首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Very low (VLDL) and low density lipoproteins (LDL) were isolated from plasma of patients with the E3/3 phenotype which were divided into three groups based on their plasma triglyceride content: low (TG<200 mg/dl, TG(l)), intermediate (200<300 mg/dl, TG(i)300 mg/dl, TG(h)). The protein density (PD) on the VLDL and LDL surface was calculated from lipoprotein composition and protein location was studied by tryptophan fluorescence quenching by I(-) anions at 25 degrees C and 40 degrees C. A comparison of the TG(h) with the TG(l) group revealed a significant (<0.05) increase of the PD parameter as much as 21% for VLDL, but not for LDL where this parameter did not change for any group; generally, PD(LDL) values were 3.2-3.8-fold lower than PD(VLDL). In accordance with this difference, the tryptophan accessibility f in VLDL vs. LDL was lower at both temperatures. There were temperature-induced changes of the f parameter in opposite directions for these lipoproteins. The difference in f value gradually decreased for VLDL in the direction TG(l)TG(i)TG(h) while for LDL there was a U-shaped dependence for these groups. The Stern-Volmer quenching constant K(S-V) which is sensitive to both temperature and viscosity, did not change for VLDL, but K(S-V)(LDL) was 2-3-fold higher for the TG(i) group compared to the other two. The efficiencies of VLDL and LDL binding to the LDL receptor (LDLr) in vitro were compared by solid-phase assay free of steric hindrance observed in cell binding. The maximal number of binding sites did not change for either type of particles and between groups. The association constant K(a) and apolipoprotein (apo) E/apoB mole ratio values all increased significantly for VLDL, but not for LDL, in comparison of the TG(i+h) with the TG(l) group. Based on VLDL and LDL concentrations in serum and on the affinity constant values obtained in an in vitro assay, VLDL concentrations corresponding to 50% inhibition of LDL binding (IC(50)) were calculated in an assumption of the competition of both ligands for LDLr in vivo; the mean values of IC(50) decreased 2-fold when plasma TG exceeded 200 mg/dl. The functional dependences of K(a)(VLDL), IC(50) and apoE content in VLDL (both fractional and absolute) and in serum on TG content in the whole concentration range studied were fitted to a saturation model. For all five parameters, the mean half-maximum values TG(1/2) were in the range 52-103 mg/dl. The efficiency of protein-protein interactions is suggested to differ in normolipidemic vs. HTG-VLDL and apoE content and/or protein density on VLDL surface may be the primary determinant(s) of the increased binding of HTG-VLDL to the LDL receptor. ApoCs may compete with apoE for the binding to the VLDL lipid surface as plasma triglyceride content increases. The possible competition of VLDL with LDL for the catabolism site(s) in vivo, when plasma TG increases, could explain the atherogenic action of TG-rich lipoproteins. Moreover, the 'dual action' hypothesis on anti-atherogenic action of apoE-containing high density lipoproteins (HDL) in vivo is suggested: besides the well-known effect of HDL as cholesteryl ester catabolic outway, the formation of a transient complex of apoE-containing discs appearing at the site of VLDL TG hydrolysis by lipoprotein lipase with VLDL particles proposed in our preceding paper promotes the efficient uptake of TG-rich particles; in hypertriglyceridemia due to the diminished HDL content this uptake seems to be impaired which results in the increased accumulation of the remnants of TG-rich particles. This explains the observed increase in cholesterol and triglyceride content in VLDL and LDL, respectively, due to the CETP-mediated exchange of cholesteryl ester and triglyceride molecules between these particles.  相似文献   

