首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nucleotide sequence of the aspartate aminotransferase [EC 2.6.1.1] structural gene, aspC, of Escherichia coli K-12 was determined. The coding region of the aspC gene contained 1,188 nucleotide residues and encoded 396 amino acid residues. The amino acid sequence deduced from the nucleotide sequence agreed perfectly with that of the protein recently determined for the aspartate aminotransferase of E. coli B (Kondo, K., Wakabayashi, S., Yagi, T., & Kagamiyama, H. (1984) Biochem. Biophys. Res. Commun. 122, 62-67).  相似文献   

2.
Lysophospholipase L2, which is bound to the inner membrane of Escherichia coli K-12, was produced in a large amount in cells bearing its cloned structural gene. Starting from these cells, the lysophospholipase L2 was purified approximately 700-fold to near homogeneity by solubilization with KCl, ammonium sulfate fractionation, chromatofocusing in the presence of a zwitterionic detergent, CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate), and heparin-Sepharose affinity column chromatography. The final preparation showed a single protein band with a molecular weight of 38,500 daltons in SDS-polyacrylamide gel electrophoresis. The amino acid sequence of the NH2-terminal portion of the purified enzyme was determined. It was in complete agreement with that deduced from the nucleotide sequence of the structural gene, pldB [Kobayashi, T., Kudo, I., Karasawa, K., Mizushima, H., Inoue, K., & Nojima, S. (1985) J. Biochem. 98, 1017-1025.] The purified enzyme hydrolyzes 2-acyl glycerophosphoethanolamine (GPE) and 2-acyl glycerophosphocholine (GPC) more effectively than 1-acyl GPE and 1-acyl GPC, but does not attack diacylphospholipids. The enzyme also catalyzes the transfer of an acyl group from lysophospholipid to phosphatidylglycerol for formation of acyl phosphatidylglycerol. The acyl group was more effectively transferred from 2-acyl lysophospholipid than from the 1-acyl derivative. This enzyme was heat-labile and was inactivated at 55 degrees C within 5 min. The present paper shows clearly that lysophospholipase L2 is a different enzyme protein from lysophospholipase L1 which was formerly purified from the supernatant of the wild strain of E. coli K-12 homogenates [Doi, O. & Nojima, S. (1975) J. Biol. Chem. 250, 5208-5214].  相似文献   

3.
Phospholipase B has not yet been well defined. The most important points about this enzyme are its relationships with lysophospholipase and phospholipase A1. As reported [Saito, K., Sugatani, J. & Okumura, T. (1991) Methods Enzymol. 197, 446-456], Penicillium notatum phospholipase B is a glycoprotein with a molecular mass of 95 kDa and intrinsic lysophospholipase and phospholipase B activities; however, by endogenous proteolytic modification, its phospholipase B activity is lost almost completely, whereas its lysophospholipase activity remains unchanged. A cDNA library of P. notatum was screened by hybridization with two synthetic oligodeoxyribonucleotide probes, which corresponds to two different pentapeptides of the enzyme. A hybridization-positive clone, pPLB18, was isolated and its nucleotide sequence was determined. The deduced amino acid sequence was quite different from that found previously. Therefore, we rescreened the cDNA library with a Sau3AI fragment derived from pPLB18 and isolated a new clone, pPLB15. Comparison of the nucleotide sequences of pPLB15 and pPLB18 revealed that pPLB18 contained an insertion sequence of 53 bp. Consequently, the reading frame was open downstream for 603 amino acid residues. From the assigned sequence, it was deduced that the limited proteolysis occurred between Leu175 and Asp176; eight cysteine residues and 16 potential N-glycosylation sites were also found. No amino acid sequence similarity was found with other proteins, including other phospholipases.  相似文献   

