首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dibenzylbutane and aryltetralone lignans from seeds of Virola sebifera   总被引:2,自引:0,他引:2  
Rezende KR  Kato MJ 《Phytochemistry》2002,61(4):427-432
Two lignans rel-(8R, 8'R)-3,4:3',4'-bis-(methylenedioxy)-7.7'-dioxo-lignan and (7'R,8'S,8S)-2'-hydroxy-3,4:4',5'-bis-(methylenedioxy)-7-oxo-2,7'-cyclolignan were isolated from seeds of Virola sebifera. The cyclolignan showed two atropisomers as determined by 1H NMR spectroscopy at low temperature.  相似文献   

2.
Human serum and tissues contain in excess of 12 dietary carotenoids and several metabolites that originate from consumption of fruits and vegetables. Among these are hydroxycarotenoids: (3R,3'R,6'R)-lutein (1), (3R,3'R)-zeaxanthin (2), (3R,6'R)-α-cryptoxanthin (3), and (3R)-β-cryptoxanthin (4). In addition, several dehydration products of 1 have also been identified in human serum, these are: (3R,6'R)-3-hydroxy-3',4'-didehydro-β,γ-carotene (5), (3R,6'R)-3-hydroxy-2',3'-didehydro-β,ε-carotene (6), and (3R)-3-hydroxy-3',4'-didehydro-β,β-carotene (7). Several metabolites of 1 and/or 2, namely, (3R,3'S,6'R)-lutein (3'-epilutein, 8) and (3R,3'S;meso)-zeaxanthin (9) have also been characterized in human serum and ocular tissues. Semi-synthetic processes have been developed that separately transform commercially available 1 into 4 via 7 as well as 1 into 8. While 8 is converted into 2 by base-catalyzed isomerization, 7 is transformed into 2 and its (3R,3'S;meso)-stereoisomer (9) by regioselective hydroboration.  相似文献   

3.
In addition to sitosterol, syringaldehyde, 3,4,5-trimethoxybenzoic acid, isoelemicin and grandisin, two new tetrahydrofuran lignans were isolated from Piper solmsianun and characterized as rel-(7R,8R,7'R,8'R)-3',4'-methylenedioxy-3,4,5,5'-tetramethoxy-7,7'-epoxylignan and rel-(7R,8R,7'R,8'R)-3,4,3',4'-dimethylenedioxy-5,5'-dimethoxy-7,7'-epoxylignan on the basis of spectroscopic data, including 2D NMR spectrometric techniques. Their in vitro activity were determined against the trypomastigote form of Trypanossoma cruzi.  相似文献   

4.
Four new tetrahydrofuran-type sesquilignans, named bonaspectin A, bonaspectin B, bonaspectin C 4'-beta-glucoside and bonaspectin D 4'-beta-glucoside, as well as two new 8.O.4'-type sesquineolignans, named neobonaspectin A and B, were isolated from the aerial vegetative parts of Bonamia spectabilis (Convolvulaceae), together with the known compound rel-(7S,8S,7'R,8'R)-3,3',4,4',5,5'-hexamethoxy-7.O.7',8.8'-lignan. Their structures were established on the basis of spectral data.  相似文献   

5.
Activated pancreatic stellate cells (PSCs) play major roles in promoting pancreatic fibrosis. We previously reported that angiotensin II (Ang II) enhances activated PSC proliferation through EGF receptor transactivation. In the present study, we elucidated a novel intracellular mechanism by which Ang II stimulates cellular proliferation. TGF-beta1 inhibits activated PSC proliferation via a Smad3 and Smad4-dependent pathway in an autocrine manner. We demonstrated that Ang II inhibited TGF-beta1-induced nuclear accumulation of Smad3 and Smad4. Furthermore, Ang II rapidly induced inhibitory Smad7 mRNA expression. Adenovirus-mediated Smad7 overexpression inhibited TGF-beta1-induced nuclear accumulation of Smad3 and Smad4, and potentiated activated PSC proliferation. PKC inhibitor Go6983 blocked the induction of Smad7 mRNA expression by Ang II. In addition, 12-O-tetradecanoyl-phorbol 13-acetate, a PKC activator, increased Smad7 mRNA expression. These results suggest that Ang II enhances activated PSC proliferation by blocking autocrine TGF-beta1-mediated growth inhibition by inducing Smad7 expression via a PKC-dependent pathway.  相似文献   

