首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Under appropriate culture conditions, undifferentiated embryonic stem (ES) cells can undergo multiple self-renewal cycles without loss of pluripotency suggesting they must be equipped with specific defense mechanisms to ensure sufficient genetic stability during self-renewal expansion. The ATP binding cassette transporter ABCG2 is expressed in a wide variety of somatic and embryonic stem cells. However, whether it plays an important role in stem cell maintenance remains to be defined.

Methodology/Principal Findings

Here we provide evidence to show that an increase in the level of ABCG2 was observed accompanied by ES colony expansion and then were followed by decreases in the level of protoporphyrin IX (PPIX) indicating that ABCG2 plays a role in maintaining porphyrin homoeostasis. RNA-interference mediated inhibition of ABCG2 as well as functional blockage of ABCG2 transporter with fumitremorgin C (FTC), a specific and potent inhibitor of ABCG2, not only elevated the cellular level of PPIX, but also arrest the cell cycle and reduced expression of the pluripotent gene Nanog. Overexpression of ABCG2 in ES cells was able to counteract the increase of endogenous PPIX induced by treatment with 5-Aminolevulinic acid suggesting ABCG2 played a direct role in removal of PPIX from ES cells. We also found that excess PPIX in ES cells led to elevated levels of reactive oxygen species which in turn triggered DNA damage signals as indicated by increased levels of γH2AX and phosphorylated p53. The increased level of p53 reduced Nanog expression because RNA- interference mediated inhibition of p53 was able to prevent the downregulation of Nanog induced by FTC treatment.

Conclusions/Significance

The present work demonstrated that ABCG2 protects ES cells from PPIX accumulation during colony expansion, and that p53 and γH2AX acts as a downstream checkpoint of ABCG2-dependent defense machinery in order to maintain the self-renewal of ES cells.  相似文献   

3.

Background

Cancer stem cells (CSCs) can proliferate and self-renew extensively due to their ability to express anti-apoptotic and drug resistant proteins, thus sustaining tumor growth. Therefore, the strategy to eradicate CSCs might have significant clinical implications. The objectives of this study were to examine the molecular mechanisms by which resveratrol inhibits stem cell characteristics of pancreatic CSCs derived from human primary tumors and KrasG12D transgenic mice.

Methodology/Principal Findings

Human pancreatic CSCs (CD133+CD44+CD24+ESA+) are highly tumorigenic and form subcutaneous tumors in NOD/SCID mice. Human pancreatic CSCs expressing high levels of CD133, CD24, CD44, ESA, and aldehyde dehydrogenase also express significantly more Nanog, Oct-4, Notch1, MDR1 and ABCG2 than normal pancreatic tissues and primary pancreatic cancer cells. Similarly, CSCs from KrasG12D mice express significantly higher levels of Nanog and Oct-4 than pancreatic tissues from Pdx-Cre mice. Resveratrol inhibits the growth (size and weight) and development (PanIN lesions) of pancreatic cancer in KrasG12D mice. Resveratrol inhibits the self-renewal capacity of pancreatic CSCs derived from human primary tumors and KrasG12D mice. Resveratrol induces apoptosis by activating capase-3/7 and inhibiting the expression of Bcl-2 and XIAP in human CSCs. Resveratrol inhibits pluripotency maintaining factors (Nanog, Sox-2, c-Myc and Oct-4) and drug resistance gene ABCG2 in CSCs. Inhibition of Nanog by shRNA enhances the inhibitory effects of resveratrol on self-renewal capacity of CSCs. Finally, resveratrol inhibits CSC''s migration and invasion and markers of epithelial-mesenchymal transition (Zeb-1, Slug and Snail).

