共查询到20条相似文献,搜索用时 15 毫秒
1.
Membranes composed of glycerol dialkylnonitol tetraether (GDNT) lipids from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius have been studied by molecular modeling. GDNT membranes containing eight cyclopentane rings in the molecule are packed much tighter than those without rings. When containing eight cyclopentane rings, the beta-D-galactosyl-D-glucose head-group of GDNT runs almost parallel to the membrane surface. However, when containing no rings, the head-group is oriented perpendicular to the membrane surface. Using molecular dynamics calculations, we have also conducted comparative studies of membrane packing between GDNT and various non-archaebacterial membranes. Compared to gel state dipalmitoylphosphatidylcholine (DPPC) and gel state distearoylphosphatidylcholine (DSPC) bilayers, the GDNT membrane with eight cyclopentane rings has a more negative interaction energy, thus a tighter membrane packing, while the GDNT without rings is less tightly packed than gel state DSPC. Based on the calculated interaction energies, the GDNT membranes (with and without rings) are much more tightly packed than DPhPC (an ester-linked diphytanyl PC) and DPhyPC (an ether-linked diphytanyl PC) bilayers. This suggests that the branched methyl group in the phytanyl chain is not the major contributor of the tight packing of GDNT membranes. The biological implication of this study is that the cyclopentane ring could increase GDNT membrane thermal stability. This explains why the number of cyclopentane rings in archaebacterial lipid increases with increasing growth temperature. Perhaps, through the ring-temperature compensation mechanism the plasma membrane of thermoacidophilic archaebacteria is able to maintain a tight and rigid structure, consequently, a constant proton gradient between the extracellular (pH 2.5) and intracellular compartment (pH 6.5), over a wide range of growth temperatures. 相似文献
2.
3.
Susan L. Brandow David C. Turner Banahalli R. Ratna Bruce P. Gaber 《Biophysical journal》1993,64(3):898-902
The atomic force microscope (AFM) was used to structurally modify supported lipid bilayers in a controlled quantitative manner. By increasing the force applied by the AFM tip, lipid was removed from the scanned area, leaving a cut through the lipid bilayer. Cuts were repaired with the AFM by scanning the region with a controlled force and driving lipid back into the cut. A slow self-annealing of cuts was also observed. 相似文献
4.
The behaviour of lipid bilayer membranes, made of oxidized cholesterol, and UO22+-modified azolectin membranes in a high electric field has been investigated using the voltage clamp method. When a voltage pulse is applied to the membrane of these compositions, the mechanical rupture of the membranes is preceded by a gradual conductance increase which remains quite reversible till a certain moment. The voltage drop at this reversible stage of breakdown leads to a very rapid (characteristic time of less than 5 μs) decrease in the membrane conductance. At repeated voltage pulses of the same amplitude with sufficient intervals between them (approx. 10 s), the current oscillograms reflecting the reversible resistance decrease are well reproduced on the same membrane. The time of attainment of the predetermined level of the membrane conductance is strongly dependent on voltage. At different stages of breakdown we have investigated changes in the conductance of UO22+-modified membrane after the application of two-step voltage pulses, the kinetics of development of the reversible decrease in the membrane resistance in solutions of univalent and divalent ions, and also the influence of sucrose and hemoglobin on the current evolution. The relationship between the reversible conductance increase, the reversible electrical breakdown [15] and the rupture of membrane in an electric field is discussed. We propose the general interpretation of these phenomena, based on the representation of the potential-dependent appearance in the membrane of pores, the development of which is promoted by an electric field. 相似文献
5.
Externally applied nonuniform electric fields can strongly affect thermodynamic phases in a lipid monolayer when applied under conditions of temperature, pressure, and composition that are near phase boundaries. Under such conditions nonuniform applied fields can produce or suppress phase separations. Field-induced phase-separated domains have sizes that are in good agreement with calculations. Field gradients can also produce large concentration gradients in binary mixtures just above their critical points. The present work elaborates our earlier studies of these field effects using thermodynamic models of the phase behavior of two-component liquid mixtures. The calculations are of interest in connection with biological membranes that, at the growth temperature, are in a liquid state close to a phase boundary. 相似文献
6.