2.
Cholesterol ester transfer protein (CETP) moves triglyceride (TG) and cholesteryl ester (CE) between lipoproteins. CETP has no apparent preference for high (HDL) or low (LDL) density lipoprotein as lipid donor to very low density lipoprotein (VLDL), and the preference for HDL observed in plasma is due to suppression of LDL transfers by lipid transfer inhibitor protein (LTIP). Given the heterogeneity of HDL, and a demonstrated ability of HDL subfractions to bind LTIP, we examined whether LTIP might also control CETP-facilitated lipid flux among HDL subfractions. CETP-mediated CE transfers from [3H]CE VLDL to various lipoproteins, combined on an equal phospholipid basis, ranged 2-fold and followed the order: HDL3 > LDL > HDL2. LTIP inhibited VLDL to HDL2 transfer at one-half the rate of VLDL to LDL. In contrast, VLDL to HDL3 transfer was stimulated, resulting in a CETP preference for HDL3 that was 3-fold greater than that for LDL or HDL2. Long-term mass transfer experiments confirmed these findings and further established that the previously observed stimulation of CETP activity on HDL by LTIP is due solely to its stimulation of transfer activity on HDL3. TG enrichment of HDL2, which occurs during the HDL cycle, inhibited CETP activity by approximately 2-fold and LTIP activity was blocked almost completely. This suggests that LTIP keeps lipid transfer activity on HDL2 low and constant regardless of its TG enrichment status. Overall, these results show that LTIP tailors CETP-mediated remodeling of HDL3 and HDL2 particles in subclass-specific ways, strongly implicating LTIP as a regulator of HDL metabolism.  相似文献   

3.
Free cholesterol is a potent regulator of lipid transfer protein function   总被引:6,自引:0,他引:6  
This study investigates the effect of altered lipoprotein free cholesterol (FC) content on the transfer of cholesteryl ester (CE) and triglyceride (TG) from very low- (VLDL), low- (LDL), and high-(HDL) density lipoproteins by the plasma-derived lipid transfer protein (LTP). The FC content of VLDL and HDL was selectively altered by incubating these lipoproteins with FC/phospholipid dispersions of varying composition. FC-modified lipoproteins were then equilibrated with [3H] TG, [14C]CE-labeled lipoproteins of another class to facilitate the subsequent modification of the radiolabeled donor lipoproteins. LTP was added and the extent of radiolabeled TG and CE transfer determined after 1 h. With either LDL or VLDL as lipid donor, an increase in the FC content of these lipoproteins caused a concentration-dependent inhibition (up to 50%) of CE transfer from these particles, without any significant effect on TG transfer. In contrast, with HDL as donor, increasing the HDL FC content had little effect on CE transfer from HDL, but markedly stimulated (up to 2.5-fold) the transfer of TG. This differential effect of FC on the unidirectional transfer of radiolabeled lipids from VLDL and HDL led to marked effects on LTP-facilitated net mass transfer of lipids. During long-term incubation of a constant amount of LTP with FC-modified VLDL and HDL, the extent of net mass transfer was linearly related to lipoprotein FC content; a 4-fold increase in FC content resulted in a 3-fold stimulation of the CE mass transferred to VLDL, which was coupled to an equimolar, reciprocal transfer of TG mass to HDL. Since lipid transfer between lipoproteins is integral to the process of reverse cholesterol transport, we conclude that lipoprotein FC levels are a potent, positive regulator of the pathways involved in sterol clearance. FC may modulate lipid transfer by altering the availability of CE and TG to LTP at the lipoprotein surface.  相似文献   