4.
5.
The nucleotide sequence of the 1.30-kilobase EcoRI/BglII fragment from Vibrio harveyi carrying the majority of the luciferase beta subunit coding region (luxB gene) has been determined. The EcoRI/BglII fragment was derived from a 4.0-kilobase HindIII fragment carrying both luxA and luxB which was detected in a genomic clone bank based on the expression of bioluminescence from colonies of Escherichia coli carrying V. harveyi HindIII fragments in plasmid pBR322 (Baldwin, T. O., Berends, T., Bunch, T. A., Holzman, T. F., Rausch, S. K., Shamansky, L., Treat, M. L., and Ziegler, M. M. (1984) Biochemistry 23, 3663-3667). The entire alpha subunit coding sequence (luxA gene) and the amino-terminal 13 codons of the beta subunit sequence (luxB gene) were contained on a 1.85-kilobase EcoRI fragment, the sequence of which has been reported (Cohn, D. H., Mileham, A. J., Simon, M. I., Nealson, K. H., Rausch, S. K., Bonam, D., and Baldwin, T. O. (1985) J. Biol. Chem. 260, 6139-6146). The beta subunit coding sequence was found to terminate 972 bases past the start of the luxB coding sequence. The beta subunit had a calculated molecular weight of 36,349 and comprised a total of 324 amino acid residues; the alpha beta dimer had a molecular weight (alpha + beta) of 76,457. There were 27 base pairs separating the stop codon of the beta subunit structural gene and a 340-base open reading frame extending to (and beyond) the distal BglII site. Approximately two-thirds of the beta subunit was sequenced by protein chemical techniques. The amino acid sequence predicted from the DNA sequence, with few exceptions, confirmed the chemically determined sequence, and the measured amino acid composition was in excellent agreement with the composition implied from the DNA sequence.  相似文献   

6.
The nucleotide sequences of mRNAs for the mouse mitochondrial and cytosolic aspartate aminotransferase isoenzymes (mAspAT and cAspAT) (EC 2.6.1.1) were determined from complementary DNAs. The mAspAT mRNA comprises minimally 2460 nucleotides and codes for a polypeptide of 430 amino acid residues corresponding to the precursor form of the mAspAT (pre-mAspAT). The cAspAT mRNA comprises minimally 2086 nucleotides and codes for a polypeptide of 413 amino acid residues. The region coding for the mature mAspAT and that for the cAspAT show about 53% overall homology. The former shares 49% and the latter 48% of homology, respectively, with that of the Escherichia coli aspC gene, which has been shown to code for the E. coli AspAT (Kuramitsu, S., Okuno, S., Ogawa, T., Ogawa, H., and Kagamiyama, H. (1985) J. Biochem. (Tokyo) 97, 1259-1262). When the deduced amino acid sequence of the mouse pre-mAspAT was compared with that of the pig pre-mAspAT polypeptide, we found that they share a 94% homology and that the mouse pre-mAspAT yields a presequence consisting of 29 amino acid residues and a mature mAspAT, consisting of 401 amino acid residues. These numbers and the amino acid residues present at the putative cleavage site are all in complete agreement in these two species. The deduced amino acid sequence of the mouse cAspAT shares 91% homology with that of the pig cAspAT. Comparisons of the nucleotide and deduced amino acid sequences between the mouse and E. coli AspATs suggest that the mammalian mAspAT gene is more closely related to the E. coli aspC gene than is the mammalian cAspAT gene.  相似文献   

7.
We have determined the nucleotide sequence of the pbpA gene encoding penicillin-binding protein (PBP) 2 of Escherichia coli. The coding region for PBP 2 was 1899 base pairs in length and was preceded by a possible promoter sequence and two open reading frames. The primary structure of PBP 2, deduced from the nucleotide sequence, comprised 633 amino acid residues. The relative molecular mass was calculated to be 70867. The deduced sequence agreed with the NH2-terminal sequence of PBP 2 purified from membranes, suggesting that PBP 2 has no signal peptide. The hydropathy profile suggested that the NH2-terminal hydrophobic region (a stretch of 25 non-ionic amino acids) may anchor PBP 2 in the cytoplasmic membrane as an ectoprotein. There were nine homologous segments in the amino acid sequence of PBP 2 when compared with PBP 3 of E. coli. The active-site serine residue of PBP 2 was predicted to be Ser-330. Around this putative active-site serine residue was found the conserved sequence of Ser-Xaa-Xaa-Lys, which has been identified in all of the other E. coli PBPs so far studied (PBPs 1A, 1B, 3, 5 and 6) and class A and class C beta-lactamases. In the higher-molecular-mass PBPs 1A, 1B, 2 and 3, Ser-Xaa-Xaa-Lys-Pro was conserved. In the putative peptidoglycan transpeptidase domain there were six amino acid residues, which are common only in the PBPs of higher molecular mass.  相似文献   

