首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A phage density model of cytoplasmic incompatibility (CI), which means lytic phages reduce bacterial density associated with CI, significantly enhances our understanding of the tripartite associations among bacteriophage WO, Wolbachia and host. However, WO may alternate between lytic and lysogenic life cycles or change phage production under certain conditions including temperature, host age and host species background. Here, extreme temperatures can induce an alteration in the life cycle of WO and change the tripartite associations among WO, Wolbachia and CI. Based on the accumulation of the WO load, WO can transform into the lytic life cycle with increasing age. These findings confirmed that the environment plays an important role in the associations among WO, Wolbachia and host.  相似文献   

2.
By manipulating arthropod reproduction worldwide, the heritable endosymbiont Wolbachia has spread to pandemic levels. Little is known about the microbial basis of cytoplasmic incompatibility (CI) except that bacterial densities and percentages of infected sperm cysts associate with incompatibility strength. The recent discovery of a temperate bacteriophage (WO-B) of Wolbachia containing ankyrin-encoding genes and virulence factors has led to intensifying debate that bacteriophage WO-B induces CI. However, current hypotheses have not considered the separate roles that lytic and lysogenic phage might have on bacterial fitness and phenotype. Here we describe a set of quantitative approaches to characterize phage densities and its associations with bacterial densities and CI. We enumerated genome copy number of phage WO-B and Wolbachia and CI penetrance in supergroup A- and B-infected males of the parasitoid wasp Nasonia vitripennis. We report several findings: (1) variability in CI strength for A-infected males is positively associated with bacterial densities, as expected under the bacterial density model of CI, (2) phage and bacterial densities have a significant inverse association, as expected for an active lytic infection, and (3) CI strength and phage densities are inversely related in A-infected males; similarly, males expressing incomplete CI have significantly higher phage densities than males expressing complete CI. Ultrastructural analyses indicate that approximately 12% of the A Wolbachia have phage particles, and aggregations of these particles can putatively occur outside the Wolbachia cell. Physical interactions were observed between approximately 16% of the Wolbachia cells and spermatid tails. The results support a low to moderate frequency of lytic development in Wolbachia and an overall negative density relationship between bacteriophage and Wolbachia. The findings motivate a novel phage density model of CI in which lytic phage repress Wolbachia densities and therefore reproductive parasitism. We conclude that phage, Wolbachia, and arthropods form a tripartite symbiotic association in which all three are integral to understanding the biology of this widespread endosymbiosis. Clarifying the roles of lytic and lysogenic phage development in Wolbachia biology will effectively structure inquiries into this research topic.  相似文献   

3.
Genome evolution of bacteria is usually influenced by ecology, such that bacteria with a free-living stage have large genomes and high rates of horizontal gene transfer, while obligate intracellular bacteria have small genomes with typically low amounts of gene exchange. However, recent studies indicate that obligate intracellular species that host-switch frequently harbor agents of horizontal transfer such as mobile elements. For example, the temperate double-stranded DNA bacteriophage WO in Wolbachia persistently transfers between bacterial coinfections in the same host. Here we show that despite the phage's rampant mobility between coinfections, the prophage's genome displays features of constraint related to its intracellular niche. First, there is always at least one intact prophage WO and usually several degenerate, independently-acquired WO prophages in each Wolbachia genome. Second, while the prophage genomes are modular in composition with genes of similar function grouping together, the modules are generally not interchangeable with other unrelated phages and thus do not evolve by the Modular Theory. Third, there is an unusual core genome that strictly consists of head and baseplate genes; other gene modules are frequently deleted. Fourth, the prophage recombinases are diverse and there is no conserved integration sequence. Finally, the molecular evolutionary forces acting on prophage WO are point mutation, intragenic recombination, deletion, and purifying selection. Taken together, these analyses indicate that while lateral transfer of phage WO is pervasive between Wolbachia with occasional new gene uptake, constraints of the intracellular niche obstruct extensive mixture between WO and the global phage population. Although the Modular Theory has long been considered the paradigm of temperate bacteriophage evolution in free-living bacteria, it appears irrelevant in phages of obligate intracellular bacteria.  相似文献   