4.
The chemical composition and the physical properties of lipoproteins (VLDL, LDL and HDL) were studied in two groups of patients: 14 healthy normolipidemic subjects and 15 type IIa familial hypercholesterolemic patients. The steady-state fluorescence anisotropy rs was estimated in lipoproteins by the fluorescence depolarization of two fluorescent probes: the DPH (1,6-diphenyl-1,3,5-hexatriene) and the TMA-DPH (1,4-trimethylammonium phenyl-6-1,3,5-hexatriene). A structured order parameter S was calculated from the DPH fluorescence anisotropy. The flow activation energies were calculated for LDL and HDL from both groups from the Arrhenius plots (log r DPH versus 1/T). By using TNBS (trinitrobenzene sulfonic acid) as a distance control quencher, the two probes were located in the outer shell of LDL. In HDL, TMA-DPH remained at the surface of the particles, while DPH was more deeply embedded in the lipid core. There was no difference in the physico-chemical properties of VLDL between the two groups studied. DPH fluorescence anisotropies were significantly increased in LDL and HDL from the hypercholesterolemic group compared to the control particles (P less than 0.05 and P less than 0.01, respectively). In LDL this modification of the fluorescence anisotropy can be related to a change in the lipid composition of particles. LDL from hypercholesterolemic patients contained significantly less triacylglycerol (P less than 0.01) and more cholesteryl ester (N.S.). Their cholesteryl ester to triacylglycerol ratio was significantly higher. In HDL, there was no difference in chemical composition between the two groups. The increase in DPH fluorescence anisotropy can be related to the presence of smaller particles in HDL from HC group. No difference was noted in the TMA-DPH fluorescence anisotropy at 37 degrees C in the LDL from the two groups. In contrast, TMA-DPH fluorescence anisotropy in HDL from hypercholesterolemic group was significantly higher than in control HDL. The flow activation energy of DPH was also significantly higher in both LDL and HDL from the hypercholesterolemic group than in control group particles. In both LDL and HDL from the control group, DPH fluorescence anisotropy was negatively correlated with TG/protein and TG/PL ratios and positively correlated with the CE/TG ratio. No correlation was observed between lipid composition and DPH fluorescence anisotropy values in hypercholesterolemic particles. The modification in fluidity parameters, especially the increase in the flow activation energies in LDL and HDL from hypercholesterolemic patients, could lead to a restriction of cholesterol movements in these particles. From a physiological point of view, this could represent a loss of functional capacity.  相似文献   

5.
Many lines of evidence suggest that LDL is oxidized in vivo and that Ox-LDL is present in the artery wall. But the oxidation of VLDL and HDL in vivo has not yet been reported. In this study, the oxidative modification of serum LDL, VLDL, and HDL in patients with endogenous hypertriglyceridemia (HTG) and in serum of rabbits fed on high cholesterol diet were made. The serum LDL, VLDL and HDL were isolated by the density gradient ultracentrifugation. The oxidative modification of LDL, VLDL and HDL were identified by agarose eletrophoresis, absorbance at 234 nm and fluorescence of TBARS. The results showed that serum TC, TG and TBARS in the HTG group (n= 25) and in rabbits fed with a high fat diet (for 12 weeks, n = 8) were significantly higher than those of the corresponding control groups (normal subjects, n = 25; rabbits fed with a normal diet, n = 8; p < 0.01). The electrophoretic mobilities of LDL, VLDL and HDL were increased when compared with the controls, and absorbance at 234 nm and TBARS of LDL, VLDL and HDL in the HTG group and in the high fat diet rabbits were significantly higher than those of the controls (p < 0.01). These results suggest that not only LDL but also VLDL and HDL were oxidatively modified in vivo in the patients with HTG and in the rabbits fed with a high cholesterol diet.  相似文献   

6.
Elevated plasma triglyceride (TG) and reduced high density lipoprotein (HDL) concentrations are prominent features of metabolic syndrome (MS) and type 2 diabetes (T2D). Individuals with Tangier disease also have elevated plasma TG concentrations and a near absence of HDL, resulting from mutations in ATP binding cassette transporter A1 (ABCA1), which facilitates the efflux of cellular phospholipid and free cholesterol to assemble with apolipoprotein A-I (apoA-I), forming nascent HDL particles. In this review, we summarize studies focused on the regulation of hepatic very low density lipoprotein (VLDL) TG production, with particular attention on recent evidence connecting hepatic ABCA1 expression to VLDL, LDL, and HDL metabolism. Silencing ABCA1 in McArdle rat hepatoma cells results in diminished assembly of large (>10nm) nascent HDL particles, diminished PI3 kinase activation, and increased secretion of large, TG-enriched VLDL1 particles. Hepatocyte-specific ABCA1 knockout (HSKO) mice have a similar plasma lipid phenotype as Tangier disease subjects, with a two-fold elevation of plasma VLDL TG, 50% lower LDL, and 80% reduction in HDL concentrations. This lipid phenotype arises from increased hepatic secretion of VLDL1 particles, increased hepatic uptake of plasma LDL by the LDL receptor, elimination of nascent HDL particle assembly by the liver, and hypercatabolism of apoA-I by the kidney. These studies highlight a novel role for hepatic ABCA1 in the metabolism of all three major classes of plasma lipoproteins and provide a metabolic link between elevated TG and reduced HDL levels that are a common feature of Tangier disease, MS, and T2D. This article is part of a Special Issue entitled: Triglyceride Metabolism and Disease.  相似文献   