Conclusions/Significance

These data suggest that resveratrol inhibits pancreatic cancer stem cell characteristics in human and KrasG12D transgenic mice by inhibiting pluripotency maintaining factors and epithelial-mesenchymal transition. In conclusion, resveratrol can be used for the management of pancreatic cancer.  相似文献   

4.
Liu WH  Wang X  You N  Tao KS  Wang T  Tang LJ  Dou KF 《PloS one》2012,7(4):e35720

Background

Because few definitive markers are available for hepatic cancer stem cells (HCSCs), based on physical rather than immunochemical properties, we applied a novel method to enrich HCSCs.

Methodology

After hepatic tumor cells (HTCs) were first isolated from diethylinitrosamine-induced F344 rat HCC model using percoll discontinuous gradient centrifugation (PDGC) and purified via differential trypsinization and differential attachment (DTDA), they were separated into four fractions using percoll continuous gradient centrifugation (PCGC) and sequentially designated as fractions I–IV (FI–IV). Morphological characteristics, mRNA and protein levels of stem cell markers, proliferative abilities, induced differentiation, in vitro migratory capacities, in vitro chemo-resistant capacities, and in vivo malignant capacities were determined for the cells of each fraction.

Findings

As the density of cells increased, 22.18%, 11.62%, 4.73% and 61.47% of primary cultured HTCs were segregated in FI–FIV, respectively. The cells from FIII (density between 1.041 and 1.062 g/ml) displayed a higher nuclear-cytoplasmic ratio and fewer organelles and expressed higher levels of stem cell markers (AFP, EpCAM and CD133) than cells from other fractions (P<0.01). Additionally, in vitro, the cells from FIII showed a greater capacity to self-renew, differentiate into mature HTCs, transit across membranes, close scratches, and carry resistance to chemotherapy than did cells from any other fraction; in vivo, injection of only 1×104 cells from FIII could generate tumors not only in subcutaneous tissue but also in the livers of nude mice.

Conclusions

Through our novel method, HCSC-like cells were successfully enriched in FIII. This study will greatly contribute to two important areas of biological interest: CSC isolation and HCC therapy.  相似文献   

5.
Bonde S  Chan KM  Zavazava N 《PloS one》2008,3(9):e3212

Background

Bone marrow cells induce stable mixed chimerism under appropriate conditioning of the host, mediating the induction of transplantation tolerance. However, their strong immunogenicity precludes routine use in clinical transplantation due to the need for harsh preconditioning and the requirement for toxic immunosuppression to prevent rejection and graft-versus-host disease. Alternatively, embryonic stem (ES) cells have emerged as a potential source of less immunogenic hematopoietic progenitor cells (HPCs). Up till now, however, it has been difficult to generate stable hematopoietic cells from ES cells.

Methodology/Principal Findings

Here, we derived CD45+ HPCs from HOXB4-transduced ES cells and showed that they poorly express MHC antigens. This property allowed their long-term engraftment in sublethally irradiated recipients across MHC barriers without the need for immunosuppressive agents. Although donor cells declined in peripheral blood over 2 months, low level chimerism was maintained in the bone marrow of these mice over 100 days. More importantly, chimeric animals were protected from rejection of donor-type cardiac allografts.

Conclusions

Our data show, for the first time, the efficacy of ES-derived CD45+ HPCs to engraft in allogenic recipients without the use of immunosuppressive agents, there by protecting cardiac allografts from rejection.  相似文献   

6.
7.
8.
Yang H  Zhai G  Ji X  Xiong F  Su J  McNutt MA 《PloS one》2012,7(4):e34984

Background

Lysosomal protein transmembrane 4 beta (LAPTM4B) is a gene related to hepatocellular carcinoma that has two alleles designated LAPTM4B*1 and LAPTM4B*2. This study aimed to investigate the correlation of LAPTM4B genotype with prognosis and clinicopathologic features in patients who have undergone resection for hepatocellular carcinoma (HCC).

