首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intrinsically disordered proteins (IDPs) lack a well-defined three-dimensional structure under physiological conditions. Intrinsic disorder is a common phenomenon, particularly in multicellular eukaryotes, and is responsible for important protein functions including regulation and signaling. Many disease-related proteins are likely to be intrinsically disordered or to have disordered regions. In this paper, a new predictor model based on the Bayesian classification methodology is introduced to predict for a given protein or protein region if it is intrinsically disordered or ordered using only its primary sequence. The method allows to incorporate length-dependent amino acid compositional differences of disordered regions by including separate statistical representations for short, middle and long disordered regions. The predictor was trained on the constructed data set of protein regions with known structural properties. In a Jack-knife test, the predictor achieved the sensitivity of 89.2% for disordered and 81.4% for ordered regions. Our method outperformed several reported predictors when evaluated on the previously published data set of Prilusky et al. [2005. FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 21 (16), 3435-3438]. Further strength of our approach is the ease of implementation.  相似文献   

2.
Serine/arginine-rich (SR) splicing factors play an important role in constitutive and alternative splicing as well as during several steps of RNA metabolism. Despite the wealth of functional information about SR proteins accumulated to-date, structural knowledge about the members of this family is very limited. To gain a better insight into structure-function relationships of SR proteins, we performed extensive sequence analysis of SR protein family members and combined it with ordered/disordered structure predictions. We found that SR proteins have properties characteristic of intrinsically disordered (ID) proteins. The amino acid composition and sequence complexity of SR proteins were very similar to those of the disordered protein regions. More detailed analysis showed that the SR proteins, and their RS domains in particular, are enriched in the disorder-promoting residues and are depleted in the order-promoting residues as compared to the entire human proteome. Moreover, disorder predictions indicated that RS domains of SR proteins were completely unstructured. Two different classification methods, the charge-hydropathy measure and the cumulative distribution function (CDF) of the disorder scores, were in agreement with each other, and they both strongly predicted members of the SR protein family to be disordered. This study emphasizes the importance of the disordered structure for several functions of SR proteins, such as for spliceosome assembly and for interaction with multiple partners. In addition, it demonstrates the usefulness of order/disorder predictions for inferring protein structure from sequence.  相似文献   

3.
Hidetoshi Kono  Junta Doi 《Proteins》1994,19(3):244-255
Globular proteins have high packing densities as a result of residue side chains in the core achieving a tight, complementary packing. The internal packing is considered the main determinant of native protein structure. From that point of view, we present here a method of energy minimization using an automata network to predict a set of amino acid sequences and their side-chain conformations from a desired backbone geometry for de novo design of proteins. Using discrete side-chain conformations, that is, rotamers, the sequence generation problem from a given backbone geometry becomes one of combinatorial problems. We focused on the residues composing the interior core region and predicted a set of amino acid Sequences and their side-chain conformations only from a given backbone geometry. The kinds of residues were restricted to six hydrophobic amino acids (Ala, Ile, Met, Leu, Phe, and Val) because the core regions are almost always composed of hydrophobic residues. The obtained sequences were well packed as was the native sequence. The method can be used for automated sequence generation in the de novo design of proteins. © 1994 Wiley-Liss, Inc.  相似文献   

4.
Intrinsically disordered proteins are an important class of proteins with unique functions and properties. Here, we have applied a support vector machine (SVM) trained on naturally occurring disordered and ordered proteins to examine the contribution of various parameters (vectors) to recognizing proteins that contain disordered regions. We find that a SVM that incorporates only amino acid composition has a recognition accuracy of 87+/-2%. This result suggests that composition alone is sufficient to accurately recognize disorder. Interestingly, SVMs using reduced sets of amino acids based on chemical similarity preserve high recognition accuracy. A set as small as four retains an accuracy of 84+/-2%; this suggests that general physicochemical properties rather than specific amino acids are important factors contributing to protein disorder.  相似文献   