7.
The beneficial effect of honey has been widely reported particularly in the treatment of wounds and gastrointestinal tract disorders. However there is paucity of reports on its effect on the plasma high density lipoproteins (HDL), very low density lipoproteins (VLDL), low density lipoproteins (LDL) and triglycerides (TG) including cholesterol levels despite common consumption of honey worldwide including, Nigeria. The effect of the widely consumed unrefined Nigeria honey on plasma HDL, VLDL, LDL, TG, cholesterol and cardiovascular risk predictive index (CVPI) was studied using 20 adult male albino rats to ascertain its scientific and clinical relevance. The rats were randomly assigned into 2 groups, the control and honey-fed (test) groups, ten in each group. The rats weighed between 190-200gm at the start of the study. The control group was fed on normal rat (Pfizer-Nigeria) while the test group was fed on normal rat feed and honey (1ml of honey was added to 10ml of drinking water given once every day) for 22 weeks. At the end of the experiment, the rats were anesthetized with thiopentone sodium and blood collected by cardiac puncture. Serum TG, HDL, VLDL, LDL and total cholesterol in the control and the test groups were determined. The results showed significant increase in the level of plasma TG, HDL, and VLDL in the test group when compared with the control group. In contrast, there were significant decreases in the levels of plasma LDL and total cholesterol in the test when compared with the control group. Computed values of CVPI showed significant increase in the test values compared to that of the control. It is concluded that consumption of unrefined Nigeria honey significantly improved lipid profile and computed cardiovascular disease predictive index in male albino rats.  相似文献   

8.
Determination of the circulating levels of plasma lipoproteins HDL, LDL, and VLDL is critical in the assessment of risk of coronary heart disease. More recently it has become apparent that the LDL subclass pattern is a further important diagnostic parameter. The reference method for separation of plasma lipoproteins is ultracentrifugation. However, current methods often involve prolonged centrifugation steps and use high salt concentrations, which can modify the lipoprotein structure and must be removed before further analysis. To overcome these problems we have now investigated the use of rapid self-generating gradients of iodixanol for separation and analysis of plasma lipoproteins. A protocol is presented in which HDL, LDL, and VLDL, characterized by electron microscopy and agarose gel electophoresis, separate in three bands in a 2.5 h centrifugation step. Recoveries of cholesterol and TG from the gradients were close to 100%. The distribution profiles of cholesterol and TG in the gradient were used to calculate the concentrations of individual lipoprotein classes. The values correlated with those obtained using commercial kits for HDL and LDL cholesterol. The position of the LDL peak in the gradient and its shape varied between plasma samples and was indicative of the density of the predominant LDL class. The novel protocol offers a rapid, reproducible and accurate single-step centrifugation method for the determination of HDL, LDL, and VLDL cholesterol, and TG, and identification of LDL subclass pattern.  相似文献   

9.
Poly-β-hydroxybutyrate (PHB) is an amphiphilic lipid that has been found to be a ubiquitous component of the cellular membranes of bacteria, plants and animals. The distribution of PHB in human plasma was investigated using chemical and immunological methods. PHB concentrations proved highly variable; in a random group of 24 blood donors, total plasma PHB ranged from 0.60 to 18.2 mg/l, with a mean of 3.5 mg/l. In plasma separated by density gradient ultracentrifugation, lipoproteins carried 20–30% of total plasma PHB; 6–14% in the very low density lipoproteins (VLDL), 8–16% in the low density lipoproteins (LDL), and < 3% in the high density lipoproteins (HDL). The majority of plasma PHB (70–80%) was found in protein fractions of density > 1.22 g/ml. Western blot analysis of the high density fractions with anti-PHB F(ab')2 identified albumin as the major PHB-binding protein. The affinity of albumin for PHB was confirmed by in vitro studies which demonstrated transfer of 14C-PHB from chloroform into aqueous solutions of human and bovine serum albumins. PHB was less tightly bound to LDL than to other plasma components; the polymer could be isolated from LDL by extraction with chloroform, or by digestion with alkaline hypochlorite, but it could not similarly be recovered from VLDL or albumin. PHB in the LDL correlated positively with total plasma cholesterol and LDL cholesterol, and negatively with HDL cholesterol. The wide concentration range of PHB in plasma, its presence in VLDL and LDL and absence in HDL, coupled with its physical properties, suggest it may have important physiological effects.  相似文献   