6.
Antioxidant lignans from Larrea tridentata   总被引:1,自引:0,他引:1  
Three lignans, (7S,8S,7'S,8'S)-3,3',4'-trihydroxy-4-methoxy-7,7'-epoxylignan, meso-(rel 7S,8S,7'R,8'R)-3,4,3',4'-tetrahydroxy-7,7'-epoxylignan, and (E)-4,4'-dihydroxy-7,7'-dioxolign-8(8')-ene, together with 10 known compounds, were isolated from the leaves of Larrea tridentata. The structures of the new compounds were determined primarily from 1D and 2D NMR spectroscopic analysis. Their antioxidant activities against intracellular reactive oxygen species were evaluated in HL-60 cells.  相似文献   

7.
Pancreatic stellate cells (PSCs) play a major role in promoting pancreatic fibrosis. Transforming growth factor-beta(1) (TGF-beta(1)) regulates PSC activation and proliferation in an autocrine manner. The intracellular signaling pathways of the regulation were examined in this study. Immunoprecipitation and immunocytochemistry revealed that Smad2, Smad3, and Smad4 were functionally expressed in PSCs. Adenovirus-mediated expression of Smad2, Smad3, or dominant-negative Smad2/3 did not alter TGF-beta(1) mRNA expression level or the amount of autocrine TGF-beta(1) peptide. However, expression of dominant-negative Smad2/3 inhibited PSC activation and enhanced their proliferation. Co-expression of Smad2 with dominant-negative Smad2/3 restored PSC activation inhibited by dominant-negative Smad2/3 expression without changing their proliferation. By contrast, co-expression of Smad3 with dominant-negative Smad2/3 attenuated PSC proliferation enhanced by dominant-negative Smad2/3 expression without altering their activation. Exogenous TGF-beta(1) increased TGFbeta(1) mRNA expression in PSCs. However, PD98059, a specific inhibitor of mitogen-activated protein kinase kinase (MEK1), inhibited ERK activation by TGF-beta(1), and consequently attenuated TGF-beta(1) enhancement of its own mRNA expression in PSCs. We propose that TGF-beta(1) differentially regulates PSC activation, proliferation, and TGF-beta(1) mRNA expression through Smad2-, Smad3-, and ERK-dependent pathways, respectively.  相似文献   

8.
Liver fibrosis is characterized by high expression of the key profibrogenic cytokine transforming growth factor (TGF)-beta and the natural tissue inhibitor of metalloproteinases (TIMP)-1, leading to substantial accumulation of extracellular matrix. Liver fibrosis originates from various chronic liver diseases, such as chronic viral hepatitis that, to date, cannot be treated sufficiently. Thus, novel therapeutics, for example, those derived from Oriental medicine, have gained growing attention. In Korea, extracts prepared from Lindera obtusiloba are used for centuries for treatment of inflammation, improvement of blood circulation and prevention of liver damage, but experimental evidence of their efficacy is lacking. We studied direct antifibrotic effects in activated hepatic stellate cells (HSCs), the main target cell in the fibrotic liver. L. obtusiloba extract (135 mug/ml) reduced the de novo DNA synthesis of activated rat and human HSCs by about 90%, which was not accompanied by cytotoxicity of HSC, primary hepatocytes and HepG2 cells, pointing to induction of cellular quiescence. As determined by quantitative polymerase chain reaction, simultaneous treatment of HSCs with TGF-beta and L. obtusiloba extract resulted in reduction of TIMP-1 expression to baseline level, disruption of the autocrine loop of TGF-beta autoinduction and increased expression of fibrolytic matrix metalloproteinase (MMP)-3. In addition, L. obtusiloba reduced gelatinolytic activity of HSC by interfering with profibrogenic MMP-2 activity. Since L. obtusiloba extract prevented intracellular oxidative stress experimentally induced by tert-butylhydroperoxide, we concluded that the direct antifibrotic effect of L. obtusiloba extract might be mediated by antioxidant activity. Thus, L. obtusiloba, traditionally used in Oriental medicine, may complement treatment of chronic liver disease.  相似文献   