5.
Numerous studies have demonstrated that the propensity of a protein to form amyloids or amorphous aggregates is encoded by its amino acid sequence. This led to the emergence of several computational programs to predict amyloidogenicity from amino acid sequences. However, a growing number of studies indicate that an accurate prediction of the protein aggregation can only be achieved when also accounting for the overall structural context of the protein, and the likelihood of transition between the initial state and the aggregate. Here, we describe a computational pipeline called TAPASS, which was designed to do just that. The pipeline assigns each residue of a protein as belonging to a structured region or an intrinsically disordered region (IDR). For this purpose, TAPASS uses either several state-of-the-art programs for prediction of IDRs, of transmembrane regions and of structured domains or the artificial intelligence program AlphaFold. In the next step, this assignment is crossed with amyloidogenicity prediction. As a result, TAPASS allows the detection of Exposed Amyloidogenic Regions (EARs) located within intrinsically disordered regions (IDRs) and carrying high amyloidogenic potential. TAPASS can substantially improve the prediction of amyloids and be used in proteome-wide analysis to discover new amyloid-forming proteins. Its results, combined with clinical data, can create individual risk profiles for different amyloidoses, opening up new opportunities for personalised medicine. The architecture of the pipeline is designed so that it makes it easy to add new individual predictors as they become available. TAPASS can be used through the web interface (https://bioinfo.crbm.cnrs.fr/index.php?route=tools&tool=32).  相似文献   

6.
Flavors of protein disorder   总被引:1,自引:0,他引:1  
Intrinsically disordered proteins are characterized by long regions lacking 3-D structure in their native states, yet they have been so far associated with 28 distinguishable functions. Previous studies showed that protein predictors trained on disorder from one type of protein often achieve poor accuracy on disorder of proteins of a different type, thus indicating significant differences in sequence properties among disordered proteins. Important biological problems are identifying different types, or flavors, of disorder and examining their relationships with protein function. Innovative use of computational methods is needed in addressing these problems due to relative scarcity of experimental data and background knowledge related to protein disorder. We developed an algorithm that partitions protein disorder into flavors based on competition among increasing numbers of predictors, with prediction accuracy determining both the number of distinct predictors and the partitioning of the individual proteins. Using 145 variously characterized proteins with long (>30 amino acids) disordered regions, 3 flavors, called V, C, and S, were identified by this approach, with the V subset containing 52 segments and 7743 residues, C containing 39 segments and 3402 residues, and S containing 54 segments and 5752 residues. The V, C, and S flavors were distinguishable by amino acid compositions, sequence locations, and biological function. For the sequences in SwissProt and 28 genomes, their protein functions exhibit correlations with the commonness and usage of different disorder flavors, suggesting different flavor-function sets across these protein groups. Overall, the results herein support the flavor-function approach as a useful complement to structural genomics as a means for automatically assigning possible functions to sequences.  相似文献   

7.
Intrinsically disordered proteins (IDPs) are crucial players in various cellular activities. Several experimental and computational analyses have been conducted to study structural pliability and functional potential of IDPs. In spite of active research in past few decades, what induces structural disorder in IDPs and how is still elusive. Many studies testify that sequential and spatial neighbours often play important roles in determining structural and functional behaviour of proteins. Considering this fact, we assessed sequence neighbours of intrinsically disordered regions (IDRs) to understand if they have any role to play in inducing structural flexibility in IDPs. Our analysis includes 97% eukaryotic IDPs and 3% from bacteria and viruses. Physicochemical and structural parameters including amino acid propensity, hydrophobicity, secondary structure propensity, relative solvent accessibility, B-factor and atomic packing density are used to characterise the neighbouring residues of IDRs (NRIs). We show that NRIs exhibit a unique nature, which makes them stand out from both ordered and disordered residues. They show correlative occurrences of residue pairs like Ser-Thr and Gln-Asn, indicating their tendency to avoid strong biases of order or disorder promoting amino acids. We also find differential preferences of amino acids between N- and C-terminal neighbours, which might indicate a plausible directional effect on the dynamics of adjacent IDRs. We designed an efficient prediction tool using Random Forest to distinguish the NRIs from the ordered residues. Our findings will contribute to understand the behaviour of IDPs, and may provide potential lead in deciphering the role of IDRs in protein folding and assembly.  相似文献   