10.
Hyperlipidemia is a prominent feature of the nephrotic syndrome. Lipoprotein abnormalities include increased very low and low density lipoprotein (VLDL and LDL) cholesterol and variable reductions in high density lipoprotein (HDL) cholesterol. We hypothesized that plasma cholesteryl ester transfer protein (CETP), which influences the distribution of cholesteryl esters among the lipoproteins, might contribute to lipoprotein abnormalities in nephrotic syndrome. Plasma CETP, apolipoprotein and lipoprotein concentrations were measured in 14 consecutive untreated and 7 treated nephrotic patients, 5 patients with primary hypertriglyceridemia, and 18 normolipidemic controls. Patients with nephrotic syndrome displayed increased plasma concentrations of apoB, VLDL, and LDL cholesterol. The VLDL was enriched with cholesteryl ester (CE), shown by a CE/triglyceride (TG) ratio approximately twice that in normolipidemic or hypertriglyceridemic controls (P < 0.001). Plasma CETP concentration was increased in patients with untreated nephrotic syndrome compared to controls (3.6 vs. 2.3 mg/l, P < 0.001), and was positively correlated with the CE concentration in VLDL (r = 0.69, P = 0.004) and with plasma apoB concentration (r = 0.68, P = 0.007). Treatment with corticosteroids resulted in normalization of plasma CETP and of the CE/TG ratio in VLDL. An inverse correlation between plasma CETP and HDL cholesterol was observed in hypertriglyceridemic nephrotic syndrome patients (r = -0.67, P = 0.03). The dyslipidemia of nephrotic syndrome includes increased levels of apoB-lipoproteins and VLDL that are unusually enriched in CE and likely to be atherogenic. Increased plasma CETP probably plays a significant role in the enrichment of VLDL with CE, and may also contribute to increased concentrations of apoB-lipoproteins and decreased HDL cholesterol in some patients.  相似文献   

11.
Incubation of low (LDL), intermediate (IDL), or very low density lipoproteins (VLDL) with palmitic acid and either high density lipoproteins (HDL), delipidated HDL, or purified apolipoprotein (apo) A-I resulted in the formation of lipoprotein particles with discoidal structure and mean particle diameters ranging from 146 to 254 A by electron microscopy. Discs produced from IDL or LDL averaged 26% protein, 42% phospholipid, 5% cholesteryl esters, 24% free cholesterol, and 3% triglycerides; preparations derived from VLDL contained up to 21% triglycerides. ApoA-I was the predominant protein present, with smaller amounts of apoA-II. Crosslinking studies of discs derived from LDL or IDL indicated the presence of four apoA-I molecules per particle, while those derived from large VLDL varied more in size and contained as many as six apoA-I molecules per particle. Incubation of discs derived from IDL or LDL with purified lecithin:cholesterol acyltransferase (LCAT), albumin, and a source of free cholesterol produced core-containing particles with size and composition similar to HDL2b. VLDL-derived discs behaved similarly, although the HDL products were somewhat larger and more variable in size. When discs were incubated with plasma d greater than 1.21 g/ml fraction rather than LCAT, core-containing particles in the size range of normal HDL2a and HDL3a were also produced. A variety of other purified free fatty acids were shown to promote disc formation. In addition, some mono and polyunsaturated fatty acids facilitated the formation of smaller, spherical particles in the size range of HDL3c. Both discoidal and small spherical apoA-I-containing lipoproteins were generated when native VLDL was incubated with lipoprotein lipase in the presence of delipidated HDL. We conclude that lipolysis product-mediated dissociation of lipid-apoA-I complexes from VLDL, IDL, or LDL may be a mechanism for formation of HDL subclasses during lipolysis, and that the availability of different lipids may influence the type of HDL-precursors formed by this mechanism.  相似文献   

