首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Pan LL  Liu XH  Gong QH  Wu D  Zhu YZ 《PloS one》2011,6(5):e19766

Background

Hydrogen sulfide (H2S), the third physiologically relevant gaseous molecule, is recognized increasingly as an anti-inflammatory mediator in various inflammatory conditions. Herein, we explored the effects and mechanisms of sodium hydrosulfide (NaHS, a H2S donor) on tumor necrosis factor (TNF)-α-induced human umbilical vein endothelial cells (HUVEC) dysfunction.

Methodology and Principal Findings

Application of NaHS concentration-dependently suppressed TNF-α-induced mRNA and proteins expressions of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), mRNA expression of P-selectin and E-selectin as well as U937 monocytes adhesion to HUVEC. Western blot analysis revealed that the expression of the cytoprotective enzyme, heme oxygenase-1 (HO-1), was induced and coincident with the anti-inflammatory action of NaHS. Furthermore, TNF-α-induced NF-κB activation assessed by IκBα degradation and p65 phosphorylation and nuclear translocation and ROS production were diminished in cells subjected to treatment with NaHS.

Significance

H2S can exert an anti-inflammatory effect in endothelial cells through a mechanism that involves the up-regulation of HO-1.  相似文献   

2.
Zhang J  Alcaide P  Liu L  Sun J  He A  Luscinskas FW  Shi GP 《PloS one》2011,6(1):e14525

Background

Leukocyte adhesion to the vascular endothelium and subsequent transendothelial migration play essential roles in the pathogenesis of cardiovascular diseases such as atherosclerosis. The leukocyte adhesion is mediated by localized activation of the endothelium through the action of inflammatory cytokines. The exact proinflammatory factors, however, that activate the endothelium and their cellular sources remain incompletely defined.

Methods and Results

Using bone marrow-derived mast cells from wild-type, Tnf−/−, Ifng−/−, Il6−/− mice, we demonstrated that all three of these pro-inflammatory cytokines from mast cells induced the expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), P-selectin, and E-selectin in murine heart endothelial cells (MHEC) at both mRNA and protein levels. Compared with TNF-α and IL6, IFN-γ appeared weaker in the induction of the mRNA levels, but at protein levels, both IL6 and IFN-γ were weaker inducers than TNF-α. Under physiological shear flow conditions, mast cell-derived TNF-α and IL6 were more potent than IFN-γ in activating MHEC and in promoting neutrophil adhesion. Similar observations were made when neutrophils or macrophages were used. Neutrophils and macrophages produced the same sets of pro-inflammatory cytokines as did mast cells to induce MHEC adhesion molecule expression, with the exception that macrophage-derived IFN-γ showed negligible effect in inducing VCAM-1 expression in MHEC.

Conclusion

Mast cells, neutrophils, and macrophages release pro-inflammatory cytokines such as TNF-α, IFN-γ, and IL6 that induce expression of adhesion molecules in endothelium and recruit of leukocytes, which is essential to the pathogenesis of vascular inflammatory diseases.  相似文献   

3.

Background

Inflammatory cytokines, such as TNF-α, play a key role in the pathogenesis of occlusive vascular diseases. Activation of vitamin D receptors (VDR) elicits both growth-inhibitory and anti-inflammatory effects. Here, we investigated the expression of TNF-α and VDR in post-angioplasty coronary artery neointimal lesions of hypercholesterolemic swine and examined the effect of vitamin D deficiency on the development of coronary restenosis. We also examined the effect of calcitriol on cell proliferation and effect of TNF-α on VDR activity and expression in porcine coronary artery smooth muscle cells (PCASMCs) in-vitro.

