首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of calcium uptake, translocation and accumulation in Poaceae has not yet been fully understood. To address this issue, we conducted genome-wide comparative in silico analysis of the calcium (Ca2+) transporter gene family of two crop species, rice and sorghum. Gene annotation, identification of upstream cis-acting ele- ments, phylogenetic tree construction and syntenic mapping of the gene family were performed using several bio- informatics tools. A total of 31 Ca2+ transporters, distributed on 9 out of 12 chromosomes, were predicted from rice genome, while 28 Ca2+ transporters predicted from sorghum are distributed on all the chromosomes except chromosome 10 (Chr 10). Interestingly, most of the genes on Chr 1 and Chr 3 show an inverse syntenic relation- ship between rice and sorghum. Multiple sequence alignment and motif analysis of these transporter proteins re- vealed high conservation between the two species. Phylogenetic tree could very well identify the subclasses of channels, ATPases and exchangers among the gene family. The in silico cis-regulatory element analysis suggested diverse functions associated with light, stress and hormone responsiveness as well as endosperm- and meris- tem-specific gene expression. Further experiments are warranted to validate the in silico analysis of the predicted transporter gene family and elucidate the functions of Ca2+ transporters in various biological processes.  相似文献   

2.
The calcium (Ca(2+)) transporters, like Ca(2+) channels, Ca(2+) ATPases, and Ca(2+) exchangers, are instrumental for signaling and transport. However, the mechanism by which they orchestrate the accumulation of Ca(2+) in grain filling has not yet been investigated. Hence the present study was designed to identify the potential calcium transporter genes that may be responsible for the spatial accumulation of calcium during grain filling. In silico expression analyses were performed to identify Ca(2+) transporters that predominantly express during the different developmental stages of Oryza sativa. A total of 13 unique calcium transporters (7 from massively parallel signature sequencing [MPSS] data analysis, and 9 from microarray analysis) were identified. Analysis of variance (ANOVA) revealed differential expression of the transporters across tissues, and principal component analysis (PCA) exhibited their seed-specific distinctive expression profile. Interestingly, Ca(2+) exchanger genes are highly expressed in the initial stages, whereas some Ca(2+) ATPase genes are highly expressed throughout seed development. Furthermore, analysis of the cis-elements located in the promoter region of the subset of 13 genes suggested that D of proteins play essential roles in regulating the expression of Ca(2+) transporter genes during rice seed development. Based on these results, we developed a hypothetical model explaining the transport and tissue specific distribution of calcium in developing cereal seeds. The model may be extrapolated to understand the mechanism behind the exceptionally high level of calcium accumulation seen in grains like finger millet.  相似文献   

3.
Secondary transporters of the bacterial CitMHS family transport citrate in complex with a metal ion. Different members of the family are specific for the metal ion in the complex and have been shown to transport Mg(2+)-citrate, Ca(2+)-citrate or Fe(3+)-citrate. The Fe(3+)-citrate transporter of Streptococcus mutans clusters on the phylogenetic tree on a separate branch with a group of transporters found in the phylum Firmicutes which are believed to be involved in anaerobic citrate degradation. We have cloned and characterized the transporter from Enterococcus faecalis EfCitH in this cluster. The gene was functionally expressed in Escherichia coli and studied using right-side-out membrane vesicles. The transporter catalyzes proton-motive-force-driven uptake of the Ca(2+)-citrate complex with an affinity constant of 3.5 microm. Homologous exchange is catalyzed with a higher efficiency than efflux down a concentration gradient. Analysis of the metal ion specificity of EfCitH activity in right-side-out membrane vesicles revealed a specificity that was highly similar to that of the Bacillus subtilis Ca(2+)-citrate transporter in the same family. In spite of the high sequence identity with the S. mutans Fe(3+)-citrate transporter, no transport activity with Fe(3+) (or Fe(2+)) could be detected. The transporter of E. faecalis catalyzes translocation of citrate in complex with Ca(2+), Sr(2+), Mn(2+), Cd(2+) and Pb(2+) and not with Mg(2+), Zn(2+), Ni(2+) and Co(2+). The specificity appears to correlate with the size of the metal ion in the complex.  相似文献   

4.
5.
In Oryza sativa (rice) there are seven members in the NRAMP (natural resistance- associated macrophage protein) family of transporter proteins. They have been identified as OsNRAMP1, OsNRAMP2, OsNRAMP3, OsNRAMP4, OsNRAMP5, OsNRAMP6 and OsNRAMP7. Several metal ions like Zn2+, Mn2+, Fe2+, Cd2+ etc. have been studied to be transported via NRAMP transporter proteins in rice plant. In spite of this, very little information is available regarding these transporters. Hence it is important to computationally predict and characterize the OsNRAMP family of transporters for studying and understanding their molecular insights in future studies. For this purpose, various in silico methods and tools were used for the characterization of OsNRAMP family of transporter proteins. Physico-chemical properties of the protein sequences were calculated, putative transmembrane domains (TMDs) and conserved motif signatures were determined and their interaction partners were predicted. 3D models of all the members of OsNRAMP transporters were generated using online structure prediction tool followed by their analysis. In silico microarray analysis was done to understand the expression pattern of these transporters in rice plant. Currently, only limited knowledge is available about the structural and functional aspects of these transporters, hence this study would provide more theoretical information about them.  相似文献   