12.
In animals, ingestion of casein, the principal protein in milk, causes hypercholesterolemia, whereas in humans this effect has not been documented. We added 27 g of casein (the amount in 1.1 liters of skim milk and nearly twice the average U.S. intake) for 20 days, and 27 g of soy protein for an additional 20 days to the daily diet of 13 strict vegetarians who consumed no other animal protein during the study period. The protein supplementation increased the ad libitum daily protein intake from 59 g to 82 g. Levels of plasma LDL, HDL, and total cholesterol were not significantly affected by either the casein or the soy supplementation. Over the 40 days of protein supplementation, there were progressive decreases in VLDL cholesterol (VLDL-C) and increases in triglycerides (TG) from pre-study levels, demonstrated by an overall change in the VLDL-C/TG ratio from 0.30 to 0.17 (P = 0.003). Caloric intake and body weight did not change significantly. From the literature on dietary protein and blood lipid levels and from the present data, it appears that neither the amount of protein in the diet nor whether the protein comes from animal or vegetable sources has an important effect on plasma LDL and HDL levels in humans when consumed in physiologic amounts.  相似文献   

13.
Effects of chronic glucagon administration on rat lipoprotein composition   总被引:2,自引:0,他引:2  
Male adult rats of the Wistar strain received daily at 9 a.m. and 5 p.m. 10 micrograms of Zn-protamine glucagon (Novo) for 21 days by subcutaneous injections. Plasma levels of cholesterol, triacylglycerol and phospholipids were decreased by 47, 40 and 21%, respectively. Lipoproteins were separated by sequential ultracentrifugation. Concentrations of cholesterol, phospholipids and proteins were decreased in chylomicrons, VLDL, LDL2 (1.040-1.063 g/ml) and HDL, LDL2 being the most affected by glucagon treatment (-70%). Triacylglycerol levels were decreased only in chylomicrons and VLDL. The relative proportions of cholesterol, triacylglycerol, phospholipids and proteins in lipoproteins were virtually unchanged by glucagon, suggesting a reduced number of some lipoprotein particles in plasma. However, lipoproteins of glucagon-treated rats were depleted in cholesteryl esters, while the proportion of triacylglycerol increased in LDL and HDL. Apo E contents were decreased in plasma, LDL1 (1.006-1.040 g/ml), LDL2 and HDL, whereas apo B100 proportions increased in VLDL and LDL1 in glucagon-treated rats. Glucagon appeared to be a potent hypolipidemic agent affecting mainly the apo-E-rich lipoproteins.  相似文献   

14.
Chylomicron retention disease is characterized by fat malabsorption, hypocholesterolemia, normal fasting triglycerides, and marked intestinal steatosis despite the presence of both plasma and intestinal apoprotein B. The defect remains unknown but presumably involves the synthesis or secretion of chylomicrons. The present investigation examines this hypothesis by studying the biosynthesis of chylomicrons in cultured jejunal explants and by defining the quantitative and qualitative abnormalities of plasma lipids and of circulating lipoproteins. Following 2-3 years of a low fat diet supplemented with medium chain triglycerides, six patients with chylomicron retention disease had significantly higher triglyceride (TG) levels coupled with a decrease in both free (FC) and esterified cholesterol (EC) as well as in essential fatty acids and phospholipids (PL) when compared to healthy controls. The low total plasma cholesterol was largely accounted for by low levels of both low density (LDL) and high density lipoprotein (HDL) cholesterol. VLDL and LDL were characterized by a diminished percentage of CE with an increase of TG while HDL contained relatively more FC as well as PL and less CE. The diameter of VLDL was larger whereas those of LDL and HDL were smaller than in normal controls. Jejunal explants, when incubated with [14C]palmitate, were capable of normal biosynthesis of TG, diglycerides, PL, and CE. These lipids, however, except for PL, were retained in the tissue and could not be secreted into the culture medium. Incubation of intestinal biopsies with [3H]leucine and [14C]mannose resulted in normal protein synthesis and reduced glycosylation. The presence of intestinal apoB-48 was confirmed by immunoblot using 2D8 antibodies. These data suggest that the intestinal defect in this disease results from a disorder of the final assembly of chylomicrons or in the mechanism of their exocytosis.  相似文献   