Methodology/Principal Findings

Expression of VDR and TNF-α and the effect of vitamin D deficiency in post-angioplasty coronary arteries were analyzed by immunohistochemistry and histomorphometry. Cell proliferation was examined by thymidine and BrdU incorporation assays in cultured PCASMCs. Effect of TNF-α-stimulation on the activity and expression of VDR was analyzed by luciferase assay, immunoblotting and immunocytochemistry. In-vivo, morphometric analysis of the tissues revealed typical lesions with significant neointimal proliferation. Histological evaluation showed expression of smooth muscle α-actin and significantly increased expression of TNF-α in neointimal lesions. Interestingly, there was significantly decreased expression of VDR in PCASMCs of neointimal region compared to normal media. Indeed, post-balloon angioplasty restenosis was significantly higher in vitamin D-deficient hypercholesterolemic swine compared to vitamin D-sufficient group. In-vitro, calcitriol inhibited both serum- and PDGF-BB-induced proliferation in PCASMCs and TNF-α-stimulation significantly decreased the expression and activity of VDR in PCASMCs.

Conclusions/Significance

These data suggest that significant downregulation of VDR in proliferating smooth muscle cells in neointimal lesions could be due to atherogenic cytokines, including TNF-α. Vitamin D deficiency potentiates the development of coronary restenosis. Calcitriol has anti-proliferative properties in PCASMCs and these actions are mediated through VDR. This could be a potential mechanism for uncontrolled growth of neointimal cells in injured arteries leading to restenosis.  相似文献   

4.
5.
6.

Background

Schistosoma infection is thought to lead to down-regulation of the host''s immune response. This has been shown for adaptive immune responses, but the effect on innate immunity, that initiates and shapes the adaptive response, has not been extensively studied. In a first study to characterize these responses, we investigated the effect of Schistosoma haematobium infection on cytokine responses of Gabonese schoolchildren to a number of Toll-like receptor (TLR) ligands.

Methodology

Peripheral blood mononuclear cells (PBMCs) were collected from S. haematobium-infected and uninfected schoolchildren from the rural area of Zilé in Gabon. PBMCs were incubated for 24 h and 72 h with various TLR ligands, as well as schistosomal egg antigen (SEA) and adult worm antigen (AWA). Pro-inflammatory TNF-α and anti-inflammatory/regulatory IL-10 cytokine concentrations were determined in culture supernatants.

Principal Findings

Infected children produced higher adaptive IL-10 responses than uninfected children against schistosomal antigens (72 h incubation). On the other hand, infected children had higher TNF-α responses than uninfected children and significantly higher TNF-α to IL-10 ratios in response to FSL-1 and Pam3, ligands of TLR2/6 and TLR2/1 respectively. A similar trend was observed for the TLR4 ligand LPS while Poly(I:C) (Mda5/TLR3 ligand) did not induce substantial cytokine responses (24 h incubation).

Conclusions

This pilot study shows that Schistosoma-infected children develop a more pro-inflammatory TLR2-mediated response in the face of a more anti-inflammatory adaptive immune response. This suggests that S. haematobium infection does not suppress the host''s innate immune system in the context of single TLR ligation.  相似文献   

7.

Introduction

The usefulness of interferon-gamma (IFN-γ) release assays for tuberculosis screening before tumor necrosis factor-alpha (TNF-α) antagonists and for monitoring during treatment is a contraversial issue. The aims of this study were to determine whether TNF-α antagonists affect the results of the Quantiferon-TB Gold in-tube assay (QTF); to assess how QTF performs in comparison with the tuberculin skin test (TST) in rheumatoid arthritis (RA) patients who are about to start treatment with TNF-α antagonists, RA patients who are not candidates for treatment with TNF-α antagonists, rheumatology patients with confirmed current or past tuberculosis infection, and healthy controls, and to determine the specificity of the QTF test to differentiate leprosy patients, another group of patients infected with mycobacteria.

Methods

The 38 RA patients who were prescribed TNF-α antagonists, 40 RA patients who were not considered for TNF-α antagonist use, 30 rheumatology patients with a history or new diagnosis of tuberculosis, 23 leprosy patients, and 41 healthy controls were studied. QTF and TST were done on the same day, and both were repeated after a mean of 3.6 ± 0.2 months in patients who used TNF-α antagonists.

