首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The prolongation of QT intervals in both mothers and fetuses during the later period of pregnancy implies that higher levels of progesterone may regulate the function of the human ether-a-go-go-related gene (HERG) potassium channel, a key ion channel responsible for controlling the length of QT intervals. Here, we studied the effect of progesterone on the expression, trafficking, and function of HERG channels and the underlying mechanism. Treatment with progesterone for 24 h decreased the abundance of the fully glycosylated form of the HERG channel in rat neonatal cardiac myocytes and HERG-HEK293 cells, a cell line stably expressing HERG channels. Progesterone also concentration-dependently decreased HERG current density, but had no effect on voltage-gated L-type Ca(2+) and K(+) channels. Immunofluorescence microscopy and Western blot analysis show that progesterone preferentially decreased HERG channel protein abundance in the plasma membrane, induced protein accumulation in the dilated endoplasmic reticulum (ER), and increased the protein expression of C/EBP homologous protein, a hallmark of ER stress. Application of 2-hydroxypropyl-β-cyclodextrin (a sterol-binding agent) or overexpression of Rab9 rescued the progesterone-induced HERG trafficking defect and ER stress. Disruption of intracellular cholesterol homeostasis with simvastatin, imipramine, or exogenous application of cholesterol mimicked the effect of progesterone on HERG channel trafficking. Progesterone may impair HERG channel folding in the ER and/or block its trafficking to the Golgi complex by disrupting intracellular cholesterol homeostasis. Our findings may reveal a novel molecular mechanism to explain the QT prolongation and high risk of developing arrhythmias during late pregnancy.  相似文献   

2.
The mobilization of cholesterol from intracellular pools to the plasma membrane is a determinant that governs its availability for efflux to extracellular acceptors. NPC1 and NPC2 are proteins localized in the late endosome and control cholesterol transport from the lysosome to the plasma membrane. Here, we report that NPC1 and NPC2 gene expression is induced by oxidized LDL (OxLDL) in human macrophages. Because OxLDLs contain natural activators of peroxisome proliferator-activated receptor alpha (PPARalpha), a fatty acid-activated nuclear receptor, the regulation of NPC1 and NPC2 by PPARalpha and the consequences on cholesterol trafficking were further studied. NPC1 and NPC2 expression is induced by synthetic PPARalpha ligands in human macrophages. Furthermore, PPARalpha activation leads to an enrichment of cholesterol in the plasma membrane. By contrast, incubation with progesterone, which blocks postlysosomal cholesterol trafficking, as well as NPC1 and NPC2 mRNA depletion using small interfering RNA, abolished ABCA1-dependent cholesterol efflux induced by PPARalpha activators. These observations identify a novel regulatory role for PPARalpha in the control of cholesterol availability for efflux that, associated with its ability to inhibit cholesterol esterification and to stimulate ABCA1 and scavenger receptor class B type I expression, may contribute to the stimulation of reverse cholesterol transport.  相似文献   

3.
The yeast vacuolar sorting protein Vps4p is an ATPase required for endosomal trafficking that couples membrane association to its ATPase cycle. To investigate the function of mammalian VPS4 in endosomal trafficking, we have transiently expressed wild-type or ATPase-defective human VPS4 (hVPS4) in cultured cells. Wild-type hVPS4 was cytosolic, whereas a substantial fraction of hVPS4 that was unable to either bind or hydrolyze ATP was localized to membranes, including those of specifically induced vacuoles. Vacuoles were exclusively endocytic in origin, and subsets of enlarged vacuoles stained with markers for each stage of the endocytic pathway. Sorting of receptors from the early endosome to the recycling compartment or to the trans-Golgi network was not significantly affected, and no mutant hVPS4 associated with these compartments. However, many hVPS4-induced vacuoles were substantially enriched in cholesterol relative to the endosomal compartments of untransfected cells, indicating that expression of mutant hVPS4 gives rise to a kinetic block in postendosomal cholesterol sorting. The phenotype described here is largely consistent with the defects in vacuolar sorting associated with class E vps mutants in yeast, and a role for mammalian VPS4 is discussed in this context.  相似文献   