15.
Recent discovery and characterization of APOAV suggests a role in metabolism of triglyceride (TG)-rich lipoproteins. Previously, variation at the APOAV locus was shown to modestly influence plasma TGs in normolipidemic samples. The aims of this study were to assess the effects of a polymorphism in APOAV (T-1131C) in terms of its frequency among three dyslipidemic populations and a control population, differences of allele frequency across available ethnic groups, and associations with specific lipoprotein TG and cholesterol compartments. We found a striking elevation in the frequency of the rare allele in a Chinese population (P = 0.0002) compared with Hispanic and European populations. The rare allele of the polymorphism was associated with elevated plasma TG (P = 0.012), VLDL cholesterol (P = 0.0007), and VLDL TG (P = 0.012), LDL TG (P = 0.003), and HDL TG (P = 0.016). Linear regression models predict that possession of the rare allele elevates plasma TG by 21 mg/dl (P = 0.009) and VLDL cholesterol by 8 mg/dl (P = 0.0001), and reduces HDL cholesterol by 2 mg/dl (P = 0.017). The association of the polymorphism with altered lipoprotein profiles was observed in combined hyperlipidemia, hypoalphalipoproteinemia, and hyperalphalipoproteinemia, and in controls. These findings indicate that APOAV is an important determinant of plasma TG and lipoprotein cholesterol, and is potentially a risk factor for cardiovascular disease.  相似文献   

16.

Objective

The purpose of this study was to compare the apolipoprotein composition of the three major lipoprotein classes in patients with metabolic syndrome to healthy controls.

Methods

Very low density (VLDL), intermediate/low density (IDL/LDL, hereafter LDL), and high density lipoproteins (HDL) fractions were isolated from plasma of 56 metabolic syndrome subjects and from 14 age-sex matched healthy volunteers. The apolipoprotein content of fractions was analyzed by one-dimensional (1D) gel electrophoresis with confirmation by a combination of mass spectrometry and biochemical assays.

Results

Metabolic syndrome patients differed from healthy controls in the following ways: (1) total plasma - apoA1 was lower, whereas apoB, apoC2, apoC3, and apoE were higher; (2) VLDL - apoB, apoC3, and apoE were increased; (3) LDL - apoC3 was increased, (4) HDL -associated constitutive serum amyloid A protein (SAA4) was reduced (p<0.05 vs. controls for all). In patients with metabolic syndrome, the most extensively glycosylated (di-sialylated) isoform of apoC3 was reduced in VLDL, LDL, and HDL fractions by 17%, 30%, and 25%, respectively (p<0.01 vs. controls for all). Similarly, the glycosylated isoform of apoE was reduced in VLDL, LDL, and HDL fractions by 15%, 26%, and 37% (p<0.01 vs. controls for all). Finally, glycosylated isoform of SAA4 in HDL fraction was 42% lower in patients with metabolic syndrome compared with controls (p<0.001).

Conclusions

Patients with metabolic syndrome displayed several changes in plasma apolipoprotein composition consistent with hypertriglyceridemia and low HDL cholesterol levels. Reduced glycosylation of apoC3, apoE and SAA4 are novel findings, the pathophysiological consequences of which remain to be determined.  相似文献   

17.
Our aim was to identify and quantify the major in vivo pathways of lipoprotein cholesteryl ester transport in humans. Normal (n = 7), bile fistula (n = 5), and familial hypercholesterolemia (FH; n = 1) subjects were studied. Each received isotopic free cholesterol in HDL, LDL, or particulate form, along with another isotope of free or esterified cholesterol or mevalonic acid. VLDL, intermediate density lipoprotein (IDL), LDL, HDL, blood cells, and bile were collected for up to 6 days for analysis of radioactivity and mass of free and esterified cholesterol. These raw data were subjected to compartmental analysis using the SAAM program. Results in all groups corroborated net transport of free cholesterol to the liver from HDL, shown previously in fistula subjects. New findings revealed that 70% of ester was produced from free cholesterol in HDL and 30% from free cholesterol in LDL, IDL, and VLDL. No evidence was found for tissue-produced ester in plasma. There was net transfer of cholesteryl ester to VLDL and IDL from HDL and considerable exchange between LDL and HDL. Irreversible ester output was from VLDL, IDL, and LDL, but very little was from HDL, suggesting that selective and holoparticle uptakes of HDL ester are minor pathways in humans. It follows that 1) they contribute little to reverse transport, 2) very high HDL would not result from defects thereof, and 3) the clinical benefit of high HDL is likely explained by other mechanisms. Reverse transport in the subjects with bile fistula and FH was facilitated by ester output to the liver from VLDL plus IDL.  相似文献   