8.
Many large-scale studies on intrinsically disordered proteins are implicitly based on the structural models deposited in the Protein Data Bank. Yet, the static nature of deposited models supplies little insight into variation of protein structure and function under diverse cellular and environmental conditions. While the computational predictability of disordered regions provides practical evidence that disorder is an intrinsic property of proteins, the robustness of disordered regions to changes in sequence or environmental conditions has not been systematically studied. We analyzed intrinsically disordered regions in the same or similar proteins crystallized independently and studied their sensitivity to changes in protein sequence and parameters of crystallographic experiments. The observed changes in the existence, position, and length of disordered regions indicate that their appearance in X-ray structures dramatically depends on changes in amino acid sequence and peculiarities of the crystallographic experiment. Our study also raises general questions regarding protein evolution and the regulation of protein structure, dynamics, and function via variations in cellular and environmental conditions.  相似文献   

9.
Identifying relationships between function, amino acid sequence, and protein structure represents a major challenge. In this study, we propose a bioinformatics approach that identifies functional keywords in the Swiss-Prot database that correlate with intrinsic disorder. A statistical evaluation is employed to rank the significance of these correlations. Protein sequence data redundancy and the relationship between protein length and protein structure were taken into consideration to ensure the quality of the statistical inferences. Over 200,000 proteins from the Swiss-Prot database were analyzed using this approach. The predictions of intrinsic disorder were carried out using PONDR VL3E predictor of long disordered regions that achieves an accuracy of above 86%. Overall, out of the 710 Swiss-Prot functional keywords that were each associated with at least 20 proteins, 238 were found to be strongly positively correlated with predicted long intrinsically disordered regions, whereas 302 were strongly negatively correlated with such regions. The remaining 170 keywords were ambiguous without strong positive or negative correlation with the disorder predictions. These functions cover a large variety of biological activities and imply that disordered regions are characterized by a wide functional repertoire. Our results agree well with literature findings, as we were able to find at least one illustrative example of functional disorder or order shown experimentally for the vast majority of keywords showing the strongest positive or negative correlation with intrinsic disorder. This work opens a series of three papers, which enriches the current view of protein structure-function relationships, especially with regards to functionalities of intrinsically disordered proteins, and provides researchers with a novel tool that could be used to improve the understanding of the relationships between protein structure and function. The first paper of the series describes our statistical approach, outlines the major findings, and provides illustrative examples of biological processes and functions positively and negatively correlated with intrinsic disorder.  相似文献   

10.
Inferring protein functions from structures is a challenging task, as a large number of orphan protein structures from structural genomics project are now solved without their biochemical functions characterized. For proteins binding to similar substrates or ligands and carrying out similar functions, their binding surfaces are under similar physicochemical constraints, and hence the sets of allowed and forbidden residue substitutions are similar. However, it is difficult to isolate such selection pressure due to protein function from selection pressure due to protein folding, and evolutionary relationship reflected by global sequence and structure similarities between proteins is often unreliable for inferring protein function. We have developed a method, called pevoSOAR (pocket-based evolutionary search of amino acid residues), for predicting protein functions by solving the problem of uncovering amino acids residue substitution pattern due to protein function and separating it from amino acids substitution pattern due to protein folding. We incorporate evolutionary information specific to an individual binding region and match local surfaces on a large scale with millions of precomputed protein surfaces to identify those with similar functions. Our pevoSOAR method also generates a probablistic model called the computed binding a profile that characterizes protein-binding activities that may involve multiple substrates or ligands. We show that our method can be used to predict enzyme functions with accuracy. Our method can also assess enzyme binding specificity and promiscuity. In an objective large-scale test of 100 enzyme families with thousands of structures, our predictions are found to be sensitive and specific: At the stringent specificity level of 99.98%, we can correctly predict enzyme functions for 80.55% of the proteins. The overall area under the receiver operating characteristic curve measuring the performance of our prediction is 0.955, close to the perfect value of 1.00. The best Matthews coefficient is 86.6%. Our method also works well in predicting the biochemical functions of orphan proteins from structural genomics projects.  相似文献   

