首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Though RecQL4 was shown to be essential for the initiation of DNA replication in mammalian cells, its role in initiation is poorly understood. Here, we show that RecQL4 is required for the origin binding of Mcm10 and Ctf4, and their physical interactions and association with replication origins are controlled by the concerted action of both CDK and DDK activities. Although RecQL4-dependent binding of Mcm10 and Ctf4 to chromatin can occur in the absence of pre-replicative complex, their association with replication origins requires the presence of the pre-replicative complex and CDK and DDK activities. Their association with replication origins and physical interactions are also targets of the DNA damage checkpoint pathways which prevent initiation of DNA replication at replication origins. Taken together, the RecQL4-dependent association of Mcm10 and Ctf4 with replication origins appears to be the first important step controlled by S phase promoting kinases and checkpoint pathways for the initiation of DNA replication in human cells.  相似文献   

3.
4.
G Mosig  A Luder  A Ernst  N Canan 《The New biologist》1991,3(12):1195-1205
A primase, the product of phage T4 gene 61, is required to initiate synthesis of Okazaki pieces and to allow bidirectional replication from several T4 origins. However, primase-defective T4 gene 61 mutants are viable. In these mutants, leading-strand DNA synthesis starts at the same time as in wild type infections, but, in contrast to wild type, initiation is unidirectional and the first replicative intermediates are large displacement loops. Rapid double-strand DNA replication occurs later after infection, generating multiple branched concatemers, which are cut and packaged into viable progeny particles, as in wild-type T4. Evidence is presented that this late double-strand DNA replication requires functional endonuclease VII (endo VII), the product of the T4 gene 49. We propose that endo VII can provide a backup mechanism when primase is defective, because it cuts recombinational junctions, generating 3' ends. These ends can prime DNA synthesis to copy the DNA strands that had been displaced during the initial origin-dependent replication. We explain the DNA-delay phenotype and the commonly observed temperature dependence of DNA replication in primase-deficient gene 61 mutants as a consequence of temperature-dependent translational control of gene 49 expression. In the presence or absence of functional primase endo VII is essential for correct packaging of DNA. The powerful selection that keeps the function of endo VII and expression of its gene at levels that are optimal for T4 development determines both the efficiency and the limitations of the bypass mechanism.  相似文献   

5.
6.
Bacteriophage T4 DNA replication initiates from origins at early times of infection and from recombinational intermediates as the infection progresses. Plasmids containing cloned T4 origins replicate during T4 infection, providing a model system for studying origin-dependent replication. In addition, recombination-dependent replication can be analyzed by using cloned nonorigin fragments of T4 DNA, which direct plasmid replication that requires phage-encoded recombination proteins. We have tested in vivo requirements for both plasmid replication model systems by infecting plasmid-containing cells with mutant phage. Replication of origin and nonorigin plasmids strictly required components of the T4 DNA polymerase holoenzyme complex. Recombination-dependent plasmid replication also strictly required the T4 single-stranded DNA-binding protein (gene product 32 [gp32]), and replication of origin-containing plasmids was greatly reduced by 32 amber mutations. gp32 is therefore important in both modes of replication. An amber mutation in gene 41, which encodes the replicative helicase of T4, reduced but did not eliminate both recombination- and origin-dependent plasmid replication. Therefore, gp41 may normally be utilized for replication of both plasmids but is apparently not required for either. An amber mutation in gene 61, which encodes the T4 RNA primase, did not eliminate either recombination- or origin-dependent plasmid replication. However, plasmid replication was severely delayed by the 61 amber mutation, suggesting that the protein may normally play an important, though nonessential, role in replication. We deleted gene 61 from the T4 genome to test whether the observed replication was due to residual gp61 in the amber mutant infection. The replication phenotype of the deletion mutant was identical to that of the amber mutant. Therefore, gp61 is not required for in vivo T4 replication. Furthermore, the deletion mutant is viable, demonstrating that the gp61 primase is not an essential T4 protein.  相似文献   

7.
Reactions at the replication fork of bacteriophage T7 have been reconstituted in vitro on a preformed replication fork. A minimum of three proteins is required to catalyze leading and lagging strand synthesis. The T7 gene 4 protein, which exists in two forms of molecular weight 56,000 and 63,000, provides helicase and primase activities. A tight complex of the T7 gene 5 protein and Escherichia coli thioredoxin provides DNA polymerase activity. Gene 4 protein and DNA polymerase catalyze processive leading strand synthesis. Gene 4 protein molecules serving as helicase remain bound to the template as leading strand synthesis proceeds greater than 40 kilobases. Primer synthesis for lagging strand synthesis is catalyzed by additional gene 4 protein molecules that undergo multiple association/dissociation steps to catalyze multiple rounds of primer synthesis. The smaller molecular weight form of gene 4 protein has been purified from an equimolar mixture of both forms. Removal of the large form results in the loss of primase activity but not of helicase activity. Submolar amounts of the large form present in a mixture of both forms are sufficient to restore high specific activity of primase characteristic of an equimolar mixture of both forms. These results suggest that the gene 4 primase is an oligomer which is composed of both molecular weight forms. The large form may be the distributive component of the primase which dissociates from the template after each round of primer synthesis.  相似文献   