4.
Kyle B. Peake 《FEBS letters》2010,584(13):2731-2739
Pathways of intracellular cholesterol trafficking are poorly understood at the molecular level. Mutations in Niemann-Pick C (NPC) proteins, NPC1 and NPC2, however, have led to insights into the mechanism by which endocytosed cholesterol is exported from late endosomes/lysosomes (LE/L). Mutations in NPC1, a multi-spanning membrane protein of LE/L, or mutations in NPC2, a soluble luminal protein of LE/L, cause the neurodegenerative disorder NPC disease. This review focuses on data supporting a model in which movement of cholesterol out of LE/L is mediated by the sequential action of the two NPC proteins. We also discuss potential therapies for NPC disease, including evidence that treatment of NPC-deficient mice with the cholesterol-binding compound, cyclodextrin, markedly attenuates neurodegeneration, and increases life-span, of NPC1-deficient mice.  相似文献   

5.
Endothelial nitric oxide synthase (eNOS) generated NO plays a crucial physiological role in the regulation of vascular tone. eNOS is a constitutively expressed synthase whose enzymatic function is regulated by dual acylation, phosphorylation, protein‐protein interaction and subcellular localization. In endothelial cells, the enzyme is primarily localized to the Golgi apparatus (GA) and the plasma membrane where it binds to caveolin‐1. Upon stimulation, the enzyme is translocated from the plasma membrane to the cytoplasm where it generates NO. When activation of eNOS ceases, the majority of the enzyme is recycled back to the membrane fraction. An inability of eNOS to cycle between the cytosol and the membrane leads to impaired NO production and vascular dysfunction. Chlamydia pneumoniae is a Gram‐negative obligate intracellular bacterium that primarily infects epithelial cells of the human respiratory tract, but unlike any other chlamydial species, C. pneumoniae displays tropism toward atherosclerotic tissues. In this study, we demonstrate that C. pneumoniae inclusions colocalize with eNOS, and the microorganism interferes with trafficking of the enzyme from the GA to the plasma membrane in primary human aortic endothelial cells. This mislocation of eNOS results in significant inhibition of NO release by C. pneumoniae‐infected cells. Furthermore, we show that the distribution of eNOS in C. pneumoniae‐infected cells is altered due to an intimate association of the Golgi complex with chlamydial inclusions rather than by direct interaction of the enzyme with the chlamydial inclusion membrane.  相似文献   

6.
Caveolin-1 (Cav-1) is a fundamental constituent of caveolae, whose functionality and structure are strictly dependent on cholesterol. In this work the U18666A inhibitor was used to study the role of cholesterol transport in the endosomal degradative-secretory system in a metastatic human melanoma cell line (WM266-4). We found that U18666A induces a shift of Cav-1 from the plasma membrane to the endolysosomal compartment, which is involved, through Multi Vesicular Bodies (MVBs), in the formation and release of small extracellular vesicles (sEVs). Moreover, this inhibitor induces an increase in the production of sEVs with chemical–physical characteristics similar to control sEVs but with a different protein composition (lower expression of Cav-1 and increase of LC3II) and reduced transfer capacity on target cells. Furthermore, we determined that U18666A affects mitochondrial function and also cancer cell aggressive features, such as migration and invasion. Taken together, these results indicate that the blockage of cholesterol transport, determining the internalization of Cav-1, may modify sEVs secretory pathways through an increased fusion between autophagosomes and MVBs to form amphisome, which in turn fuses with the plasma membrane releasing a heterogeneous population of sEVs to maintain homeostasis and ensure correct cellular functionality.  相似文献   

7.
8.
Many viruses gain access to the cell via the endosomal route and require low endosomal pH for infectivity. The GTPase dynamin is essential for clathrin-dependent endocytosis, and in HeLa cells overexpressing the nonfunctional dynaminK44A mutant the formation of clathrin-coated vesicles is halted. HRV2, a human minor group rhinovirus, is internalized by members of the low-density lipoprotein receptor family in a clathrin-independent manner. The low endosomal pH then leads to conversion of the capsid to C-antigen, which is required for release (uncoating) and transfer of the viral RNA into the cytosol and de novo synthesis of infectious virus. We here demonstrate that overexpression of dynaminK44A reduces this antigenic conversion and results in diminished viral synthesis. In contrast, lysosomal degradation is unaffected. The kinetics of the formation of C-antigen in vitro and in vivo suggest that the pH in endosomes is elevated by about 0.4 units upon overexpression of dynaminK44A. As a consequence, HRV2 uncoating is diminished early after internalization but attains control levels upon prolonged internalization. Thus, overexpression of dynaminK44A, in addition to trafficking defects, results in an elevated endosomal pH and thereby affects virus infection and most likely endosomal sorting and processing.  相似文献   