11.
Lise S  Jones DT 《Proteins》2005,58(1):144-150
The relationship between amino acid sequence and intrinsic disorder in proteins is investigated. Two databases, one of disordered proteins and the other of globular proteins, are analyzed and compared in order to extract simple sequence patterns of a few amino acids or amino acid properties that characterize disordered segments. It is found that a number of reliable, nonrandom associations exists. In particular, two types of patterns appear to be recurrent: a proline-rich pattern and a (positively or negatively) charged pattern. These results indicate that local sequence information can determine disordered regions in proteins. The derived patterns provide some insights into the physical reasons for disordered structures. They should also be helpful in improving currently available prediction methods.  相似文献   

12.
13.
MOTIVATION: Partially and wholly unstructured proteins have now been identified in all kingdoms of life--more commonly in eukaryotic organisms. This intrinsic disorder is related to certain critical functions. Apart from their fundamental interest, unstructured regions in proteins may prevent crystallization. Therefore, the prediction of disordered regions is an important aspect for the understanding of protein function, but may also help to devise genetic constructs. RESULTS: In this paper we present a computational tool for the detection of unstructured regions in proteins based on two properties of unfolded fragments: (1) disordered regions have a biased composition and (2) they usually contain either small or no hydrophobic clusters. In order to quantify these two facts we first calculate the amino acid distributions in structured and unstructured regions. Using this distribution, we calculate for a given sequence fragment the probability to be part of either a structured or an unstructured region. For each amino acid, the distance to the nearest hydrophobic cluster is also computed. Using these three values along a protein sequence allows us to predict unstructured regions, with very simple rules. This method requires only the primary sequence, and no multiple alignment, which makes it an adequate method for orphan proteins. AVAILABILITY: http://genomics.eu.org/  相似文献   

14.
More than 60 prediction methods for intrinsically disordered proteins (IDPs) have been developed over the years, many of which are accessible on the World Wide Web. Nearly, all of these predictors give balanced accuracies in the ~65%–~80% range. Since predictors are not perfect, further studies are required to uncover the role of amino acid residues in native IDP as compared to predicted IDP regions. In the present work, we make use of sequences of 100% predicted IDP regions, false positive disorder predictions, and experimentally determined IDP regions to distinguish the characteristics of native versus predicted IDP regions. A higher occurrence of asparagine is observed in sequences of native IDP regions but not in sequences of false positive predictions of IDP regions. The occurrences of certain combinations of amino acids at the pentapeptide level provide a distinguishing feature in the IDPs with respect to globular proteins. The distinguishing features presented in this paper provide insights into the sequence fingerprints of amino acid residues in experimentally determined as compared to predicted IDP regions. These observations and additional work along these lines should enable the development of improvements in the accuracy of disorder prediction algorithm.  相似文献   

15.
We analyzed the mouse forebrain cytosolic phosphoproteome using sequential (protein and peptide) IMAC purifications, enzymatic dephosphorylation, and targeted tandem mass spectrometry analysis strategies. In total, using complementary phosphoenrichment and LC-MS/MS strategies, 512 phosphorylation sites on 540 non-redundant phosphopeptides from 162 cytosolic phosphoproteins were characterized. Analysis of protein domains and amino acid sequence composition of this data set of cytosolic phosphoproteins revealed that it is significantly enriched in intrinsic sequence disorder, and this enrichment is associated with both cellular location and phosphorylation status. The majority of phosphorylation sites found by MS were located outside of structural protein domains (97%) but were mostly located in regions of intrinsic sequence disorder (86%). 368 phosphorylation sites were located in long regions of disorder (over 40 amino acids long), and 94% of proteins contained at least one such long region of disorder. In addition, we found that 58 phosphorylation sites in this data set occur in 14-3-3 binding consensus motifs, linear motifs that are associated with unstructured regions in proteins. These results demonstrate that in this data set protein phosphorylation is significantly depleted in protein domains and significantly enriched in disordered protein sequences and that enrichment of intrinsic sequence disorder may be a common feature of phosphoproteomes. This supports the hypothesis that disordered regions in proteins allow kinases, phosphatases, and phosphorylation-dependent binding proteins to gain access to target sequences to regulate local protein conformation and activity.  相似文献   

