共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
The "killer" plasmid and a larger double-stranded RNA plasmid of yeast exist in intracellular virion particles. Purification of these particles from a diploid killer strain of yeast (grown into stationary growth on ethanol) resulted in co-purification of a DNA-independent RNA polymerase activity. This activity incorporates and requires all four ribonucleoside triphosphates and will not act on deoxyribonucleoside triphosphates. The reaction requires magnesium, is inhibited by sulfhydryl-oxidizing reagents and high concentrations of monovalent cation, but is insensitive to DNase, alpha-amanitin, and actinomycin D. Pyrophosphate inhibits the reaction as does ethidium bromide. Exogenous nucleic acids have no effect on the reaction. The product is mostly single-stranded RNA, some of which is released from the enzymatically active virions. 相似文献
3.
G A Bitter 《Analytical biochemistry》1983,128(2):294-301
A rapid procedure for the purification of RNA polymerase II from Saccharomyces cerevisiae is described. Total RNA polymerase activity was solubilized from whole cells by sonication in 0.32 M (NH4)2SO4 and RNA polymerase II purified by polyethylenimine fractionation, ammonium sulfate precipitation, and chromatography on DEAE-cellulose, DEAE-Sephadex, and phosphocellulose. The procedure may be completed in 2.5 days and the resultant enzyme is judged to be greater than 90% pure. 相似文献
4.
A protocol for the incorporation of SeMet into yeast proteins is described. Incorporation at a level of about 50% suffices for the location of Se sites in an anomalous difference Fourier map of the 0.5 MDa yeast RNA polymerase II. This shows the utility of the approach as an aid in the model-building of large protein complexes. 相似文献
5.
6.
7.
8.
9.
Schmitt H 《FEBS letters》1969,4(3):234-238
10.
11.
A nuclear mutant of Saccharomyces cerevisiae deficient in mitochondrial DNA replication and polymerase activity 总被引:3,自引:0,他引:3
We have isolated a thermosensitive mutant which is transformed into a population of cells devoid of mitochondrial DNA (rho 0 cells) at 35 degrees C and is deficient in mitochondrial (mt) DNA polymerase activity. A single recessive nuclear mutation (mip1) is responsible for rho 0 phenotype and mtDNA polymerase deficiency in vitro. At 25 degrees C (or 30 degrees C) a dominant suppressor mutation (SUP) masks the deficiency in vivo. The meiotic segregants (mip1 sup) which do not harbor the suppressor have a rho 0 phenotype both at 25 and 35 degrees C. They have no mtDNA polymerase activity, in contrast with MIP rho 0 mutants of mitochondrial inheritance which do exhibit mtDNA polymerase activity. In the thermosensitive mutant (mip1 SUP), the replication of mtDNA observed in vivo at 30 degrees C is completely abolished at 35 degrees C. In the meiotic segregants (mip1 sup), no mtDNA replication takes place at 30 and 35 degrees C. The synthesis of nuclear DNA is not affected. DNA polymerases may have replicative and/or repair activity. There is no evidence that mip mutants are deficient in mtDNA repair. In contrast the MIP gene product is strictly required for the replication of mtDNA and for the expression of the mtDNA polymerase activity. This enzyme might be the replicase of mtDNA. 相似文献
12.
Yeast nuclear RNA polymerase III was purified by batch adsorption to phosphocellulose, followed by ion-exchange chromatography on DEAE-Sephadex and affinity chromatography on DNA-Sepharose. Polyacrylamide gel electrophoresis of the purified enzyme showed a single protein band which contained polymerase activity. The molecular weight estimated by sedimentation velocity centrifugation in a glycerol gradient was 380 000. Enzyme activity was inhibited 50% at 0.1 mM 1,10-phenanthroline and 100% of 1.0 mM, but was restored when 1,10-phenanthroline was removed by dialysis. Enzyme activity was not inhibited by 7,8-benzoquinoline, a nonchelating structural analogue of 1,10-phenanthroline. These results strongly suggest that inhibition of enzyme activity occurs by the formation of a reversible enzyme-zinc-phenanthroline ternary complex. The zinc content, measured by atomic absorption spectroscopy, was 2 g-atoms per mol of enzyme. Zinc was not removed from the enzyme by gel filtration on Sephadex G-25, by passage through Chelex-100 resin, or by dialysis against buffer containing 1,10-phenanthroline. Enzyme-bound zinc was removed by dialysis after denaturation of the enzyme with heat and sodium dodecyl sulfate. Enzyme-bound zinc did not exchange with free zinc. These results establish yeast nuclear RNA polymerase III as a zinc metalloenzyme. 相似文献
13.
14.
DNA polymerase delta (Pol delta) from Saccharomyces cerevisiae consists of three subunits, Pol3 (125 kDa), Pol31 (55 kDa), and Pol32 (40 kDa), present at a 1:1:1 stoichiometry in purified preparations. Previously, based on gel filtration studies of Pol delta, we suggested that the enzyme may be a dimer of catalytic cores, with dimerization mediated by the Pol32 subunit (Burgers, P. M., and Gerik, K. J. (1998) J. Biol. Chem. 273, 19756-19762). We now report on extensive gel filtration, glycerol gradient sedimentation, and analytical equilibrium centrifugation studies of Pol delta and of several subassemblies of Pol delta. The hydrodynamic parameters of these assemblies indicate that (i) Pol32 is a rod-shaped protein with a frictional ratio f/f(0) = 2.22; (ii) any complex containing Pol32 also has an extremely asymmetric shape; (iii) the results of these studies are independent of concentration (varied between 0.1-20 microm); (iv) all complexes are monomeric under the conditions studied (up to 20 microm). Moreover, a two-hybrid analysis of the Pol32 subunit did not detect a Pol32-Pol32 interaction in vivo. Therefore, we conclude that the assembly structure of Pol delta is that of a monomer. 相似文献
15.
16.
17.
18.
19.
20.
Sophie Stettler Nuchanard Chiannilkulchai Sylvie Hermann-Le Denmat Dominique Lalo François Lacroute André Sentenac Pierre Thuriaux 《Molecular genetics and genomics : MGG》1993,238(1-2):169-176
The pem locus, which is responsible for the stable maintenance of the low copy number plasmid R100, contains the pemK gene, whose product has been shown to be a growth inhibitor. Here, we attempted to isolate mutants which became tolerant to transient induction of the PemK protein. We obtained 20 mutants (here called pkt for PemK tolerance), of which 9 were temperature sensitive for growth. We analyzed the nine mutants genetically and found that they could be classified into three complementation groups, pktA, pktB and pktC, which corresponded to three genes, ileS, gltX and asnS, encoding isoleucyl-, glutamyl- and asparaginyl-tRNA synthetases, respectively. Since these aminoacyl-tRNA synthetase mutants did not produce the PemK protein upon induction at the restrictive temperature, these mutants could be isolated because they behaved as if they were tolerant to the PemK protein. The procedure is therefore useful for isolating temperature-sensitive mutants of aminoacyl-tRNA synthetases. 相似文献