Results

Treatment with TNF-α antagonists did not cause a significant change in the QTF or TST positivity rate (34% versus 42%; P = 0.64; and 24% versus 37%; P = 0.22). Patients with leprosy had a trend for a higher mean IFN-γ level (7.3 ± 8.0) and QTF positivity (61%) than did the other groups; however, the difference was not significant (P = 0.09 and P = 0.43).

Conclusions

Treatment with TNF-α antagonists does not seem to affect the QTF test to an appreciable degree. The higher IFN-γ levels in leprosy patients deserves further attention.  相似文献   

8.
The anti-inflammatory potential of eight indigenous probiotic Lactobacillus isolates was evaluated in vitro in terms of modulating the expression of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in human acute monocytic leukemia (THP-1) cells under inflammatory conditions. Amongst these, Lactobacillus plantarum Lp91 was the most potent anti-inflammatory strain as it evoked a significant (P < 0.001) down-regulation of TNF-α by −1.45-fold relative to the control in THP-1 cells. However, in terms of IL-6 expression, all the strains could up-regulate its expression considerably at different levels. Hence, based on in vitro expression of TNF-α, Lp91 was selected for in vivo study in lipopolysaccharide (LPS)-induced mouse model to look at the expression of TNF-α, IL-6, monocyte chemotactic protein-1 (MCP-1), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule (ICAM-1) and E-selectin in mouse aorta. In LPS challenged (2 h) mice group fed with Lp91 for 10 days, TNF-α, IL-6, MCP-1, VCAM-1, ICAM-1 and E-selectin expressions were significantly down-regulated by 3.10-, 10.02-, 4.22-, −3.14-, 2.28- and 5.71-fold relative to control conditions. In conclusion, Lp91 could serve as a candidate probiotic strain to explore it as a possible biotherapeutic anti-inflammatory agent against inflammatory diseases including cardiovascular disease.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-013-0347-5) contains supplementary material, which is available to authorized users.  相似文献   

9.
10.
11.

Background

Cardiopulmonary bypass (CPB) surgery initiates a controlled systemic inflammatory response characterized by a cytokine storm, monocytosis and transient monocyte activation. However, the responsiveness of monocytes to Toll-like receptor (TLR)-mediated activation decreases throughout the postoperative course. The purpose of this study was to identify the major signaling pathway involved in plasma-mediated inhibition of LPS-induced tumor necrosis factor (TNF)-α production by monocytes.

Methodology/Principal Findings

Pediatric patients that underwent CPB-assisted surgical correction of simple congenital heart defects were enrolled (n = 38). Peripheral blood mononuclear cells (PBMC) and plasma samples were isolated at consecutive time points. Patient plasma samples were added back to monocytes obtained pre-operatively for ex vivo LPS stimulations and TNF-α and IL-6 production was measured by flow cytometry. LPS-induced p38 mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB activation by patient plasma was assessed by Western blotting. A cell-permeable peptide inhibitor was used to block STAT3 signaling. We found that plasma samples obtained 4 h after surgery, regardless of pre-operative dexamethasone treatment, potently inhibited LPS-induced TNF-α but not IL-6 synthesis by monocytes. This was not associated with attenuation of p38 MAPK activation or IκB-α degradation. However, abrogation of the IL-10/STAT3 pathway restored LPS-induced TNF-α production in the presence of suppressive patient plasma.

Conclusions/Significance

Our findings suggest that STAT3 signaling plays a crucial role in the downregulation of TNF-α synthesis by human monocytes in the course of systemic inflammation in vivo. Thus, STAT3 might be a potential molecular target for pharmacological intervention in clinical syndromes characterized by systemic inflammation.  相似文献   

12.
13.

Background

We have already reported that TNF-α increases cardiomyocyte apoptosis and IL-10 treatment prevented these effects of TNF-α. Present study investigates the role of Akt and Jak/Stat pathway in the IL-10 modulation of TNF-α induced cardiomyocyte apoptosis.