16.
Abstract

The Protein Data Bank (PDB) is the preeminent source of protein structural information. PDB contains over 32,500 experimentally determined 3-D structures solved using X-ray crystallography or nuclear magnetic resonance spectroscopy. Intrinsically disordered regions fail to form a fixed 3-D structure under physiological conditions. In this study, we compare the amino-acid sequences of proteins whose structures are determined by X-ray crystallography with the corresponding sequences from the Swiss-Prot database. The analyzed dataset includes 16,370 structures, which represent 18,101 PDB chains and 5,434 different proteins from 910 different organisms (2,793 eukaryotic, 2,109 bacterial, 288 viral, and 244 archaeal). In this dataset, on average, each Swiss-Prot protein is represented by 7 PDB chains with 76% of the crystallized regions being represented by more than one structure. Intriguingly, the complete sequences of only ~7% of proteins are observed in the corresponding PDB structures, and only ~25% of the total dataset have >95% of their lengths observed in the corresponding PDB structures. This suggests that the vast majority of PDB proteins is shorter than their corresponding Swiss-Prot sequences and/or contain numerous residues, which are not observed in maps of electron density. To determine the prevalence of disordered regions in PDB, the residues in the Swiss-Prot sequences were grouped into four general categories, “Observed” (which correspond to structured regions), “Not observed” (regions with missing electron density, potentially disordered), “Uncharacterized,” and “Ambiguous,” depending on their appearance in the corresponding PDB entries. This non-redundant set of residues can be viewed as a ‘fragment’ or empirical domain database that contains a set of experimentally determined structured regions or domains and a set of experimentally verified disordered regions or domains. We studied the propensities and properties of residues in these four categories and analyzed their relations to the predictions of disorder using several algorithms. “Non-observed,” “Ambiguous,” and “Uncharacterized” regions were shown to possess the amino acid compositional biases typical of intrinsically disordered proteins. The application of four different disorder predictors (PONDR® VL-XT, VL3-BA, VSL1P, and IUPred) revealed that the vast majority of residues in the “Observed” dataset are ordered, and that the “Not observed” regions are mostly disordered. The “Uncharacterized” regions possess some tendency toward order, whereas the predictions for the short “Ambiguous” regions are really ambiguous. Long “Ambiguous” regions (>70 amino acid residues) are mostly predicted to be ordered, suggesting that they are likely to be “wobbly” domains.

Overall, we showed that completely ordered proteins are not highly abundant in PDB and many PDB sequences have disordered regions. In fact, in the analyzed dataset ~10% of the PDB proteins contain regions of consecutive missing or ambiguous residues longer than 30 amino-acids and ~40% of the proteins possess short regions (≥10 and <30 amino-acid long) of missing and ambiguous residues.  相似文献   

17.
Many protein regions have been shown to be intrinsically disordered, lacking unique structure under physiological conditions. These intrinsically disordered regions are not only very common in proteomes, but also crucial to the function of many proteins, especially those involved in signaling, recognition, and regulation. The goal of this work was to identify the prevalence, characteristics, and functions of conserved disordered regions within protein domains and families. A database was created to store the amino acid sequences of nearly one million proteins and their domain matches from the InterPro database, a resource integrating eight different protein family and domain databases. Disorder prediction was performed on these protein sequences. Regions of sequence corresponding to domains were aligned using a multiple sequence alignment tool. From this initial information, regions of conserved predicted disorder were found within the domains. The methodology for this search consisted of finding regions of consecutive positions in the multiple sequence alignments in which a 90% or more of the sequences were predicted to be disordered. This procedure was constrained to find such regions of conserved disorder prediction that were at least 20 amino acids in length. The results of this work included 3,653 regions of conserved disorder prediction, found within 2,898 distinct InterPro entries. Most regions of conserved predicted disorder detected were short, with less than 10% of those found exceeding 30 residues in length.  相似文献   