8.
The Escherichia coli gene purF, coding for 5-phosphoribosylamine:glutamine pyrophosphate phosphoribosyltransferase (amidophosphoribosyltransferase) was subcloned from a ColE1-purF plasmid into pBR322. Amidophosphoribosyltransferase levels were elevated more than 5-fold in the ColE1-purF plasmid-bearing strain compared to the wild type control, and a further 10- to 13-fold elevation was observed in several pBR322 derivatives. The nucleotide sequence of a 2478-base pair PvuI-HinfI fragment encoding purF was determined. The purF45 structural gene codes for a 56,395 Mr protein chain having 504 amino acid residues. Methionine-1 is removed by processing in vivo leaving cysteine as the NH2-terminal residue. The deduced amino acid sequence was confirmed by comparisons with the NH2-terminal amino acid sequence determined by automated Edman degradation (Tso, J. Y., Hermodson, M. A., and Zalkin, H. (1982) J. Biol. Chem. 257, 3532-3536) and amino acid analyses of CNBr peptides including a 4-residue peptide from the CO2H terminus of the enzyme. Nucleotide sequences characteristic of bacterial promoter-operator regions were identified in the 5' flanking region. The coding region appears to be preceded by a 277-297 nucleotide mRNA leader. A deletion removing the putative promoter-operator region results in defective purF expression.  相似文献   

9.
The amino acid sequence of the bovine mitochondrial nicotinamide nucleotide transhydrogenase was recently deduced from isolated cDNAs and reported [Yamaguchi, M., Hatefi, Y., Trach, K., and Hoch, J.A. (1988) J. Biol. Chem. 263, 2761-2767]. The cDNAs lacked the N-terminal coding region, however, and the 8 N-terminal residues were determined by protein sequencing. In the present study, the nucleotide sequence of the 5' upstream region was determined by dideoxynucleotide sequencing of the transhydrogenase messenger RNA, and amino acid sequences of the N-terminal region and the signal peptide of the enzyme were deduced from the nucleotide sequence. The N-terminal sequence of the enzyme as deduced from the mRNA sequence is the same as that determined by protein sequencing, with one difference. Protein sequencing showed Ser as the N-terminal residue. The mRNA sequence indicated that Ser is the second N-terminal residue, and the first is Cys. That preparations of the enzyme are mixtures of two polypeptides, one polypeptide being one residue shorter at the N terminus than the other, has been pointed out in the above reference. The signal peptide consists of 43 residues, is rich in basic (4 Lys, 2 Arg) and hydroxylated (4 Thr, 3 Ser) amino acids, and lacks acidic residues.  相似文献   

10.
We deduced the amino acid sequence of Escherichia coli lysophospholipase L(1) by determining the nucleotide sequence of the pldC gene encoding this enzyme. The translated protein was found to contain 208 amino acid residues with a hydrophobic leader sequence of 26 amino acid residues. The molecular weight of the purified enzyme (20,500) was in good agreement with the predicted size (20,399) of the processed protein. A search involving a data bank showed that the nucleotide sequence of the pldC gene was identical to those of the apeA and tesA genes encoding protease I and thioesterase I, respectively. Consistent with the identity of the pldC gene with these two genes, the enzyme purified from E. coli overexpressing the pldC gene showed both protease I and thioesterase I activities.  相似文献   

11.
12.
The gene for the Neurospora crassa plasma membrane H+-ATPase has been cloned and sequenced. The gene encodes for a protein of 920 amino acids with a molecular weight of 100,002. The coding region is interrupted by four introns: three near the amino terminus and one near the carboxyl terminus. The deduced amino acid sequence of the N. crassa plasma membrane H+-ATPase exhibits 75% homology to the amino acid sequence of the Saccharomyces cerevisiae plasma membrane H+-ATPase. Also, an amino acid comparison with the Na+/K+-ATPase from sheep kidney, Ca2+-ATPase from rabbit muscle, and K+-ATPase from Escherichia coli reveals that certain regions are highly conserved and suggest that these regions may serve essential functions which are common to the various cation-motive ATPases. This observation suggests that the phosphorylatable, cation-motive ATPases may function via a similar energy transduction mechanism.  相似文献   