Methodology/Principal Findings

The LAPTM4B genotype was analyzed by PCR in 68 patients who had undergone curative hepatic resection for hepatocellular carcinoma. The correlation of LAPTM4B genotype with clinicopathologic parameters was assessed with the Chi-squared test. Differences in patient survival were determined by the Kaplan–Meier method. Multivariate analysis of prognostic factors was carried out with Cox regression analysis. Patients with LAPTM4B *2 had both significantly shorter overall survival (OS) and shorter disease-free survival (DFS) (both P<0.001). Multivariate analysis showed that LAPTM4B genotype is an independent prognostic factor for OS and DFS (both P<0.001).

Conclusions/Significance

Allele *2 of LAPTM4B is a risk factor associated with poor prognosis in patients with resected HCC. LAPTM4B status may be useful preoperatively as an adjunct in evaluation of the operability of HCC.  相似文献   

9.

Background

Various prognostic serum and cellular markers have been identified for many diseases, such as cardiovascular diseases and tumor pathologies. Here we assessed whether the levels of certain stem cells may predict the progression of Duchenne muscular dystrophy (DMD).

Methods and Findings

The levels of several subpopulations of circulating stem cells expressing the CD133 antigen were determined by flow cytometry in 70 DMD patients. The correlation between the levels and clinical status was assessed by statistical analysis. The median (±SD) age of the population was 10.66±3.81 (range 3 to 20 years). The levels of CD133+CXCR4+CD34- stem cells were significantly higher in DMD patients compared to healthy controls (mean±standard deviation: 17.38±1.38 vs. 11.0±1.70; P = 0.03) with a tendency towards decreased levels in older patients. Moreover, the levels of this subpopulation of cells correlated with the clinical condition. In a subgroup of 19 DMD patients after 24 months of follow-up, increased levels of CD133+CXCR4+CD34- cells was shown to be associated with a phenotype characterised by slower disease progression. The circulating CD133+CXCR4+CD34- cells in patients from different ages did not exhibit significant differences in their myogenic and endothelial in vitro differentiation capacity.

Conclusions

Our results suggest that levels of CD133+CXCR4+CD34- could function as a new prognostic clinical marker for the progression of DMD.  相似文献   

10.
Li CX  Shao Y  Ng KT  Liu XB  Ling CC  Ma YY  Geng W  Fan ST  Lo CM  Man K 《PloS one》2012,7(2):e32380

Background

Surgical procedures such as liver resection and liver transplantation are the first-line treatments for hepatocellular carcinoma (HCC) patients. However, the high incidence of tumor recurrence and metastasis after liver surgery remains a major problem. Recent studies have shown that hepatic ischemia-reperfusion (I/R) injury and endothelial progenitor cells (EPCs) contribute to tumor growth and metastasis. We aim to investigate the mechanism of FTY720, which was originally applied as an immunomodulator, on suppression of liver tumor metastasis after liver resection and partial hepatic I/R injury.

Methodology/Principal Findings

An orthotopic liver tumor model in Buffalo rat was established using the hepatocellular carcinoma cell line McA-RH7777. Two weeks after orthotopic liver tumor implantation, the rats underwent liver resection for tumor-bearing lobe and partial hepatic I/R injury. FTY720 (2 mg/kg) was administered through the inferior caval vein before and after I/R injury. Blood samples were taken at days 0, 1, 3, 7, 14, 21 and 28 for detection of circulating EPCs (CD133+CD34+). Our results showed that intrahepatic and lung metastases were significantly inhibited together with less tumor angiogenesis by FTY720 treatment. The number of circulating EPCs was also significantly decreased by FTY720 treatment from day 7 to day 28. Hepatic gene expressions of CXCL10, VEGF, CXCR3, CXCR4 induced by hepatic I/R injury were down-regulated in the treatment group.