18.
Collapse of unfolded protein chains is an early event in folding. It affects structural properties of intrinsically disordered proteins, which take a considerable fraction of the human proteome. Collapse is generally believed to be driven by hydrophobic forces imposed by the presence of nonpolar amino acid side chains. Contributions from backbone hydrogen bonds to protein folding and stability, however, are controversial. To date, the experimental dissection of side-chain and backbone contributions has not yet been achieved because both types of interactions are integral parts of protein structure. Here, we realized this goal by applying mutagenesis and chemical modification on a set of disordered peptides and proteins. We measured the protein dimensions and kinetics of intra-chain diffusion of modified polypeptides at the level of individual molecules using fluorescence correlation spectroscopy, thereby avoiding artifacts commonly caused by aggregation of unfolded protein material in bulk. We found no contributions from side chains to collapse but, instead, identified backbone interactions as a source sufficient to form globules of native-like dimensions. The presence of backbone hydrogen bonds decreased polypeptide water solubility dramatically and accelerated the nanosecond kinetics of loop closure, in agreement with recent predictions from computer simulation. The presence of side chains, instead, slowed loop closure and modulated the dimensions of intrinsically disordered domains. It appeared that the transient formation of backbone interactions facilitates the diffusive search for productive conformations at the early stage of folding and within intrinsically disordered proteins.  相似文献   

19.

Background  

More and more disordered regions have been discovered in protein sequences, and many of them are found to be functionally significant. Previous studies reveal that disordered regions of a protein can be predicted by its primary structure, the amino acid sequence. One observation that has been widely accepted is that ordered regions usually have compositional bias toward hydrophobic amino acids, and disordered regions are toward charged amino acids. Recent studies further show that employing evolutionary information such as position specific scoring matrices (PSSMs) improves the prediction accuracy of protein disorder. As more and more machine learning techniques have been introduced to protein disorder detection, extracting more useful features with biological insights attracts more attention.  相似文献   

20.

Background

Intrinsically disordered proteins (IDPs) or proteins with disordered regions (IDRs) do not have a well-defined tertiary structure, but perform a multitude of functions, often relying on their native disorder to achieve the binding flexibility through changing to alternative conformations. Intrinsic disorder is frequently found in all three kingdoms of life, and may occur in short stretches or span whole proteins. To date most studies contrasting the differences between ordered and disordered proteins focused on simple summary statistics. Here, we propose an evolutionary approach to study IDPs, and contrast patterns specific to ordered protein regions and the corresponding IDRs.

Results

Two empirical Markov models of amino acid substitutions were estimated, based on a large set of multiple sequence alignments with experimentally verified annotations of disordered regions from the DisProt database of IDPs. We applied new methods to detect differences in Markovian evolution and evolutionary rates between IDRs and the corresponding ordered protein regions. Further, we investigated the distribution of IDPs among functional categories, biochemical pathways and their preponderance to contain tandem repeats.

Conclusions

We find significant differences in the evolution between ordered and disordered regions of proteins. Most importantly we find that disorder promoting amino acids are more conserved in IDRs, indicating that in some cases not only amino acid composition but the specific sequence is important for function. This conjecture is also reinforced by the observation that for of our data set IDRs evolve more slowly than the ordered parts of the proteins, while we still support the common view that IDRs in general evolve more quickly. The improvement in model fit indicates a possible improvement for various types of analyses e.g. de novo disorder prediction using a phylogenetic Hidden Markov Model based on our matrices showed a performance similar to other disorder predictors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号