9.
Phytochemical re-investigation of the aerial parts of Bonamia spectabilis (Convolvulaceae) led to the isolation of four minor tetrahydrofuran-type sesquilignans (bonaspectins E-H) together with the known neolignan virolongin A and the known lignan rel-(7S,8R,7'R,8'R)-3,3',4,4',5,5'-hexamethoxylignan. Their structures were established on the basis of spectral data. These six compounds as well as further seven lignanoids from B. spectabilis, characterised previously, were tested for their antiplasmodial activity against a chloroquine-sensitive strain (PoW) and a chloroquine-resistant clone (Dd2) of Plasmodium falciparum. Bonaspectin C 4"-O-glucoside, its aglycone, and bonaspectin D 4"-O-glucoside revealed the highest antiplasmodial activities (IC50 values: 1.3, 2.0, 6.5 microM [PoW]; 1.7, 4.6, 3.7 microM [Dd2], respectively).  相似文献   

10.
Three fractions of rye-grass (Lolium perenne) pollen extract have been isolated by preparative isoelectric focusing (i.e.f.) and characterized in terms of physicochemical and immunochemical properties. The purified components were designated 'R7' and 'R14' on the basis of their positions in relation to other rye-grass pollen extract components on SDS/polyacrylamide-gel electrophoresis and their apparent molecular masses were assessed as 31 and 11 kDa respectively. On i.e.f., R14 split into two components, one acidic (pI 5.0) and one basic (pI 9.0), termed 'R14a' and 'R14b' respectively, and R7 focused at pI 5.8. R7 and R14a were shown to be allergenic by skin-prick test and all three components were recognized by rye-grass-pollen-specific human IgE. On SDS/polyacrylamide-gel electrophoresis and i.e.f., R7 behaved in a manner identical with that shown by an authentic sample of Rye I and gave an amino acid analysis similar to published data [Johnson & Marsh (1966) Immunochemistry 3, 91-100] for Rye group-I isoallergens; the amino acid sequence of the first 27 N-terminal amino acids was also determined. Physicochemical analysis revealed that R14a was equivalent to Rye II and 14b to Rye III. Preparative i.e.f. followed by gel-permeation chromatography proved to be a rapid and efficient method for purifying the allergenic components of Rye I (R7), Rye II (R14a) and Rye III (R14b) from rye-grass pollen extract.  相似文献   

11.
Abscisic acid (ABA), a plant stress hormone, has a chiral center (C1') in its molecule, yielding the enantiomers (1'S)-(+)-ABA and (1'R)-(-)-ABA during chemical synthesis. ABA 8'-hydroxylase (CYP707A), which is the major and key P450 enzyme in ABA catabolism in plants, catalyzes naturally occurring (1'S)-(+)-enantiomer, whereas it does not recognize naturally not occurring (1'R)-(-)-enantiomer as either a substrate or an inhibitor. Here we report a structural ABA analogue (AHI1), whose both enantiomers bind to recombinant Arabidopsis CYP707A3, in spite of stereo-structural similarity to ABA. The difference of AHI1 from ABA is the absence of the side-chain methyl group (C6) and lack of the alpha,beta-unsaturated carbonyl (C2'C3'-C4'O) in the six-membered ring. To explore which moiety is responsible for asymmetrical binding by CYP707A3, we synthesized and tested ABA analogues that lacked each moiety. Competitive inhibition was observed for the (1'R) enantiomers of these analogues in the potency order of (1'R,2'R)-(-)-2',3'-dihydro-4'-deoxo-ABA (K(I)=0.45 microM)>(1'R)-(-)-4'-oxo-ABA (K(I)=27 microM)>(1'R)-(-)-6-nor-ABA and (1'R,2'R)-(-)-2',3'-dihydro-ABA (no inhibition). In contrast to the (1'R)-enantiomers, the inhibition potency of the (1'S)-analogues declined with the saturation of the C2',C3'-double bond or with the elimination of the C4'-oxo moiety. These findings suggest that the C4'-oxo moiety coupled with the C2',C3'-double bond is the significant key functional group by which ABA 8'-hydroxylase distinguishes (1'S)-(+)-ABA from (1'R)-(-)-ABA.  相似文献   