9.
10.
Metabolic disorders such as type 2 diabetes cause hepatic endoplasmic reticulum (ER) stress, which affects neutral lipid metabolism. However, the role of ER stress in cholesterol metabolism is incompletely understood. Here, we show that induction of acute ER stress in human hepatic HepG2 cells reduced ABCA1 expression and caused ABCA1 redistribution to tubular perinuclear compartments. Consequently, cholesterol efflux to apoA-I, a key step in nascent HDL formation, was diminished by 80%. Besides ABCA1, endogenous apoA-I expression was reduced upon ER stress induction, which contributed to reduced cholesterol efflux. Liver X receptor, a key regulator of ABCA1 in peripheral cells, was not involved in this process. Despite reduced cholesterol efflux, cellular cholesterol levels remained unchanged during ER stress. This was due to impaired de novo cholesterol synthesis by reduction of HMG-CoA reductase activity by 70%, although sterol response element-binding protein-2 activity was induced. In mice, ER stress induction led to a marked reduction of hepatic ABCA1 expression. However, HDL cholesterol levels were unaltered, presumably because of scavenger receptor class B, type I downregulation under ER stress. Taken together, our data suggest that ER stress in metabolic disorders reduces HDL biogenesis due to impaired hepatic ABCA1 function.  相似文献   

11.
Preferential methylation of regulatory genes in HeLa cells   总被引:1,自引:0,他引:1  
P Volpe  T Eremenko 《FEBS letters》1974,44(2):121-126
  相似文献   

12.
Xiao DZ  Dai B  Chen J  Luo Q  Liu XY  Lin QX  Li XH  Huang W  Yu XY 《Cell proliferation》2011,44(6):582-590
Objectives: This study aims to determine the role of macrophage migration inhibitory factor (MIF), a proinflammatory cytokine associated with cell proliferation and tumour growth in vivo. Materials and methods: Our team used RNA interference technology to knock down MIF expression in human HeLa cervical cancer cells and to establish a stable cell line lacking MIF function. Results: Our results showed that long‐term loss of MIF had little effect on cell morphology, but significantly inhibited their population growth and proliferation. The HeLa MIF‐knockdown cells retained normal apoptotic signalling pathways in response to TNF‐alpha treatment; however, they exhibited unique DNA profiles following doxorubicin treatment, suggesting that MIF may regulate a cell cycle checkpoint upon DNA damage. Our data also showed that knockdown of MIF expression in HeLa cells led to increased cell adhesion and therefore impaired their migratory capacity. More importantly, cells lacking MIF failed to either proliferate in soft agar or form tumours in vivo, when administered to nude mice. Conclusion: MIF plays a pivotal role in proliferation and tumourigenesis of human HeLa cervical carcinoma cells, and may represent a promising therapeutic target for cancer intervention.  相似文献   

13.
The conserved oligomeric Golgi (COG) complex is an evolutionarily conserved multi-subunit protein complex that regulates membrane trafficking in eukaryotic cells. In this work we used short interfering RNA strategy to achieve an efficient knockdown (KD) of Cog3p in HeLa cells. For the first time, we have demonstrated that Cog3p depletion is accompanied by reduction in Cog1, 2, and 4 protein levels and by accumulation of COG complex-dependent (CCD) vesicles carrying v-SNAREs GS15 and GS28 and cis-Golgi glycoprotein GPP130. Some of these CCD vesicles appeared to be vesicular coat complex I (COPI) coated. A prolonged block in CCD vesicles tethering is accompanied by extensive fragmentation of the Golgi ribbon. Fragmented Golgi membranes maintained their juxtanuclear localization, cisternal organization and are competent for the anterograde trafficking of vesicular stomatitis virus G protein to the plasma membrane. In a contrast, Cog3p KD resulted in inhibition of retrograde trafficking of the Shiga toxin. Furthermore, the mammalian COG complex physically interacts with GS28 and COPI and specifically binds to isolated CCD vesicles.  相似文献   