Conclusions/Significance

FTY720 suppressed liver tumor metastasis after liver resection marred by hepatic I/R injury in a rat liver tumor model by attenuating hepatic I/R injury and reducing circulating EPCs.  相似文献   

11.
Huang C  Gu H  Yu Q  Manukyan MC  Poynter JA  Wang M 《PloS one》2011,6(12):e29246

Background

Cardiac stem cells (CSCs) promote myocardial recovery following ischemia through their regenerative properties. However, little is known regarding the implication of paracrine action by CSCs in the setting of myocardial ischemia/reperfusion (I/R) injury although it is well documented that non-cardiac stem cells mediate cardioprotection via the production of paracrine protective factors. Here, we studied whether CSCs could initiate acute protection following global myocardial I/R via paracrine effect and what component from CSCs is critical to this protection.

Methodology/Principal Findings

A murine model of global myocardial I/R was utilized to investigate paracrine effect of Sca-1+ CSCs on cardiac function. Intracoronary delivery of CSCs or CSC conditioned medium (CSC CM) prior to ischemia significantly improved myocardial function following I/R. siRNA targeting of VEGF in CSCs did not affect CSC-preserved myocardial function in response to I/R injury. However, differentiation of CSCs to cardiomyocytes (DCSCs) abolished this protection. Through direct comparison of the protein expression profiles of CSCs and DCSCs, SDF-1 was identified as one of the dominant paracrine factors secreted by CSCs. Blockade of the SDF-1 receptor by AMD3100 or downregulated SDF-1 expression in CSCs by specific SDF-1 siRNA dramatically impaired CSC-induced improvement in cardiac function and increased myocardial damage following I/R. Of note, CSC treatment increased myocardial STAT3 activation after I/R, whereas downregulation of SDF-1 action by blockade of the SDF-1 receptor or SDF-1 siRNA transfection abolished CSC-induced STAT3 activation. In addition, inhibition of STAT3 activation attenuated CSC-mediated cardioprotection following I/R. Finally, post-ischemic infusion of CSC CM was shown to significantly protect I/R-caused myocardial dysfunction.

Conclusions/Significance

This study suggests that CSCs acutely improve post-ischemic myocardial function through paracrine factor SDF-1 and up-regulated myocardial STAT3 activation.  相似文献   

12.
13.

Background

In mouse models, natural killer (NK) cells have been shown to exert anti-fibrotic activity via killing of activated hepatic stellate cells (HSC). Chemokines and chemokine receptors critically modulate hepatic recruitment of NK cells. In hepatitis C, the chemokine receptor CXCR3 and its ligands have been shown to be associated with stage of fibrosis suggesting a role of these chemokines in HCV associated liver damage by yet incompletely understood mechanisms. Here, we analyzed phenotype and function of CXCR3 expressing NK cells in chronic hepatitis C.

Methods

Circulating NK cells from HCV-infected patients (n = 57) and healthy controls (n = 27) were analyzed with respect to CXCR3 and co-expression of different maturation markers. Degranulation and interferon-γ secretion of CXCR3(+) and CXCR3(−) NK cell subsets were studied after co-incubation with primary human hepatic stellate cells (HSC). In addition, intra-hepatic frequency of CXCR3(+) NK cells was correlated with stage of liver fibrosis (n = 15).

Results

We show that distinct NK cell subsets can be distinguished based on CXCR3 surface expression. In healthy controls CXCR3(+)CD56Bright NK cells displayed strongest activity against HSC. Chronic hepatitis C was associated with a significantly increased frequency of CXCR3(+)CD56Bright NK cells which showed impaired degranulation and impaired IFN-γ secretion in response to HSC. Of note, we observed intra-hepatic accumulation of this NK cell subset in advanced stages of liver fibrosis.

Conclusion

We show that distinct NK cell subsets can be distinguished based on CXCR3 surface expression. Intra-hepatic accumulation of the functionally impaired CXCR3(+)CD56Bright NK cell subset might be involved in HCV-induced liver fibrosis.  相似文献   

14.

Background

ATP-binding cassette (ABC) transporters are essential regulators of organismic homeostasis, and are particularly important in protecting the body from potentially harmful exogenous substances. Recently, an increasing number of in vitro observations have indicated a functional role of ABC transporters in the differentiation and maintenance of stem cells. Therefore, we sought to determine brain-related phenotypic changes in animals lacking the expression of distinct ABC transporters (ABCB1, ABCG2 or ABCC1).