13.
A basic (pI = 10.2) phospholipase A2 of the venom of the snake Agkistrodon halys blomhoffii is one of a few phospholipases A2 capable of hydrolyzing the phospholipids of Escherichia coli killed by a bactericidal protein purified from human or rabbit neutrophil granules. We have shown that modification of as many as 4 mol of lysine per mole of the phospholipase A2, either by carbamylation or by reductive methylation [Forst, S., Weiss, J., & Elsbach, P. (1982) J. Biol. Chem. 257, 14055-14057], had no effect on catalytic activity toward extracted E. coli phospholipids or the phospholipids of autoclaved E. coli. In contrast, modification of 1 mol of lysine per mole of enzyme substantially reduced activity toward the phospholipids of E. coli killed by the neutrophil protein. To explore further the role of lysines in the function of this phospholipase A2, we determined the amino acid sequence of the enzyme and the incorporation of [14C]cyanate into individual lysines when, on average, 1 lysine per molecule of enzyme had been carbamylated. After incorporation of approximately 1 mol of [14C]cyanate per mole of protein, the phospholipase A2 was reduced, alkylated, and exhaustively carbamylated with unlabeled cyanate. The amino acid sequence was determined of the NH2-terminal 33 amino acids of the holoprotein and of peptides isolated after digestion with trypsin and Staphylococcus aureus V-8 protease. The protein contains 122 amino acid residues, 17 of which are lysines. The NH2-terminal region is unique among more than 30 phospholipases A2 previously sequenced because of its high content of basic residues (His-1, Arg-6, and Lys-7, -10, -11, and -15).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
After screening 900 E. coli strains of the Clarke and Carbon collection for by lysophospholipase L1 activities, we isolated a clone bearing the plasmid pLC6-34, which showed an increased level of lysophospholipase L1 activity. Strains bearing the plasmid pC124, a subclone of pLC6-34 in plasmid vector pUC8, showed approximately 11.4 times higher lysophospholipase L1 activity than that of the parental strain. Starting from those overproducing strains, the lysophospholipase L1 was purified to near homogeneity by sequential use of ammonium sulfate fractionation, Sephacryl S-300, DEAE-cellulose, hydroxyapatite and Sephacryl S-200 column chromatographies. The apparent molecular weight of the purified lysophospholipase L1 was estimated to be 20,500-22,000 both by SDS-polyacrylamide gel electrophoresis and by gel permeation chromatography. The specific activity of the homogeneous lysophospholipase L1 was 10,400 nmol/min/mg protein when 1-acyl-sn-glycero-3-phosphoethanolamine was used as the substrate. The amino acid sequence of the amino-terminal portion of purified lysophospholipase L1 was determined and was different from that of lysophospholipase L2, which had previously been purified from the envelope fraction of E. coli strains bearing its cloned structural gene, pldB [Karasawa, K., Kudo, I., Kobayashi, T., Sa-eki, T., Inoue, K., & Nojima, S. (1985) J. Biochem, 98, 1117-1125]. The gene responsible for overproduction of lysophospholipase L1 activity was designated as pldC (phospholipid degradation C). Its restriction enzyme map was also different from that of cloned pldB. These results further confirmed that, in E. coli, there are two lysophospholipases with distinct characteristics.  相似文献   

15.
cDNA cloning and sequence determination of pig gastric (H+ + K+)-ATPase   总被引:4,自引:0,他引:4  
Complementary DNA to pig gastric mRNA encoding (H+ + K+)-ATPase was cloned, and its amino acid sequence was deduced from the nucleotide sequence. The enzyme contained 1034 amino acid residues (Mr. 114,285) including the initiation methionine. The sequence of pig (H+ + K+)-ATPase was highly homologous with that of the corresponding enzyme from rat, but had high degree of synonymous codon changes. Potential sites of phosphorylation by cAMP-dependent protein kinase and N-linked glycosylation sites were identified. The amino terminal region contained a lysine-rich sequence similar to that of the alpha subunit of (Na+ + K+)-ATPase, although a cluster of glycine residues was inserted into the sequence of the (H+ + K+)-ATPase. As the pig enzyme is advantageous for biochemical studies, the information of the primary structure is useful for further detailed studies.  相似文献   