18.
1. Concentration and composition of the "very low density lipoproteins" (VLDL), "low density lipoproteins" (LDL) and "high density lipoproteins" (HDL) and of non-floatable lipids of fetal rat serum (day 22 of pregnancy) were determined by ultracentrifugation, thin-layer chromatographic separation of the floated lipids and quantitation of the lipid and protein moiety. 2. The concentration of VLDL is in the fetal rat by one order of magnitude lower, and that of LDL, 5fold higher than in the adult animal; the concentration of HDL in fetal serum amounts to 60% of the value of adult animals. 3. The composition of LDL and HDL of fetal serum does not differ from that in the serum of adult animals; in contrast, the fetal VLDL have a higher proportion of protein and cholesterol and a lower proportion of triglycerides than the VLDL of adult serum. The electrophoretic mobility of the fetal VLDL is lower than that of adult VLDL.  相似文献   

19.
1. Turkey anti-LP-A and anti-LP-B cross react strongly with whole adult chicken serum. 2. Similar reactions occur with whole chicken embryo sera (10-21 days of incubation) and egg yolk fluid. 3. Ultracentrifugation of sera from 14-day old chicken embryos, after reaction with anti-LP-B, reveal complete precipitation of the VLDL and LDL of embryo serum (indicating that adult-type LP-B is the major apolipoprotein of these density classes). 4. All of the chicken embryo adult-type apo-LP-A is in the HDL fraction. 5. However, egg yolk and hen serum VLDL contain apo-LP-A as well as apo-LP-B.  相似文献   

20.
The plasma lipoprotein composition as well as lipoprotein synthesis and secretion were studied in vivo and in a single-pass-perfused liver preparation in lean and obese Zucker rats. Compared with their lean littermates the levels in the plasma of very low density lipoprotein (VLDL), intermediate density lipoprotein (IDL) + low density lipoprotein (LDL) and high density lipoprotein (HDL) were increased 4-, 2- and 2.5 fold, respectively, in obese rats. In these rats both VLDL and IDL + LDL were enriched in triglycerides, while the HDL were enriched in cholesterol. Although the VLDL and IDL + LDL protein concentrations were the same in lean and obese rats, the HDL protein concentration was 3-fold greater in the obese rats. Both the lean and obese rats incorporated similar amounts of [14C]leucine into total liver protein. However, obese rats incorporated 2.5-fold and 6-fold more [14C]leucine into VLDL and HDL in vivo, 2.7-fold and 1.7 fold more [35S]methionine in VLDL and HDL present in the perfusate, than did lean rats. The perfusate [35S]S-labelled apoproteins (apo-B100, B48; apo-E, apo-AI, apo-AIV and apo-C) were separated by gel electrophoresis and identified by autoradiography. Incorporation of [3H]glycerol into liver, VLDL, IDL + LDL and HDL triglycerides was 2-, 48-, 13- and 1.5-fold higher in obese than in lean rats, respectively. The [3H]-labelled triglycerides in VLDL and IDL + LDL present in the perfusate was 5.4-fold and 4.4-fold more in obese rat. There was no difference in the incorporation of [3H]glycerol into triglycerides of perfusate HDL between the two genotypes of rats. Thus, the hypertriglyceridaemia observed in obese Zucker rats results from very high synthetic rates of both the lipid and protein moieties of plasma lipoproteins. Before this study, no report of the simultaneous triglycerides and protein synthesis in vivo and in a single-pass-perfused liver preparations had been reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号