A. V. Sybachin L. A. Tsarkova A. A. Yaroslavov 《Biochemistry (Moscow) Supplemental Series A: Membrane and Cell Biology》2010,4(2):240-246
The method of atomic force microscopy has been used to investigate the morphology of mica-supported bilayer lipid membranes
and stability of their complexes with a cationic polymer, poly-(N-ethyl-4-vinylpyridinium bromide). Lipid bilayers with a
minimum of defects were obtained by the fusion of monolamellar neutral or mixed anionic bilayer vesicles (liposomes) on the
mica surface, followed by excessive solvent removal by means of rapid rotation of a plate in horizontal plane (spin-coating). It has been shown that the cationic polymer does not interact with the bilayers, where the outer leaflet (i.e., the monolayer
exposed to the surrounding aqueous solution) is made of an electroneutral phosphatidylcholine (PC). At the same time, the
polymer irreversibly binds to the bilayer containing an anionic lipid. 相似文献
7.
R Simons 《Biochimica et biophysica acta》1970,203(2):209-219
8.
Frank Römer 《Molecular simulation》2013,39(2):152-160
A united-atom potential model for naproxen suitable for molecular dynamics (MD) simulation has been developed. The charge distribution is approximated by point charges obtained from ab initio calculations using the CHELPG method. Also the intramolecular interactions such as bond and angle vibration, and the torsion potential are obtained from ab initio calculations. The dispersive interaction contribution is taken from the literature. By MD simulation using a naproxen film in slap geometry, the temperature dependence of the density, surface tension and self-diffusion coefficient as well as the melting temperature for the developed potential model are obtained. 相似文献
9.
Concentration effects of volatile anesthetics on the properties of model membranes: a coarse-grain approach
下载免费PDF全文

To gain insights into the molecular level mechanism of drug action at the membrane site, we have carried out extensive molecular dynamics simulations of a model membrane in the presence of a volatile anesthetic using a coarse-grain model. Six different anesthetic (halothane)/lipid (dimyristoylphosphatidylcholine) ratios have been investigated, going beyond the low doses typical of medical applications. The volatile anesthetics were introduced into a preassembled fully hydrated 512-molecule lipid bilayer and each of the molecular dynamics simulations were carried out at ambient conditions, using the NPT ensemble. The area per lipid increases monotonically with the halothane concentration and the lamellar spacing decreases, whereas the lipid bilayer thickness shows no appreciable differences and only a slight increase upon addition of halothane. The density profiles of the anesthetic molecules display a bimodal distribution along the membrane normal with maxima located close to the lipid-water interface region. We have studied how halothane molecules fluctuate between the two maxima of the bimodal distribution and we observed a different mechanism at low and high anesthetic concentrations. Through the investigation of the reorientational motions of the lipid tails, we found that the anesthetic molecules increase the segmental order of the lipids close to the membrane surface. 相似文献
10.
11.
《生物化学与生物物理学报:生物膜》2015,1848(4):1032-1040
Melatonin is a hormone that has been shown to have protective effects in several diseases that are associated with cholesterol dysregulation, including cardiovascular disease, Alzheimer's disease, and certain types of cancers. We studied the interaction of melatonin with model membranes made of dimyristoylphosphatidylcholine (DMPC) at melatonin concentrations ranging from 0.5 mol% to 30 mol%. From 2-dimensional X-ray diffraction measurements, we find that melatonin induces a re-ordering of the lipid membrane that is strongly dependent on the melatonin concentration. At low melatonin concentrations, we observe the presence of melatonin-enriched patches in the membrane, which are significantly thinner than the lipid bilayer. The melatonin molecules were found to align parallel to the lipid tails in these patches. At high melatonin concentrations of 30 mol%, we observe a highly ordered melatonin structure that is uniform throughout the membrane, where the melatonin molecules align parallel to the bilayers and one melatonin molecule associates with 2 lipid molecules. Understanding the organization and interactions of melatonin in membranes, and how these are dependent on the concentration, may shed light into its anti-amyloidogenic, antioxidative and photoprotective properties and help develop a structural basis for these properties. 相似文献
12.