4.
The highly specialized genomes of bacterial endosymbionts typically lack one of the major contributors of genomic flux in the free-living microbial world-bacteriophages. This study yields three results that show bacteriophages have, to the contrary, been influential in the genome evolution of the most prevalent bacterial endosymbiont of invertebrates, Wolbachia. First, we show that bacteriophage WO is more widespread in Wolbachia than previously recognized, occurring in at least 89% (35/39) of the sampled genomes. Second, we show through several phylogenetic approaches that bacteriophage WO underwent recent lateral transfers between Wolbachia bacteria that coinfect host cells in the dipteran Drosophila simulans and the hymenopteran Nasonia vitripennis. These two cases, along with a previous report in the lepidopteran Ephestia cautella, support a general mechanism for genetic exchange in endosymbionts--the "intracellular arena" hypothesis--in which genetic material moves horizontally between bacteria that coinfect the same intracellular environment. Third, we show recombination in this bacteriophage; in the region encoding a putative capsid protein, the recombination rate is faster than that of any known recombining genes in the endosymbiont genome. The combination of these three lines of genetic evidence indicates that this bacteriophage is a widespread source of genomic instability in the intracellular bacterium Wolbachia and potentially the invertebrate host. More generally, it is the first bacteriophage implicated in frequent lateral transfer between the genomes of bacterial endosymbionts. Gene transfer by bacteriophages could drive significant evolutionary change in the genomes of intracellular bacteria that are typically considered highly stable and prone to genomic degradation.  相似文献   

5.
Host-microbe symbioses involving bacterial endosymbionts comprise some of the most intimate and long-lasting interactions on the planet. While restricted gene flow might be expected due to their intracellular lifestyle, many endosymbionts, especially those that switch hosts, are rampant with mobile DNA and bacteriophages. One endosymbiont, Wolbachia pipientis, infects a vast number of arthropod and nematode species and often has a significant portion of its genome dedicated to prophage sequences of a virus called WO. This phage has challenged fundamental theories of bacteriophage and endosymbiont evolution, namely the phage Modular Theory and bacterial genome stability in obligate intracellular species. WO has also opened up exciting windows into the tripartite interactions between viruses, bacteria, and eukaryotes.  相似文献   

6.
Transferring endosymbiotic bacteria between different host species can perturb the coordinated regulation of the host and bacterial genomes. Here we use the most common maternally transmitted bacteria, Wolbachia pipientis, to test the consequences of host genetic background on infection densities and the processes underlying those changes in the parasitoid wasp genus Nasonia. Introgressing the genome of Nasonia giraulti into the infected cytoplasm of N. vitripennis causes a two-order-of-magnitude increase in bacterial loads in adults and a proliferation of the infection to somatic tissues. The host effect on W. pipientis distribution and densities is associated with a twofold decrease in densities of the temperate phage WO-B. Returning the bacteria from the new host species back to the resident host species restores the bacteria and phage to their native densities. To our knowledge, this is the first study to report a host-microbe genetic interaction that affects the densities of both W. pipientis and bacteriophage WO-B. The consequences of the increased bacterial density include a reduction in fecundity, an increase in levels of cytoplasmic incompatibility (CI), and unexpectedly, male-to-female transfer of the bacteria to uninfected females and an increased acceptance of densely infected females to interspecific mates. While paternal inheritance of the W. pipientis was not observed, the high incidence of male-to-female transfer in the introgressed background raises the possibility that paternal transmission could be more likely in hybrids where paternal leakage of other cytoplasmic elements is also known to occur. Taken together, these results establish a major change in W. pipientis densities and tissue tropism between closely related species and support a model in which phage WO, Wolbachia, and arthropods form a tripartite symbiotic association in which all three are integral to understanding the biology of this widespread endosymbiosis.  相似文献   

7.
Wolbachia are obligatory intracellular and maternally inherited bacteria, known to infect many species of arthropod. In this study, we discovered a bacteriophage-like genetic element in Wolbachia, which was tentatively named bacteriophage WO. The phylogenetic tree based on phage WO genes of several Wolbachia strains was not congruent with that based on chromosomal genes of the same strains, suggesting that phage WO was active and horizontally transmitted among various Wolbachia strains. All the strains of Wolbachia used in this study were infected with phage WO. Although the phage genome contained genes of diverse origins, the average G+C content and codon usage of these genes were quite similar to those of a chromosomal gene of Wolbachia. These results raised the possibility that phage WO has been associated with Wolbachia for a very long time, conferring some benefit to its hosts. The evolution and possible roles of phage WO in various reproductive alterations of insects caused by Wolbachia are discussed. Received: 28 January 2000 / Accepted: 3 August 2000  相似文献   

