The nuclear small subunit ribosomal DNA (18S rDNA) of 27 anostracans (Branchiopoda: Anostraca) belonging to 14 genera and eight out of nine traditionally recognized families has been sequenced and used for phylogenetic analysis. The 18S rDNA phylogeny shows that the anostracans are monophyletic. The taxa under examination form two clades of subordinal level and eight clades of family level. Two families the Polyartemiidae and Linderiellidae are suppressed and merged with the Chirocephalidae, of which together they form a subfamily. In contrast, the Parartemiinae are removed from the Branchipodidae, raised to family level (Parartemiidae) and cluster as a sister group to the Artemiidae in a clade defined here as the Artemiina (new suborder). A number of morphological traits support this new suborder. The Branchipodidae are separated into two families, the Branchipodidae and Tanymastigidae (new family). The relationship between Dendrocephalus and Thamnocephalus requires further study and needs the addition of Branchinella sequences to decide whether the Thamnocephalidae are monophyletic. Surprisingly, Polyartemiella hazeni and Polyartemia forcipata ("Family" Polyartemiidae), with 17 and 19 thoracic segments and pairs of trunk limb as opposed to all other anostracans with only 11 pairs, do not cluster but are separated by Linderiella santarosae ("Family" Linderiellidae), which has 11 pairs of trunk limbs. All appear to be part of the Chirocephalidae and share one morphological character: double pre-epipodites on at least part of their legs. That Linderiella is part of the Polyartemiinae suggests that multiplication of the number of limbs occurred once, but was lost again in Linderiella. Within Chirocephalidae, we found two further clades, the Eubranchipus-Pristicephalus clade and the Chirocephalus clade. Pristicephalus is reinstated as a genus.  相似文献   

20.
垃圾填埋场中厌氧真菌18SrDNA的PCR扩增及鉴定   总被引:17,自引:0,他引:17  
采用机械破壁法直接从来自7个不同地区的垃圾填埋场滤液样本中提取真菌DNA,应用真菌通用引物NS1和NS8扩增18SrDNA(约1800bp),多聚酶链式反应(PCR)产物的琼脂糖凝胶电泳结果表明所有的样本均得到了扩增;以PCR产物作为模板,采用厌氧真菌Chytridiomycetes科的专用引物Chyt-719和Chyt-1553进行二次PCR扩增(约857bp),该阳性扩增产物克隆和测序结果首次表明在食草动物瘤胃中存在的厌氧真菌Chytridiomycetes也存在于垃圾填埋场中,且为Neocallimastix属。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号