12.
A series of carotenoids with a 5,6-dihydro-5,6-dihydroxy-beta-end group, named ipomoeaxanthins A (1), B (2), C1 (3) and C2 (4) were isolated from the flesh of yellow sweet potato "Benimasari", Ipomoea batatas Lam. Their structures were determined to be (5R,6S,3'R)-5,6-dihydro-beta,beta-carotene-5,6,3'-triol (1), (5R,6S,5'R,6'S)-5,6,5',6'-tetrahydro-beta,beta-carotene-5,6,5'6'-tetrol (2), (5R,6S,5'R,8'R)-5',8'-epoxy-5,6,5',8'-tetrahydro-beta,beta-carotene-5,6-diol (3), and (5R,6S,5'R,8'S)-5',8'-epoxy-5,6,5',8'-tetrahydro-beta,beta-carotene-5,6-diol (4) by UV-Vis, NMR, MS and CD data.  相似文献   

13.
Ectopic expression of the alpha5 integrin subunit in cancer cells with little or no endogenous expression of this integrin often results in reduced proliferation as well as reduced malignancy. We now show that inhibition resulting from ectopic expression of alpha5 integrin is due to induction of autocrine negative transforming growth factor-beta (TGF-beta) activity. MCF-7 breast cancer cells do not express either alpha5 integrin or type II TGF-beta receptor and hence are unable to generate TGF-beta signal transduction. Ectopic expression of alpha5integrin expression enhanced cell adhesion to fibronectin, reduced proliferation, and increased the expression of type II TGF-beta receptor mRNA and cell surface protein. Receptor expression was increased to a higher level in alpha5 transfectants by growth on fibronectin-coated plates. Induction of type II TGF-beta receptor expression also resulted in the generation of autocrine negative TGF-beta activity because colony formation was increased after TGF-beta neutralizing antibody treatment. Transient transfection with a TGF-beta promoter response element in tandem with a luciferase cDNA into cells stably transfected with alpha5 integrin resulted in basal promoter activities 5-10-fold higher than those of control cells. Moreover, when alpha5 transfectants were treated with a neutralizing antibody to either TGF-beta or integrin alpha5, this increased basal promoter activity was blocked. Autocrine TGF-beta activity also induced 3-fold higher endogenous fibronectin expression in alpha5 transfectants relative to that of control cells. Re-expression of type II receptor by alpha5 transfection also restored the ability of the cells to respond to exogenous TGF-beta and led to reduced tumor growth in athymic nude mice. Taken together, these results show for the first time that TGF-beta type II receptor expression can be controlled by alpha5beta1 ligation and integrin signal transduction. Moreover, TGF-beta and integrin signal transduction appear to cooperate in their tumor-suppressive functions.  相似文献   

14.
Activation of hepatic stellate cells (HSC), the major effectors of hepatic fibrogenesis, is coupled with sequential alterations in gene expression, including an increase in receptors for transforming growth factor-beta (TGF-beta) and a dramatic reduction in the peroxisome proliferator-activated receptor-gamma (PPAR-gamma). The relationship between them remains obscure. We previously demonstrated that curcumin induced gene expression of PPAR-gamma in activated HSC, leading to reducing cell proliferation, inducing apoptosis and suppressing expression of extracellular matrix genes. The underlying molecular mechanisms are largely unknown. We recently observed that stimulation of PPAR-gamma activation suppressed gene expression of TGF-beta receptors in activated HSC, leading to the interruption of TGF-beta signaling. This observation supported our assumption of an antagonistic relationship between PPAR-gamma activation and TGF-beta signaling in HSC. In this study, we further hypothesize that TGF-beta signaling might negatively regulate gene expression of PPAR-gamma in activated HSC. The present report demonstrates that exogenous TGF-beta1 inhibits gene expression of PPAR-gamma in activated HSC, which is eliminated by the pretreatment with curcumin likely by interrupting TGF-beta signaling. Transfection assays further indicate that blocking TGF-beta signaling by dominant negative type II TGF-beta receptor increases the promoter activity of PPAR-gamma gene. Promoter deletion assays, site-directed mutageneses, and gel shift assays localize two Smad binding elements (SBEs) in the PPAR-gamma gene promoter, acting as curcumin response elements and negatively regulating the promoter activity in passaged HSC. The Smad3/4 protein complex specifically binds to the SBEs. Overexpression of Smad4 dose dependently eliminates the inhibitory effects of curcumin on the PPAR-gamma gene promoter and TGF-beta signaling. Taken together, these results demonstrate that the interruption of TGF-beta signaling by curcumin induces gene expression of PPAR-gamma in activated HSC in vitro. Our studies provide novel insights into the molecular mechanisms of curcumin in the induction of PPAR-gamma gene expression and in the inhibition of HSC activation.  相似文献   