8.
We have used real-time quantitative PCR to measure, for the first time, the relative phage WO-B orf7 density and infection incidence in Aedes albopictus mosquitoes from fields in Thailand. Our results showed that the infection incidence of phage WO-B in this mosquito, sampled from geographically different places in Thailand, was 97.9%. Average relative densities of the offspring were different when collected from diverse parts and reared under the same conditions in the laboratory. Our results also revealed that geographical differences within Thailand did not influence the maternal transmission rate of bacteriophage WO-B. In addition, the orf7 loci might not be strictly associated with Wolbachia, because less than 100% of them were maternally inherited. This discovery does not support the hypothesis that bacteriophage WO-B is involved in Aedes albopictus' cytoplasmic incompatibility. Whether this bacteriophage actually is involved in Wolbachia-induced cytoplasmic incompatibility in this mosquito thus needs further investigation, and additional densities of phage WO-B loci should be integrated.  相似文献   

9.
Wolbachia are obligate, maternally inherited, intracellular bacteria that infect numerous insects and other invertebrates. Wolbachia infections have evolved multiple mechanisms to manipulate host reproduction and facilitate invasion of naive host populations. One such mechanism is cytoplasmic incompatibility (CI) that occurs in many insect species, including Aedes albopictus (Asian tiger mosquito). The multiple Wolbachia infections that occur naturally in A. albopictus make this mosquito a useful system in which to study CI. Here, experiments employ mosquito strains that have been introgressed to provide genetically similar strains that harbor differing Wolbachia infection types. Cytoplasmic incompatibility levels, host longevity, egg hatch rates, and fecundity are examined. Crossing results demonstrate a pattern of additive unidirectional cytoplasmic incompatibility. Furthermore, relative to uninfected females, infected females are at a reproductive advantage due to both cytoplasmic incompatibility and a fitness increase associated with Wolbachia infection. In contrast, no fitness difference was observed in comparisons of single- and superinfected females. We discuss the observed results in regard to the evolution of the Wolbachia/A. albopictus symbiosis and the observed pattern of Wolbachia infection in natural populations.  相似文献   

10.
张开军  朱文超  刘静  丁秀蕾  荣霞  洪晓月 《昆虫学报》2012,55(12):1345-1354
为了明确自然种群白背飞虱Sogatella furcifera中Wolbachia和Cardinium的感染情况以及Wolbachia与其特有的WO噬菌体之间的关系, 以采自中国7个省区9个地点的白背飞虱为研究材料, 运用PCR检测的方法调查了Wolbachia, Cardinium以及WO噬菌体在各飞虱种群中的感染率和组织分布特点。结果表明: 白背飞虱广泛双重感染Wolbachia和Cardinium, 并且都表现出很高的感染率。白背飞虱各种群Cardinium的感染率几乎均为100%; Wolbachia的感染率也较高, 但雌雄虫感染率差异较大, 雌虫的感染率几乎均为100%, 而雄虫的感染率从22.2%~95.0%不等。另外, 通过不同DNA聚合酶、 不同提取方法的对比, 揭示了DNA粗提样品在基于PCR技术的胞内共生菌检测中的不足之处。对白背飞虱头部、 胸部、 腹部、 足和翅5个不同部位组织的检测结果表明, 不仅在含有生殖组织的腹部有这两类共生菌的感染, 在其他非生殖组织中同样也感染了这两类共生菌; 虽然Wolbachia和Cardinium在寄主的各个组织中均有分布, 但是两者在白背飞虱成虫(尤其是雄虫)阶段的动态变化有明显的差异。进一步对Wolbachia宿主特异性WO噬菌体的检测结果表明, 自然种群雄虫中Wolbachia的感染率与不感染个体中WO噬菌体的比率呈明显的负相关。因此推测, 雄虫中Wolbachia感染率相对较低的原因可能是由于Wolbachia基因组中溶原性的WO噬菌体受到某种因素的诱导已转化为裂解性噬菌体。研究结果为进一步揭示Wolbachia和Cardinium双重感染条件下对寄主的生殖调控作用及其机制、 垂直传播规律、 两者之间的相互关系以及进一步的应用研究等方面提供了重要的理论基础。  相似文献   