16.
17.
The nucleotide sequence of the iron superoxide dismutase gene from Escherichia coli K12 has been determined. Analysis of the DNA sequence and mapping of the mRNA start reveal a unique promoter and a putative rho-independent terminator, and suggest that the Fe dismutase gene constitutes a monocistronic operon. The gene encodes a polypeptide product consisting of 192 amino acid residues with a calculated Mr of 21,111. The published N-terminal amino acid sequence of E. coli B Fe dismutase (Steinman, H. M., and Hill, R. L. (1973) Proc. Natl. Acad. Sci. U.S.A. 70, 3725-3729), along with the sequences of seven other peptides reported here, was located in the primary structure deduced from the K12 E. coli gene sequence. A new molecular model for iron dismutase from E. coli, based on the DNA sequence and x-ray data for the E. coli B enzyme at 3.1 A resolution, allows detailed comparison of the structure of the iron enzyme with manganese superoxide dismutase from Thermus thermophilus HB8. The structural similarities are more extensive than indicated by earlier studies and are particularly striking in the vicinity of the metal-ligand cluster, which is surrounded by conserved aromatic residues. The combined structural and sequence information now available for a series of Mn and Fe superoxide dismutases identifies variable regions in these otherwise very similar molecules; the principal variable site occurs in a surface region between the two long helices which dominate the N-terminal domain.  相似文献   

18.
Metapyrocatechase which catalyzes the oxygenative ring cleavage of catechol to form alpha-hydroxymuconic epsilon-semialdehyde is encoded by the xylE gene on the TOL plasmid of Pseudomonas putida mt-2. We have cloned the xylE region in Escherichia coli and determined the nucleotide sequence of the DNA fragment of 985 base pairs around the gene. The fragment included only one open translational frame of sufficient length to accommodate the enzyme. The predicted amino acid sequence consisted of 307 residues, and its NH2- and COOH-terminal sequences were in perfect agreement with those of the enzyme recently determined (Nakai, C., Hori, K., Kagamiyama, H., Nakazawa, T., and Nozaki, M. (1983) J. Biol. Chem. 258, 2916-2922). A mutant plasmid was isolated which did not direct the synthesis of the active enzyme. This plasmid had a DNA region corresponding to the NH2-terminal two-thirds of the polypeptide. From the deduced amino acid sequence, the secondary structure was predicted. Around 10 base pairs upstream from the initiator codon for metapyrocatechase, there was a base sequence which was complementary to the 3'-end of 16 S rRNAs from both E.coli and Pseudomonas aeruginosa. A preferential usage of C- and G-terminated codons was found in the coding region xylE, which contributed to the relatively high G + C content (57%) of this gene.  相似文献   

19.
The nucleotide sequence of the alpha-amylase gene (amyA) from Clostridium thermosulfurogenes EM1 cloned in Escherichia coli was determined. The reading frame of the gene consisted of 2,121 bp. Comparison of the DNA sequence data with the amino acid sequence of the N terminus of the purified secreted protein of C. thermosulfurogenes EM1 suggested that the alpha-amylase is translated from mRNA as a secretory precursor with a signal peptide of 27 amino acid residues. The deduced amino acid sequence of the mature alpha-amylase contained 679 residues, resulting in a protein with a molecular mass of 75,112 Da. In E. coli the enzyme was transported to the periplasmic space and the signal peptide was cleaved at exactly the same site between two alanine residues. Comparison of the amino acid sequence of the C. thermosulfurogenes EM1 alpha-amylase with those from other bacterial and eucaryotic alpha-amylases showed several homologous regions, probably in the enzymatically functioning regions. The tentative Ca(2+)-binding site (consensus region I) of this Ca(2+)-independent enzyme showed only limited homology. The deduced amino acid sequence of a second obviously truncated open reading frame showed significant homology to the malG gene product of E. coli. Comparison of the alpha-amylase gene region of C. thermosulfurogenes EM1 (DSM3896) with the beta-amylase gene region of C. thermosulfurogenes (ATCC 33743) indicated that both genes have been exchanged with each other at identical sites in the chromosomes of these strains.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号