Methodology/Principal findings

Cardiomyocytes isolated from adult Sprague Dawley rats were exposed to TNF-α (10 ng/ml), IL-10 (10 ng/ml) and TNF-α+IL-10 (ratio 1) for 4 h. Exposure to TNF-α resulted in an increase in cardiomyocyte apoptosis as measured by flow cytometry and TUNEL assay. IL-10 by itself had no effect, but it prevented TNF-α induced apoptosis. IL-10 treatment increased Akt levels within cardiomyocytes and this change was associated with an increase in Jak1 and Stat3 phosphorylation. Pre-exposure of cells to Akt inhibitor prevented IL-10 induced Stat3 phosphorylation. Furthermore, in the presence of Akt or Stat3 inhibitor, IL-10 treatment was unable to block TNF-α induced cardiomyocyte apoptosis.

Conclusion

It is suggested that IL-10 modulation of TNF-α induced cardiomyocyte apoptosis is mediated by Akt via Stat3 activation.  相似文献   

14.

Background

Tumor necrosis factor-alpha (TNF-α) is a pro-inflammatory cytokine today identified as a key mediator of several chronic inflammatory diseases. TNF-α, initially synthesized as a membrane-anchored precursor (pro-TNF-α), is processed by proteolytic cleavage to generate the secreted mature form. TNF-α converting enzyme (TACE) is currently the first and single protease described as responsible for the inducible release of soluble TNF-α.

Methodology/Principal Findings

Here, we demonstrated the presence on THP-1 cells as on human monocytes of a constitutive proteolytical activity able to cleave pro-TNF-α. Revelation of the cell surface TACE protein expression confirmed that the observed catalytic activity is due to TACE. However, further studies using effective and innovative TNF-α inhibitors, as well as a highly selective TACE inhibitor, support the presence of a catalytically different sheddase activity on LPS activated THP-1 cells. It appears that this catalytically different TACE protease activity might have a significant contribution to TNF-α release in LPS activated THP-1 cells, by contrast to human monocytes where the TACE activity remains catalytically unchanged even after LPS activation.

Conclusions/Significance

On the surface of LPS activated THP-1 cells we identified a releasing TNF-α activity, catalytically different from the sheddase activity observed on human monocytes from healthy donors. This catalytically-modified TACE activity is different from the constitutive shedding activity and appears only upon stimulation by LPS.  相似文献   

15.

Rationale

Inflammatory cytokines like tumor necrosis factor alpha (TNF-α) are elevated in congestive heart failure and are known to induce the production of reactive oxygen species as well as to deteriorate respiratory muscle function.

Objectives

Given the antioxidative effects of exercise training, the aim of the present study was to investigate if exercise training is capable of preventing a TNF-α induced loss of diaphragmatic force in mice and, if so, to elucidate the potential underlying mechanisms.

Methods

Prior to intraperitoneal injection of TNF-α or saline, C57Bl6 mice were assigned to four weeks of exercise training or sedentary behavior. Diaphragmatic force and power generation were determined in vitro. Expression/activity of radical scavenger enzymes, enzymes producing reactive oxygen species and marker of oxidative stress were measured in the diaphragm.

Main Results

In sedentary animals, TNF-α reduced specific force development by 42% concomitant with a 2.6-fold increase in the amount of carbonylated α-actin and creatine kinase. Furthermore, TNF-α led to an increased NAD(P)H oxidase activity in both sedentary and exercised mice whereas xanthine oxidase activity and intramitochondrial ROS production was only enhanced in sedentary animals by TNF-α. Exercise training prevented the TNF-α induced force reduction and led to an enhanced mRNA expression and activity of glutathione peroxidase. Carbonylation of proteins, in particular of α-actin and creatine kinase, was diminished by exercise training.

Conclusion

TNF-α reduces the force development in the diaphragm of mice. This effect is almost abolished by exercise training. This may be a result of reduced carbonylation of proteins due to the antioxidative properties of exercise training.  相似文献   

16.

Background

Hantaan virus (HTNV) infection causes a severe form of HFRS(hemorrhagic fever with renal syndrome)in Asia. Although HTNV has been isolated for nearly forty years, the pathogenesis of HFRS is still unknown, and little is known regarding the signaling pathway that is activated by the virus.