14.
15.
Hypercholesterolemia is one of the most important risk factors for atherosclerosis, and tomato lycopene has been suggested to have beneficial effects against such a disease, although the exact molecular mechanism is unknown. We tested the hypothesis that lycopene may exert its antiatherogenic role through changes in cholesterol metabolism. Incubation of THP-1 cells with lycopene (0.5–2 μM) dose-dependently reduced intracellular total cholesterol. Such an effect was associated with a decrease in reduction of 3-hydroxy-3-methylglutaryl coenzyme A reductase expression and with an increase in ABCA1 and caveolin-1 (cav-1) expressions. In addition, lycopene enhanced RhoA levels in the cytosolic fraction, activating peroxisome proliferator-activated receptor gamma (PPARγ) and liver X receptor alpha expressions. Concomitant addition of lycopene and the PPARγ inhibitor GW9662 or lycopene and mevalonate blocked the carotenoid-induced increase in ABCA1 and cav-1 expressions. These results imply a potential role of lycopene in attenuating foam cell formation and, therefore, in preventing atherosclerosis by a cascade mechanism involving inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase, RhoA inactivation and subsequent increase in PPARγ and liver X receptor alpha activities and enhancement of ABCA1 and cav-1 expressions.  相似文献   

16.
17.
18.
A diet rich in n-3/n-6 polyunsaturated fatty acids (PUFAs) is cardioprotective. Dietary PUFAs affect the cellular phospholipids composition, which may influence the function of membrane proteins. We investigated the impact of the membrane incorporation of several PUFAs on ABCA1-mediated cholesterol efflux, a key antiatherogenic pathway. Arachidonic acid (AA) (C20:4 n-6) and docosahexaenoic acid (DHA) (C22:6 n-3) decreased or increased cholesterol efflux from J774 mouse macrophages, respectively, whereas they had no effect on efflux from human monocyte-derived macrophages (HMDM). Importantly, eicosapentaenoic acid (EPA) (C20:5 n-3) induced a dose-dependent reduction of ABCA1 functionality in both cellular models (− 28% for 70 μM of EPA in HMDM), without any alterations in ABCA1 expression. These results show that PUFA membrane incorporation does not have the same consequences on cholesterol efflux from mouse and human macrophages. The EPA-treated HMDM exhibited strong phospholipid composition changes, with high levels of both EPA and its elongation product docosapentaenoic acid (DPA) (C22:5 n-3), which is associated with a decreased level of AA. In HMDM, EPA reduced the ATPase activity of the membrane transporter. Moreover, the activation of adenylate cyclase by forskolin and the inhibition of cAMP phosphodiesterase by isobutylmethylxanthine restored ABCA1 cholesterol efflux in EPA-treated human macrophages. In conclusion, EPA membrane incorporation reduces ABCA1 functionality in mouse macrophages as well as in primary human macrophages and this effect seems to be PKA-dependent in human macrophages.  相似文献   

19.
20.
Effect of ethanol on cholesterol and phospholipid composition of HeLa cells   总被引:1,自引:0,他引:1  
Chronic exposure of animals to ethanol leads to changes in membrane lipid composition which may be related to the development of tolerance and physical dependence. The object of the present study was to investigate this phenomenon at a cellular level. HeLa cells were grown in the presence of ethanol (86 mM) for periods of up to 9 days. Both the cholesterol and phospholipid concentration of these cells increased during this period but the cholesterol:phospholipid ratio remained unchanged. Among the phospholipid classes phosphatidic acid decreased while phosphatidylethanolamine, phosphatidylcholine and phosphatidylserine increased rapidly, returning toward control values by 9 days. Significant decreases were observed in saturated (14:0, 16:0) and monoenoic (16:1, 18:1) fatty acids while the major polyenoic fatty acid (20:4) increased. It is concluded that cultured mammalian cells represent a useful model for investigation of the direct effects of ethanol on membrane lipid metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号