Methodology and Principal Findings

Analyzing adult neurogenesis in ABC transporter-deficient animals in vivo and neuronal stem/progenitor cells in vitro resulted in complex findings. In vivo, the differentiation of neuronal progenitors was hindered in ABC transporter-deficient mice (ABCB10/0) as evidenced by lowered numbers of doublecortin+ (−36%) and calretinin+ (−37%) cells. In vitro, we confirmed that this finding is not connected to the functional loss of single neural stem/progenitor cells (NSPCs). Furthermore, assessment of activity, exploratory behavior, and anxiety levels revealed behavioral alterations in ABCB10/0 and ABCC10/0 mice, whereas ABCG20/0 mice were mostly unaffected.

Conclusion and Significance

Our data show that single ABC transporter-deficiency does not necessarily impair neuronal progenitor homeostasis on the single NSPC level, as suggested by previous studies. However, loss of distinct ABC transporters impacts global brain homeostasis with far ranging consequences, leading to impaired neurogenic functions in vivo and even to distinct behavioral phenotypes. In addition to the known role of ABC transporters in proteopathies such as Parkinson''s disease and Alzheimer''s disease, our data highlight the importance of understanding the general function of ABC transporters for the brain''s homeostasis and the regeneration potential.  相似文献   

15.

Context

Hashimoto''s thyroiditis (HT) and Graves'' disease (GD), two autoimmune thyroid diseases (AITD), occur more frequently in women than in men and show an increased incidence in the years following parturition. Persisting fetal cells could play a role in the development of these diseases.

Objective

Aim of this study was to detect and characterize fetal cells in blood of postpartum women with and without an AITD.

Participants

Eleven patients with an AITD and ten healthy volunteers, all given birth to a son maximum 5 years before analysis, and three women who never had been pregnant, were included. None of them had any other disease of the thyroid which could interfere with the results obtained.

Methods

Fluorescence in situ hybridization (FISH) and repeated FISH were used to count the number of male fetal cells. Furthermore, the fetal cells were further characterized.

Results

In patients with HT, 7 to 11 fetal cells per 1.000.000 maternal cells were detected, compared to 14 to 29 fetal cells in patients with GD (p = 0,0061). In patients with HT, mainly fetal CD8+ T cells were found, while in patients with GD, fetal B and CD4+ T cells were detected. In healthy volunteers with son, 0 to 5 fetal cells were observed, which was significantly less than the number observed in patients (p<0,05). In women who never had been pregnant, no male cells were detected.

Conclusion

This study shows a clear association between fetal microchimeric cells and autoimmune thyroid diseases.  相似文献   

16.
Leung EL  Fiscus RR  Tung JW  Tin VP  Cheng LC  Sihoe AD  Fink LM  Ma Y  Wong MP 《PloS one》2010,5(11):e14062

Background

The cancer stem cell theory hypothesizes that cancers are perpetuated by cancer stem cells (CSC) or tumor initiating cells (TIC) possessing self-renewal and other stem cell-like properties while differentiated non-stem/initiating cells have a finite life span. To investigate whether the hypothesis is applicable to lung cancer, identification of lung CSC and demonstration of these capacities is essential.