8.
Bacteriophage P4 DNA replication   总被引:5,自引:0,他引:5  
Abstract: Replication of satellite phage P4 of Escherichia coli is dependent on three phage-encoded elements: the origin ( ori ), a cis replication element ( crr ), and the product of the α gene, gpα. In vitro P4 replication is origin-specific resulting in monomeric form I DNA. DNA synthesis requires chromosomally encoded proteins DNA polymerase III holoenzyme, SSB, DNA gyrase and probably topoisomerase I ; host-encoded initiation and priming functions are dispensable. The α protein is multifunctional in P4 replication, combining three activities in a single polypeptide chain. First, the protein complexes specifically with type I repeats at ori and crr . Second, the helicase activity associated with gpα unwinds DNA with 3'→ 5' polarity. Third, the primase activity results in the synthesis of RNA primers. Defined sequence motifs in gpα correlate with the helicase and primase activities which are arranged in distinct, separable domains. Primase activity is associated with the N-terminal half of the protein, ori / crr binding with the C-terminal portion. A model for the initiation mechanism of P4 replication which resembles that of mammalian simian virus 40 is discussed.  相似文献   

9.
10.
At a replication fork DNA primase synthesizes oligoribonucleotides that serve as primers for the lagging strand DNA polymerase. In the bacteriophage T7 replication system, DNA primase is encoded by gene 4 of the phage. The 63-kDa gene 4 protein is composed of two major domains, a helicase domain and a primase domain located in the C- and N-terminal halves of the protein, respectively. T7 DNA primase recognizes the sequence 5'-NNGTC-3' via a zinc motif and catalyzes the template-directed synthesis of tetraribonucleotides pppACNN. T7 DNA primase, like other primases, shares limited homology with DNA-dependent RNA polymerases. To identify the catalytic core of the T7 DNA primase, single-point mutations were introduced into a basic region that shares sequence homology with RNA polymerases. The genetically altered gene 4 proteins were examined for their ability to support phage growth, to synthesize functional primers, and to recognize primase recognition sites. Two lysine residues, Lys-122 and Lys-128, are essential for phage growth. The two residues play a key role in the synthesis of phosphodiester bonds but are not involved in other activities mediated by the protein. The altered primases are unable to either synthesize or extend an oligoribonucleotide. However, the altered primases do recognize the primase recognition sequence, anneal an exogenous primer 5'-ACCC-3' at the site, and transfer the primer to T7 DNA polymerase. Other lysines in the vicinity are not essential for the synthesis of primers.  相似文献   

11.
12.
In T4 phage, coordinated leading and lagging strand DNA synthesis is carried out by an eight-protein complex termed the replisome. The control of lagging strand DNA synthesis depends on a highly dynamic replisome with several proteins entering and leaving during DNA replication. Here we examine the role of single-stranded binding protein (gp32) in the repetitive cycles of lagging strand synthesis. Removal of the protein-interacting domain of gp32 results in a reduction in the number of primers synthesized and in the efficiency of primer transfer to the polymerase. We find that the primase protein is moderately processive, and this processivity depends on the presence of full-length gp32 at the replication fork. Surprisingly, we find that an increase in the efficiency of primer transfer to the clamp protein correlates with a decrease in the dissociation rate of the primase from the replisome. These findings result in a revised model of lagging strand DNA synthesis where the primase remains as part of the replisome after each successful cycle of Okazaki fragment synthesis. A delay in primer transfer results in an increased probability of the primase dissociating from the replication fork. The interplay between gp32, primase, clamp, and clamp loader dictates the rate and efficiency of primer synthesis, polymerase recycling, and primer transfer to the polymerase.  相似文献   

13.
14.
DNA replication is a highly processive and efficient process that involves the coordination of at least eight proteins to form the replisome in bacteriophage T4. Replication of DNA occurs in the 5' to 3' direction resulting in continuous replication on the leading strand and discontinuous replication on the lagging strand. A key question is how a continuous and discontinuous replication process is coordinated. One solution is to avoid having the completion of one Okazaki fragment to signal the start of the next but instead to have a key step such as priming proceed in parallel to lagging strand replication. Such a mechanism requires protein elements of the replisome to readily dissociate during the replication process. Protein trapping experiments were performed to test for dissociation of the clamp loader and primase from an active replisome in vitro whose template was both a small synthetic DNA minicircle and a larger DNA substrate. The primase, clamp, and clamp loader are found to dissociate from the replisome and are continuously recruited from solution. The effect of varying protein concentrations (dilution) on the size of Okazaki fragments supported the protein trapping results. These findings are in accord with previous results for the accessory proteins but, importantly now, identify the primase as dissociating from an active replisome. The recruitment of the primase from solution during DNA synthesis has also been found for Escherichia coli but not bacteriophage T7. The implications of these results for RNA priming and extension during the repetitive synthesis of Okazaki fragments are discussed.  相似文献   