15.
Myofibroblastic, activated hepatic stellate cells (HSC) play a pivotal role in the development of liver fibrosis through the secretion of fibrillar collagens and the tissue inhibitors of metalloproteinase (TIMP)-1 and -2. TIMPs are believed to promote hepatic fibrosis by inhibiting both matrix degradation and apoptosis of HSC. In other cell types, there is evidence that TIMP-1 has effects on proliferation, however the role of TIMPs in the regulation of HSC proliferation remains unexplored. Therefore, we have used short interfering RNA (siRNA) to investigate the effects of autocrine TIMP-1 and -2 on HSC proliferation. TIMP-1 and -2 siRNA were highly effective, producing peak target protein knockdown compared to negative control siRNA of 92% and 63%, respectively. Specific silencing of TIMP-1, using siRNA, significantly reduced HSC proliferation. TIMP-1 was localised in part to the HSC nucleus and TIMP-1 siRNA resulted in loss of both cytoplasmic and nuclear TIMP-1. Attenuated proliferation was associated with reduced Akt phosphorylation and was partially rescued by addition of recombinant TIMP-1. We have revealed a novel autocrine mitogenic effect of TIMP-1 on HSC, which may involve Akt-dependent and specific nuclear mechanisms of action. We suggest that TIMP-1 might promote liver fibrosis by means other than its previously described anti-apoptotic effect on HSC. Moreover, these findings, together with our previous reports and the emerging data from in vivo studies of TIMP inhibition, provide strong evidence that TIMP-1 is mechanistically central to liver fibrosis and an important potential therapeutic target.  相似文献   

16.
Hemopoietic stem cells (HSCs) are maintained at relative quiescence by the balance between the positive and negative regulatory factors that stimulate or inhibit their proliferation. Blocking the action of negative regulatory factors may provide a new approach for inducing HSCs into proliferation. A variety of studies have suggested that TGF-beta negatively regulates cell cycle progression of HSCs. In this study, a dominant negatively acting mutant of TGF-beta type II receptor (TbetaRIIDN) was transiently expressed in HSCs by using adenoviral vector-mediated gene delivery, such that the effects of disrupting the autocrine TGF-beta signaling in HSCs can be directly examined at a single cell level. Adenoviral vectors allowing the expression of TbetaRIIDN and green fluorescence protein in the same CD34(+)CD38(-)Lin(-) cells were constructed. Overexpression of TbetaRIIDN specifically disrupted TGF-beta-mediated signaling. Autocrine TGF-beta signaling in CD34(+)CD38(-)Lin(-) cells was studied in single cell assays under serum-free conditions. Transient blockage of autocrine TGF-beta signaling in CD34(+)CD38(-)Lin(-) cells enhanced their survival. Furthermore, the overall proliferation potential and proliferation kinetics in these cells were significantly enhanced compared with the CD34(+)CD38(-)Lin(-) cells expressing green fluorescence protein alone. Therefore, we have successfully blocked the autocrine TGF-beta-negative regulatory loop of primitive hemopoietic progenitor cells.  相似文献   