Methodology/Principal Findings

Cardamonin was selected as a NF-κB inhibitor, and indirect immunofluorescence assays were used to detect the effect of cardamonin on HTNV-infected HUVECs. The effect of cardamonin on the HTNV-induced phosphorylation of Akt and DNA-binding activity of NF-κB were determined using Western blot analysis and electrophoretic mobility shift assays (EMSAs), respectively. Then, flow cytometric and quantitative real-time PCR analyses were performed to quantify the expression levels of the adhesion molecules ICAM-1 and VCAM-1, and the concentrations of IL-6, IL-8, and CCL5 in HUVEC supernatants were examined using ELISA. The results showed that cardamonin did not effect the proliferation of HUVECs or the replication of HTNV in HUVECs. Instead, cardamonin inhibited the phosphorylation of Akt and nuclear transduction of NF-κB and further reduced the expression of the adhesion molecules ICAM-1 and VCAM-1 in HTNV-infected HUVECs. Cardamonin also inhibited the secretion of IL-6 and CCL5, but not IL-8.

Conclusion/Significance

HTNV replication may not be dependent upon the ability of the virus to activate NF-κB in HUVECs. The Akt/NF-κB pathways may be involved in the pathogenesis of HFRS; therefore, cardamonin may serve as a potential beneficial agent for HFRS therapy.  相似文献   

17.
Zhou P  Lv GQ  Wang JZ  Li CW  Du LF  Zhang C  Li JP 《PloS one》2011,6(7):e22092

Background and Objectives

Tumor necrosis factor-α (TNF-α) plays a very important role in the development and progress of cancer. Some TNF-α polymorphisms have been confirmed to increase cancer risks; however, the association between TNF-α-238 polymorphism and cancers remains controversial and ambiguous. The aim of this study is to explore a more precise estimation of its relationship with cancer using meta-analysis.

Methods

Electronic searches of several databases were conducted for all publications on the association between this variant and cancer through March 2011. Odds ratios (OR) with 95% confidence intervals (95% CI) were used to access the strength of this association in the random-effect model.

Results

Thirty four studies with 34,679 cancer patients and 41,186 healthy controls were included. This meta-analysis showed no significant association between TNF-α-238 polymorphism and cancers (AA+GA vs GG: OR = 1.09, 95%CI = 0.88–1.34). In Caucasian and Asian subgroups, OR values (95% CI) were 1.14 (0.91–1.43) and 0.97 (0.58–1.61), respectively. In the subgroups of cancer type, no significant association was detected. The sensitivity analysis further strengthened the validity of these negative associations. No publication bias was observed in this study.

Conclusions

No significant association was found between the TNF-α-238 polymorphism and the risk for cancer.  相似文献   

18.

Background

Both type I interferon (IFN), also known as IFN-α and tumor necrosis factor alpha (TNF-α) have been implicated in the pathogenesis of sarcoidosis. We investigated serum levels of these cytokines in a large multi-ancestral sarcoidosis population to determine correlations between cytokine levels and disease phenotypes.

Methods

We studied serum samples from 98 patients with sarcoidosis, including 71 patients of African-American ancestry and 27 patients of European-American ancestry. Serum type I IFN was measured using a sensitive reporter cell assay and serum TNF-α was measured using a commercial ELISA kit. Clinical data including presence or absence of neurologic, cardiac, and severe pulmonary manifestations of sarcoidosis were abstracted from medical records. Twenty age-matched non-autoimmune controls were also studied from each ancestral background. Differences in cytokine levels between groups were analyzed with Mann-Whitney U test, and correlations were assessed using Spearman''s rho. Multivariate logistic regression models were used to detect associations between cytokines and clinical manifestations.

Results

Significant differences in cytokine levels were observed between African- and European-American patients with sarcoidosis. In African-Americans, serum TNF-α levels were significantly higher relative to matched controls (P = 0.039), and patients with neurologic disease had significantly higher TNF-α than patients lacking this manifestation (P = 0.022). In European-Americans, serum type I IFN activity was higher in sarcoidosis cases as compared to matched controls, and patients with extra-pulmonary disease represented a high serum IFN subgroup (P = 0.0032). None of the associations observed were shared between the two ancestral groups.