15.
The rolling circle DNA replication structures generated by the in vitro phage T4 replication system were analyzed using two-dimensional agarose gels. Replication structures were generated in the presence or absence of T4 primase (gp61), permitting the analysis of replication forks with either duplex or single-stranded tails. A characteristic arc shape was visualized when forks with single-stranded tails were cleaved by a restriction enzyme with the help of an oligonucleotide that anneals to restriction sites in the single-stranded tail. After calibrating the gel system with this well-studied rolling circle replication reaction, we then analyzed the in vivo replication directed by a T4 replication origin cloned within a plasmid. DNA samples were generated from infections with either wild-type or primase-deletion mutant phage. The only replicative arc that could be detected in the wild-type sample corresponded to duplex Y forms, consistent with very efficient lagging strand synthesis. Surprisingly, we obtained evidence for both duplex and single-stranded DNA tails in the samples from the primase-deficient infection. We conclude that a relatively inefficient mechanism primes lagging strand DNA synthesis in vivo when gp61 is absent.  相似文献   

16.
The bacteriophage T4 has served as an in vitro model for the study of DNA replication for several decades, yet less is known about this process during infection. Recent work has shown that viral DNA synthesis is initiated from at least five origins of replication distributed across the 172 kb chromosome, but continued synthesis is dependent on recombination. Two proteins are predicted to facilitate loading of the hexameric 41 helicase at the origins, the Dda accessory helicase and the 59 loading protein. Using a real time, genome-wide assay to monitor replication during infections, it is shown here that dda mutant viruses no longer preferentially initiate synthesis near the origins, implying that the Dda accessory helicase has a fundamental role in origin selection and activation. In contrast, at least two origins function efficiently without the 59 loading protein, indicating that other factors load the 41 helicase at these loci. Hence, normal T4 replication includes two mechanistically distinct classes of origins, one requiring the 59 helicase loader, and a second that does not. Since both mechanisms require an additional factor, repEB, for sustained activation, normal T4 origin function appears to include at least three common elements, origin selection and initial activation, replisome loading, and persistence.  相似文献   

17.
18.
The replication of plasmids containing fragments of the T4 genome, but no phage replication origins, was analyzed as a possible model for phage secondary (recombination-dependent) replication initiation. The replication of such plasmids after T4 infection was reduced or eliminated by mutations in several phage genes (uvsY, uvsX, 46, 59, 39, and 52) that have previously been shown to be involved in secondary initiation. A series of plasmids that collectively contain about 60 kilobase pairs of the T4 genome were tested for replication after T4 infection. With the exception of those known to contain tertiary origins, every plasmid replicated in a uvsY-dependent fashion. Thus, there is no apparent requirement for an extensive nucleotide sequence in the uvsY-dependent plasmid replication. However, homology with the phage genome is required since the plasmid vector alone did not replicate after phage infection. The products of plasmid replication included long concatemeric molecules with as many as 35 tandem copies of plasmid sequence. The production of concatemers indicates that plasmid replication is an active process and not simply the result of passive replication after the integration of plasmids into the phage genome. We conclude that plasmids with homology to the T4 genome utilize the secondary initiation mechanism of the phage. This simple model system should be useful in elucidating the molecular mechanism of recombination-dependent DNA synthesis in phage T4.  相似文献   

19.
We have developed a defective phage system for the isolation and analysis of phage T4 replication origins based on the T4-mediated transduction of plasmid pBR322. During the initial infection of a plasmid-containing cell, recombinant plasmids with T4 DNA inserts are converted into fully modified linear DNA concatamers that are packaged into T4 phage particles, to create defective phage (transducing particles). In order to select T4 replication origins from genomic libraries of T4 sequences cloned into the plasmid pBR322, we searched for recombinant plasmids that transduce with an unusually high efficiency, reasoning that this should select for T4 sequences that function as origins on plasmid DNA after phage infection. We also selected for defective phage that can propagate efficiently with the aid of a coinfecting helper phage during subsequent rounds of phage infection. which should select for T4 sequences that can function as origins on the linear DNA present in the defective phage. Several T4 inserts were isolated repeatedly in one or both of these selective procedures, and these were mapped to particular locations on the T4 genome. When plasmids were selected in this way from genomic libraries constructed using different restriction nucleases, they contained overlapping segments of the T4 genome, indicating that the same T4 sequences were selected. The inserts in two of the selected plasmids permit a very high frequency of transduction from circular plasmids: these have been shown to contain a special type of T4 replication origin.  相似文献   

20.
Bacteriophage T4 DNA replication proteins catalyze complete unidirectional replication of plasmids containing the T4 ori(uvsY) replication origin in vitro, beginning with a preformed R loop at the position of the origin R loop previously identified in vivo. T4 DNA polymerase, clamp, clamp loader, and 32 protein are needed for initial elongation of the RNA, which serves as the leading-strand primer. Normal replication is dependent on T4 41 helicase and 61 primase and is strongly stimulated by the 59 helicase loading protein. 59 protein slows replication without the helicase. As expected, leading-strand synthesis stalls prematurely in the absence of T4 DNA topoisomerase. A DNA unwinding element (DUE) is essential for replication, but the ori(uvsY) DUE can be replaced by other DUE sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号