Methodology/Principal Finding

The expression profiles of five stem cell markers (CD34, CD44, CD133, BMI1 and OCT4) were screened by flow cytometry in 10 lung cancer cell lines. CD44 was further investigated by testing for in vitro and in vivo tumorigenecity. Formation of spheroid bodies and in vivo tumor initiation ability were demonstrated in CD44+ cells of 4 cell lines. Serial in vivo tumor transplantability in nude mice was demonstrated using H1299 cell line. The primary xenografts initiated from CD44+ cells consisted of mixed CD44+ and CD44 cells in similar ratio as the parental H1299 cell line, supporting in vivo differentiation. Semi-quantitative Real-Time PCR (RT-PCR) showed that both freshly sorted CD44+ and CD44+ cells derived from CD44+-initiated tumors expressed the pluripotency genes OCT4/POU5F1, NANOG, SOX2. These stemness markers were not expressed by CD44 cells. Furthermore, freshly sorted CD44+ cells were more resistant to cisplatin treatment with lower apoptosis levels than CD44 cells. Immunohistochemical analysis of 141 resected non-small cell lung cancers showed tumor cell expression of CD44 in 50.4% of tumors while no CD34, and CD133 expression was observed in tumor cells. CD44 expression was associated with squamous cell carcinoma but unexpectedly, a longer survival was observed in CD44-expressing adenocarcinomas.

Conclusion/Significance

Overall, our results demonstrated that stem cell-like properties are enriched in CD44-expressing subpopulations of some lung cancer cell lines. Further investigation is required to clarify the role of CD44 in tumor cell renewal and cancer propagation in the in vivo environment.  相似文献   

17.
Chen SF  Chang YC  Nieh S  Liu CL  Yang CY  Lin YS 《PloS one》2012,7(2):e31864

Background

Cancer stem cells (CSCs) play an important role in tumor initiation, progression, and metastasis and are responsible for high therapeutic failure rates. Identification and characterization of CSC are crucial for facilitating the monitoring, therapy, or prevention of cancer. Great efforts have been paid to develop a more effective methodology. Nevertheless, the ideal model for CSC research is still evolving. In this study, we created a nonadhesive culture system to enrich CSCs from human oral squamous cell carcinoma cell lines with sphere formation and to characterize their CSC properties further.

Methods

A nonadhesive culture system was designed to generate spheres from the SAS and OECM-1 cell lines. A subsequent investigation of their CSC properties, including stemness, self-renewal, and chemo- and radioresistance in vitro, as well as tumor initiation capacity in vivo, was also performed.

Results

Spheres were formed cost-effectively and time-efficiently within 5 to 7 days. Moreover, we proved that these spheres expressed putative stem cell markers and exhibited chemoradiotherapeutic resistance, in addition to tumor-initiating and self-renewal capabilities.

Conclusions

Using this nonadhesive culture system, we successfully established a rapid and cost-effective model that exhibits the characteristics of CSCs and can be used in cancer research.  相似文献   

18.

Background

ABCB5 is a member of the ABC protein superfamily, which includes the transporters ABCB1, ABCC1 and ABCG2 responsible for causing drug resistance in cancer patients and also several other transporters that have been linked to human disease. The ABCB5 full transporter (ABCB5.ts) is expressed in human testis and its functional significance is presently unknown. Another variant of this transporter, ABCB5 beta posses a “half-transporter-like” structure and is expressed in melanoma stem cells, normal melanocytes, and other types of pigment cells. ABCB5 beta has important clinical implications, as it may be involved with multidrug resistance in melanoma stem cells, allowing these stem cells to survive chemotherapeutic regimes.

Methodology/Principal Findings

We constructed and examined in detail topological structures of the human ABCB5 protein and determined in-silico the cSNPs (coding single nucleotide polymorphisms) that may affect its function. Evolutionary analysis of ABCB5 indicated that ABCB5, ABCB1, ABCB4, and ABCB11 share a common ancestor, which began duplicating early in the evolutionary history of chordates. This suggests that ABCB5 has evolved as a full transporter throughout its evolutionary history.

Conclusions/Significance

From our in-silco analysis of cSNPs we found that a large number of non-synonymous cSNPs map to important functional regions of the protein suggesting that these SNPs if present in human populations may play a role in diseases associated with ABCB5. From phylogenetic analyses, we have shown that ABCB5 evolved as a full transporter throughout its evolutionary history with an absence of any major shifts in selection between the various lineages suggesting that the function of ABCB5 has been maintained during mammalian evolution. This finding would suggest that ABCB5 beta may have evolved to play a specific role in human pigment cells and/or melanoma cells where it is predominantly expressed.  相似文献   

19.