11.
于娟娟  丛斌  董辉  钱海涛 《昆虫知识》2009,46(4):547-550
WO噬菌体是侵染节肢动物体内Wolbachia的细菌病毒。人们猜测WO噬菌体可能参与控制寄主遗传改变的活动。对WO噬菌体与Wolbachia的侵染关系以及WO噬菌体在米蛾Corcyra cephalonica、黑腹果蝇Drosophila melanogaster不同地理种群和世代间存在的稳定性进行初步研究。结果表明,WO噬菌体是侵染胞内菌Wolbachia的专性病毒,WO噬菌体稳定的存在于米蛾和黑腹果蝇的种群和世代中。据此推测,WO噬菌体与Wolbachia很可能经历长期的协同进化过程。  相似文献   

12.
Bacteriophages are common viruses infecting prokaryotes. In addition to their deadly effect, phages are also involved in several evolutionary processes of bacteria, such as coding functional proteins potentially beneficial to them, or favoring horizontal gene transfer through transduction. The particular lifestyle of obligatory intracellular bacteria usually protects them from phage infection. However, Wolbachia, an intracellular alpha-proteobacterium, infecting diverse arthropod and nematode species and best known for the reproductive alterations it induces, harbors a phage named WO, which has recently been proven to be lytic. Here, phage infection was checked in 31 Wolbachia strains, which induce 5 different effects in their hosts and infect 25 insect species and 3 nematodes. Only the Wolbachia infecting nematodes and Trichogramma were found devoid of phage infection. All the 25 detected phages were characterized by the DNA sequence of a minor capsid protein gene. Based on all data currently available, phylogenetic analyses show a lack of congruency between Wolbachia or insect and phage WO phylogenies, indicating numerous horizontal transfers of phage among the different Wolbachia strains. The absence of relation between phage phylogeny and the effects induced by Wolbachia suggests that WO is not directly involved in these effects. Implications on phage WO evolution are discussed.  相似文献   

13.
Wolbachia are maternally inherited endosymbiotic bacteria that infect many arthropod species and may induce cytoplasmic incompatibility (CI) resulting in abortive embryonic development. Among all the described host species, mosquitoes of the Culex pipiens complex display the highest variability of CI crossing types. Paradoxically, searches for polymorphism in Wolbachia infecting strains and field populations hitherto failed or produced very few markers. Here, we show that an abundant source of the long-sought polymorphism lies in WO prophage sequences present in multiple copies dispersed in the genome of Wolbachia infecting C. pipiens (wPip). We identified up to 66 different Wolbachia variants in C. pipiens strains and field populations and no occurrence of superinfection was observed. At least 49 different Wolbachia occurred in Southern Europe C. pipiens populations, and up to 10 different Wolbachia were even detected in a single population. This is in sharp contrast with North African and Cretan samples, which exhibited only six variants. The WO polymorphism appeared stable over time, and was exclusively transferred maternally. Interestingly, we found that the CI pattern previously described correlates with the variability of Gp15, a prophage protein similar to a bacterial virulence protein. WO prophage sequences thus represent variable markers that now open routes for approaching the molecular basis of CI, the host effects, the structure and dynamics of Wolbachia populations.  相似文献   

14.
15.
Wolbachia bacteria in mosquitoes induce cytoplasmic incompatibility (CI), where sperm from Wolbachia-infected males can produce inviable progeny. The wPip strain in the Culex pipiens group of mosquitoes produces a complexity of CI crossing types. Several factors are thought to be capable of influencing the expression of CI including Wolbachia strain type and host genotype. In this study, the unidirectional CI that occurs between 2 C. pipiens complex laboratory strains, Col and Mol, was further investigated by nuclear genotype introgression. The unidirectional CI between Col and Mol was not found to be influenced by host genetic background, in contrast to a previous introgression study carried out using bidirectionally incompatible C. pipiens group strains. A line containing both wPip strain variants superinfection was also generated by embryonic cytoplasmic transfer. The same crossing type as the parental Col strain was observed in the superinfected line. Quantitative polymerase chain reaction demonstrated a low density of the injected wPipMol variant in the superinfected line after 18 generations, which was considered likely to be responsible for the crossing patterns observed. The Wolbachia density was also shown to be lower in the parental Mol strain males compared with Col strain males, and no inverse relationship between WO phage and Wolbachia density could be detected.  相似文献   