Conclusions

Our data indicate that significant associations between serum levels of TNF-α and type I IFN and clinical manifestations exist in a sarcoidosis cohort that differ significantly by self-reported ancestry. In each ancestral background, the cytokine elevated in patients with sarcoidosis was also associated with a particular disease phenotype. These findings may relate to ancestral differences in the molecular pathogenesis of this heterogeneous disease.  相似文献   

19.

Introduction

In this study, we evaluated the activity of the neuroendocrine axes in patients with polymyalgia rheumatica (PMR) before and after tumor necrosis factor (TNF)-α-blocking etanercept treatment, which previously has been shown to reduce interleukin 6 (IL-6) and C-reactive protein (CRP) markedly in PMR.

Methods

Plasma samples were collected from 10 glucocorticoid-naïve patients with PMR and 10 matched controls before and after etanercept treatment (25 mg biweekly for 2 weeks). The primary end points were pre- and posttreatment levels of adrenocorticotropic hormone (ACTH), cortisol, adrenaline, thyroid-stimulating hormone (TSH), follicle-stimulating hormone (FSH), prolactin, and insulin-like growth factor 1 (IGF-1).

Results

Before TNF-α-blocking treatment, plasma TNF-α, ACTH, and cortisol levels were higher in patients versus controls (P < 0.05 and P < 0.001, respectively); during TNF-α blockade in patients, levels of both hormones decreased (P < 0.05 and P < 0.01, respectively), whereas levels in controls increased (P < 0.05), abolishing the pretreatment differences. Pretreatment adrenaline levels were more than twice as high in patients than in controls (P < 0.01); after treatment in patients, levels had decreased (P < 0.05) but remained higher versus controls (P < 0.05). Levels of the other hormones never differed significantly between groups (P > 0.05).

Conclusions

In PMR, TNF-α may increase the activities of the hypothalamic-pituitary-adrenal and the hypothalamic-sympthoadrenomedullary axes. Secretion of TSH, FSH, prolactin, and IGF-1 is not clearly changed in PMR.

Trial registration

ClinicalTrials.gov (NCT00524381).  相似文献   

20.
Liu X  Wang JM 《PloS one》2011,6(9):e24740

Background and Aims

Iridoid glycosides (IG), the major active fraction of F. syringae leaves has been demonstrated to have strong anti-inflammatory properties to ulcerative colitis (UC) in our previous study. The aim of this study was to investigate whether IG modulates the inflammatory response in experimental colitis at the level of NF-κB signal pathway and epithelial cell apoptosis.

Methods

UC in rats was induced by administration with dextran sulfate sodium (DSS) in drinking water. The inflammatory damage was assessed by disease activity index (DAI), macroscopic findings, histology and myeloperoxidase (MPO) activity. The effect of IG on pro-inflammatory cytokines TNF-α, IL-8, COX-2 and regulatory peptide TGF-β1 was measured. Epithelial cell apoptosis and the protein and mRNA expressions of Fas/FasL, Bcl-2/Bax, caspase-3, NF-κB p65, IκBα, p-IκBα and IKKβ were detected by TUNEL method, immunohistochemistry, Western blotting and real-time quantitative PCR, respectively.

Results

IG significantly ameliorated macroscopic damage and histological changes, reduced the activity of MPO, and strongly inhibited epithelial cell apoptosis. Moreover, IG markedly depressed TNF-α, IL-8, COX-2 and TGF-β1 levels in the colon tissues in a dose-dependent manner. Furthermore, IG significantly blocked of NF-κB signaling by inhibiting IκBα phosphorylation/degradation and IKKβ activity, down-regulated the protein and mRNA expressions of Fas/FasL, Bax and caspase-3, and activated Bcl-2 in intestinal epithelial cells.

Conclusions

These results demonstrated for the first time that IG possessed marked protective effects on experimental colitis through inhibition of epithelial cell apoptosis and blockade of NF-κB signal pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号