Background

Cancer stem cells/initiating cells (CSC/CIC), are thought to exist as a small population in malignant tissues. They are resistant to conventional cancer treatments and possibly underlie post-treatment relapse. The CIC population can be targeted with capsid modified oncolytic adenoviruses.

Methodology/Principal Findings

We studied the mechanisms of innate immunity to oncolytic adenovirus Ad5/3-Delta24 in conventional treatment resistant non-CIC breast cancer cells, breast cancer CD44+/CD24−/low CIC population and normal breast tissue CD44+/CD24−/low stem cells. We compared virus recognition by pattern recognition receptors for adenovirus, Toll-like receptors (TLR) 2 and 9 and virus induced type I interferon (IFN) response regulation in these cell types. We show TLR mediated virus recognition in these non-immune cell types. Normal tissue stem cells have intact type I IFN signaling. Furthermore, TLR9 and TLR2 reside constantly in recognition sites, implying constant activation. In contrast, breast cancer CD44+/CD24−/low CIC have dysregulated innate immune responses featuring dysfunctional virus recognition caused by impaired trafficking of TLR9 and cofactor MyD88 and the absence of TLR2, having a deleterious impact on TLR pattern recognition receptor signaling. Furthermore, the CIC have increased inhibitory signaling via the suppressor of cytokine signaling/Tyro3/Axl/Mer receptor tyrosine kinase (SOCS/TAM) pathway. These defects in contribute to dysfunctional induction of type I IFN response in CIC and therefore permissivity to oncolytic adenovirus.

Conclusions/Significance

CICs may underlie the incurable nature of relapsed or metastatic cancers and are therefore an important target regarding diagnostic and prognostic aspects as well as treatment of the disease. This study addresses the mechanisms of innate infection immunity in stem cells deepening the understanding of stem cell biology and may benefit not only virotherapy but also immunotherapy in general.  相似文献   

20.
Chan SS  Li HJ  Hsueh YC  Lee DS  Chen JH  Hwang SM  Chen CY  Shih E  Hsieh PC 《PloS one》2010,5(12):e14414

Background

The fibroblast growth factor (FGF) family is essential to normal heart development. Yet, its contribution to cardiomyocyte differentiation from stem cells has not been systemically studied. In this study, we examined the mechanisms and characters of cardiomyocyte differentiation from FGF family protein treated embryonic stem (ES) cells and induced pluripotent stem (iPS) cells.

Methodology/Principal Findings

We used mouse ES cells stably transfected with a cardiac-specific α-myosin heavy chain (αMHC) promoter-driven enhanced green fluorescent protein (EGFP) and mouse iPS cells to investigate cardiomyocyte differentiation. During cardiomyocyte differentiation from mouse ES cells, FGF-3, -8, -10, -11, -13 and -15 showed an expression pattern similar to the mesodermal marker Brachyury and the cardiovascular progenitor marker Flk-1. Among them, FGF-10 induced cardiomyocyte differentiation in a time- and concentration-dependent manner. FGF-10 neutralizing antibody, small molecule FGF receptor antagonist PD173074 and FGF-10 and FGF receptor-2 short hairpin RNAs inhibited cardiomyocyte differentiation. FGF-10 also increased mouse iPS cell differentiation into cardiomyocyte lineage, and this effect was abolished by FGF-10 neutralizing antibody or PD173074. Following Gene Ontology analysis, microarray data indicated that genes involved in cardiac development were upregulated after FGF-10 treatment. In vivo, intramyocardial co-administration of FGF-10 and ES cells demonstrated that FGF-10 also promoted cardiomyocyte differentiation.

Conclusion/Significance

FGF-10 induced cardiomyocyte differentiation from ES cells and iPS cells, which may have potential for translation into clinical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号