16.
Wolbachia are maternally inherited endosymbiotic bacteria that infect many arthropod species and may induce cytoplasmic incompatibility (CI), resulting in abortive embryonic development. One Wolbachia host, Culex pipiens complex mosquitoes, displays high levels of variability in both CI crossing types (cytotypes) and DNA markers. We report here an analysis of 14 mosquito strains, containing 13 Wolbachia variants, and with 13 different cytotypes. Cytotypes were Wolbachia-dependent, as antibiotic treatment rendered all strains tested compatible. Cytotype distributions were independent of geographical distance between sampling sites and host subspecies, suggesting that Wolbachia does not promote a reproductive isolation depending on these parameters. Backcross analysis demonstrated a mild restoring effect of the nuclear genome, indicating that CI is mostly cytoplasmically determined for some crosses. No correlation was found between the phenotypic and genotypic variability of 16 WO prophage and transposon markers, except for the WO prophage Gp15 gene, which encodes a protein similar to a bacterial virulence factor. However, Gp15 is partially correlated with CI expression, suggesting that it could be just linked to a CI gene.  相似文献   

17.
Wolbachia pipientis is an intracellular bacterial parasite of arthropods that enhances its transmission by manipulating host reproduction, most commonly by inducing cytoplasmic incompatibility. The discovery of isolates with modified cytoplasmic incompatibility phenotypes and others with novel virulence properties is an indication of the potential breadth of evolutionary strategies employed by Wolbachia.  相似文献   

18.
Wolbachia are intracellular symbionts mainly found in arthropods, causing various sexual alterations on their hosts by unknown mechanisms. Here we report the results that strongly suggest that Wolbachia have virus-like particles of phage WO, which was previously identified as a prophage-like element in the Wolbachia genome. Wolbachia (strain wTai) infection in an insect was detected with the antibody against Wsp, an outer surface protein of Wolbachia, by fluorescence microscopy and immunoelectron-microscopy for the first time. Virus-like particles in Wolbachia were observed by electron-microscopy. The 0.22-microm filtrate of insect ovary contained DAPI-positive particles, and PCR analysis demonstrated that a phage WO DNA passed through the filter while Wolbachia DNA were eliminated, suggesting that the DAPI-positive particles were phage WO.  相似文献   

19.
Wolbachia are maternally inherited, intracellular, alpha proteobacteria that infect a wide range of arthropods. They cause three kinds of reproductive alterations in their hosts: cytoplasmic incompatibility, parthenogenesis and feminization. There have been many studies of the distribution of Wolbachia in arthropods, but very few crustacean species are known to be infected. We investigated the prevalence of Wolbachia in 85 species from five crustacean orders. Twenty-two isopod species were found to carry these bacteria. The bacteria were found mainly in terrestrial species, suggesting that Wolbachia came from a continental environment. The evolutionary relationships between these Wolbachia strains were determined by sequencing bacterial genes and by interspecific transfers. All the bacteria associated with isopods belonged to the Wolbachia B group, based on 16S rDNA sequence data. All the terrestrial isopod symbionts in this group except one formed an independent clade. The results of interspecific transfers show evidence of specialization of Wolbachia symbionts to their isopod hosts. They also suggest that host species plays a more important role than bacterial phylogeny in determining the phenotype induced by Wolbachia infection.  相似文献   

20.
Wolbachia bacteria are ubiquitous intracellular bacteria of arthropods. Often considered reproductive parasites, they can benefit certain host species. We describe a new Wolbachia strain from Leptopilina victoriae, a Drosophila wasp. The strain is closely related to Wolbachia from Culex sp. Located to the posterior poles of oocytes, it manipulates its host's reproduction by inducing a male development type of cytoplasmic incompatibility. We also report its diverse effects on the wasp's life history traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号