The permeability of lipid membranes to non-electrolytes 总被引:2,自引:0,他引:2
13.
The impact of peptides on lipid membranes 总被引:1,自引:0,他引:1
We review the fundamental strategies used by small peptides to associate with lipid membranes and how the different strategies impact on the structure and dynamics of the lipids. In particular we focus on the binding of amphiphilic peptides by electrostatic and hydrophobic forces, on the anchoring of peptides to the bilayer by acylation and prenylation, and on the incorporation of small peptides that form well-defined channels. The effect of lipid-peptide interactions on the lipids is characterized in terms of lipid acyl-chain order, membrane thickness, membrane elasticity, permeability, lipid-domain and annulus formation, as well as acyl-chain dynamics. The different situations are illustrated by specific cases for which experimental observations can be interpreted and supplemented by theoretical modeling and simulations. A comparison is made with the effect on lipids of trans-membrane proteins. The various cases are discussed in the context of the possible roles played by lipid-peptide interactions for the biological, physiological, and pharmacological function of peptides. 相似文献
14.
The concept of lipid domains in membranes 总被引:12,自引:6,他引:12
《The Journal of cell biology》1982,94(1):1-6
15.
The lipid composition of rat-liver plasma membranes 总被引:17,自引:0,他引:17
16.
17.
We consider the influence of the molecular structure of phospholipid membranes on their dielectric properties in the radio frequency range. Membranes have a stratified dielectric structure on the submolecular level, with the lipid chains forming a central hydrophobic layer enclosed by the polar headgroups (HGs) and bound water layers. In our numerical model, isotropic permittivities of 2.2 and 48.8 were assigned to the lipid chain and bound water layers, respectively. The HG region was assumed to possess an anisotropic static permittivity with 142.2 and 30.2 in the tangential and normal directions, respectively. The permittivities of the HG and bound water regions have been assumed to disperse at frequencies around 51 and 345 MHz to become 2.2 and 1.8, respectively, in both the normal and tangential directions. Electric field distribution and absorption were calculated for phospholipid vesicles with 75 nm radius as an example. Significant absorption has been obtained in the HG and bound water regions. Averaging the membrane absorption over the layers resulted in a decreased absorption below 1 GHz but a more than 10-fold increase above 1 GHz, compared to a model with a homogeneous membrane of averaged properties. We propose single particle dielectric spectroscopy by AC electrokinetics at low-bulk medium conductivities for an experimental verification of our model. 相似文献
18.
Molecular simulations leading to sensors for the detection of explosive compounds require force field parameters that can reproduce the mechanical and vibrational properties of energetic materials. We developed precise harmonic force fields for alanine polypeptides and glycine oligopeptides using the FUERZA procedure that uses the Hessian tensor (obtained from ab initio calculations) to calculate precise parameters. In this work, we used the same procedure to calculate generalized force field parameters of several nitro compounds. We found a linear relationship between force constant and bond distance. The average angle in the nitro compounds was 116°, excluding the 90° angle of the carbon atoms in the octanitrocubane. The calculated parameters permitted the accurate molecular modeling of nitro compounds containing many functional groups. Results were acceptable when compared with others obtained using methods that are specific for one type of molecule, and much better than others obtained using methods that are too general (these ignore the chemical effects of surrounding atoms on the bonding and therefore the bond strength, which affects the mechanical and vibrational properties of the whole molecule). 相似文献
19.
0.15 M inorganic phosphate dramatically increased the α-helix content of melittin in aqueous solution.When melittin interacted with egg yolk phosphatidylcholine liposomes in the absence of inorganic phosphate, it was converted to an α-helix rich form, as postulated by Dawson et al. (Dawson, C.R., Drake, A.F. Helliwell, J. and Hider, R.C. (1978) Biochim. Biophys. Acta 510, 75–86). 相似文献