17.
Human colon carcinoma cells HCT116 that lack transforming growth factor beta (TGF-beta) type II receptor (RII) demonstrated restoration of autocrine TGF-beta activity upon reexpression of RII without restoring inhibitory responses to exogenous TGF-beta treatment. RII transfectants (designated RII Cl 37) had a longer lag phase relative to NEO-transfected control cells (designated NEO pool) before entering exponential growth in tissue culture. The prolonged growth arrest of RII Cl 37 cells was associated with markedly reduced cyclin-dependent kinase (CDK)2 activity. Our results demonstrate that p21 induction by autocrine TGF-beta is responsible for reduced CDK2 activity, which at least partially contributes to prolonged growth arrest and reduced cell proliferation in RII Cl 37 cells. In contrast to RII transfectants, HCT116 cells transfected with chromosome 3 (designated HCT116Ch3), which bears the RII gene, restored the response to exogenous TGF-beta as well as autocrine TGF-beta activity. Autocrine TGF-beta activity in HCT116Ch3 cells induced p21 expression as seen in RII Cl 37 cells; however, in addition to autocrine activity, HCT116Ch3 cells responded to exogenous TGF-beta as decreased CDK4 expression and reduced pRb phosphorylation mediated a TGF-beta inhibitory response in these cells. These results indicate that autocrine TGF-beta regulates the cell cycle through a pathway different from exogenous TGF-beta in the sense that p21 is a more sensitive effector of the TGF-beta signaling pathway, which can be induced and saturated by autocrine TGF-beta, whereas CDK4 inhibition is a less sensitive effector, which can only be activated by high levels of exogenous TGF-beta  相似文献   

18.
Airway smooth muscle (ASM) hyperplasia is a characteristic feature of the asthmatic airway, but the underlying mechanisms that induce ASM hyperplasia remain unknown. Because transforming growth factor (TGF)-beta is a potent regulator of ASM cell proliferation, we determined its expression and mitogenic signaling pathways in ASM cells. We obtained ASM cells by laser capture microdissection of bronchial biopsies and found that ASM cells from asthmatic patients expressed TGF-beta1 mRNA and protein to a greater extent than nonasthmatic individuals using real-time RT-PCR and immunohistochemistry, respectively. TGF-beta1 stimulated the growth of nonconfluent and confluent ASM cells either in the presence or absence of serum in a time- and concentration-dependent manner. The mitogenic activity of TGF-beta1 on ASM cells was inhibited by selective inhibitors of TGF-beta receptor I kinase (SD-208), phosphatidylinositol 3-kinase (PI3K, LY-294002), ERK (PD-98059), JNK (SP-600125), and NF-kappaB (AS-602868). On the other hand, p38 MAPK inhibitor (SB-203580) augmented TGF-beta1-induced proliferation. To study role of the Smads, we transduced ASM cells with an adenovirus vector-expressing Smad4, Smad7, or dominant-negative Smad3 and found no involvement of these Smads in TGF-beta1-induced proliferation. Dexamethasone caused a dose-dependent inhibition in TGF-beta1-induced proliferation. Our findings suggest that TGF-beta1 may act in an autocrine fashion to induce ASM hyperplasia, mediated by its receptor and several kinases including PI3K, ERK, and JNK, whereas p38 MAPK is a negative regulator. NF-kappaB is also involved in the TGF-beta1 mitogenic signaling, but Smad pathway does not appear important.  相似文献   

19.
20.
Transforming growth factor-beta (TGF-beta) and type I interferon (IFN) autocrine/paracrine loops are recognized as key mediators of signaling cascades that control a variety of cellular functions. Here, we describe a novel mechanism by which Toll-like receptor (TLR) agonists utilize these two autocrine/paracrine loops to differentially regulate the induction of PDGF-B, a growth factor implicated in a number of diseases ranging from tumor metastasis to glomerulonephritis. We demonstrate that CpG-specific induction of PDGF-B requires activation of Smads through TGFbeta1 autocrine/paracrine signaling. In contrast, polyinosinic:polycytidylic acid strongly represses CpG's as well as its own intrinsic ability to induce PDGF-B mRNA through type I IFN-mediated induction of Smad7, a negative regulator of Smad3/4. Furthermore, we have shown that this crosstalk mechanism translates into similar regulation of mesangial cell proliferation. Thus, our results demonstrate the importance of crosstalk between TGF-beta and type I IFNs in determining the specificity of TLR-mediated gene induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号