6.
Al-activated organic acid anion efflux from roots is an important Al resistance mechanism in plants. We have conducted homologous cloning and isolated Vigna umbellata multidrug and toxic compound extrusion (VuMATE), a gene encoding a de novo citrate transporter from rice bean. Al treatment up-regulated VuMATE expression in the root apex, but neither in the mature root region nor in the leaf. The degree of up-regulation of VuMATE was both partially Al concentration and time dependent, consistent with the delay in the onset of the Al-induced citrate efflux in rice bean roots. While La(3+) moderately induced VuMATE expression, Cd(2+) and Cu(2+) did not induce the expression. Electrophysiological analysis of Xenopus oocytes expressing VuMATE indicated this transporter can mediate significant anion efflux across the plasma membrane. [(14) C]citrate efflux experiments in oocytes demonstrated that VuMATE is a H(+) -dependent citrate transporter. In addition, expression of VuMATE in transgenic tomato resulted in increased Al resistance, which correlated with an enhanced citrate efflux. Taken together, these findings suggest that VuMATE is a functional homolog of the known citrate transporters in sorghum, barley, maize and Arabidopsis. The similarities and differences of all the known citrate transporters associated with Al stress in the MATE family are also discussed.  相似文献   

7.
Members of class II of the HKT transporters, which have thus far only been isolated from grasses, were found to mediate Na(+)-K(+) cotransport and at high Na(+) concentrations preferred Na(+)-selective transport, depending on the ionic conditions. But the physiological functions of this K(+)-transporting class II of HKT transporters remain unknown in plants, with the exception of the unique class II Na(+) transporter OsHKT2;1. The genetically tractable rice (Oryza sativa; background Nipponbare) possesses two predicted K(+)-transporting class II HKT transporter genes, OsHKT2;3 and OsHKT2;4. In this study, we have characterized the ion selectivity of the class II rice HKT transporter OsHKT2;4 in yeast and Xenopus laevis oocytes. OsHKT2;4 rescued the growth defect of a K(+) uptake-deficient yeast mutant. Green fluorescent protein-OsHKT2;4 is targeted to the plasma membrane in transgenic plant cells. OsHKT2;4-expressing oocytes exhibited strong K(+) permeability. Interestingly, however, K(+) influx in OsHKT2;4-expressing oocytes did not require stimulation by extracellular Na(+), in contrast to other class II HKT transporters. Furthermore, OsHKT2;4-mediated currents exhibited permeabilities to both Mg(2+) and Ca(2+) in the absence of competing K(+) ions. Comparative analyses of Ca(2+) and Mg(2+) permeabilities in several HKT transporters, including Arabidopsis thaliana HKT1;1 (AtHKT1;1), Triticum aestivum HKT2;1 (TaHKT2;1), OsHKT2;1, OsHKT2;2, and OsHKT2;4, revealed that only OsHKT2;4 and to a lesser degree TaHKT2;1 mediate Mg(2+) transport. Interestingly, cation competition analyses demonstrate that the selectivity of both of these class II HKT transporters for K(+) is dominant over divalent cations, suggesting that Mg(2+) and Ca(2+) transport via OsHKT2;4 may be small and would depend on competing K(+) concentrations in plants.  相似文献   

8.
The high-affinity K(+) (HAK) transporter gene family constitutes the largest family that functions as potassium transporter in plant and is important for various cellular processes of plant life. In spite of their physiological importance, systematic analyses of ZmHAK genes have not yet been investigated. In this paper, we indicated the isolation and characterization of ZmHAK genes in whole-genome wide by using bioinformatics methods. A total of 27 members (ZmHAK1-ZmHAK27) of this family were identified in maize genome. ZmHAK genes were distributed in all the maize 10 chromosomes. These genes expanded in the maize genome partly due to tandem and segmental duplication events. Multiple alignment and motif display results revealed major maize ZmHAK proteins share all the three conserved domains. Phylogenetic analysis indicated ZmHAK family can be divided into six subfamilies. Putative cis-elements involved in Ca(2+) response, abiotic stress adaption, light and circadian rhythms regulation and seed development were observed in the promoters of ZmHAK genes. Expression data mining suggested maize ZmHAK genes have temporal and spatial expression pattern. In all, these results will provide molecular insights into the potassium transporter research in maize.  相似文献   

9.
The family of plant membrane transporters named HKT (for high-affinity K(+) transporters) can be subdivided into subfamilies 1 and 2, which, respectively, comprise Na(+)-selective transporters and transporters able to function as Na(+)-K(+) symporters, at least when expressed in yeast (Saccharomyces cerevisiae) or Xenopus oocytes. Surprisingly, a subfamily 2 member from rice (Oryza sativa), OsHKT2;4, has been proposed to form cation/K(+) channels or transporters permeable to Ca(2+) when expressed in Xenopus oocytes. Here, OsHKT2;4 functional properties were reassessed in Xenopus oocytes. A Ca(2+) permeability through OsHKT2;4 was not detected, even at very low external K(+) concentration, as shown by highly negative OsHKT2;4 zero-current potential in high Ca(2+) conditions and lack of sensitivity of OsHKT2;4 zero-current potential and conductance to external Ca(2+). The Ca(2+) permeability previously attributed to OsHKT2;4 probably resulted from activation of an endogenous oocyte conductance. OsHKT2;4 displayed a high permeability to K(+) compared with that to Na(+) (permeability sequence: K(+) > Rb(+) ≈ Cs(+) > Na(+) ≈ Li(+) ≈ NH(4)(+)). Examination of OsHKT2;4 current sensitivity to external pH suggested that H(+) is not significantly permeant through OsHKT2;4 in most physiological ionic conditions. Further analyses in media containing both Na(+) and K(+) indicated that OsHKT2;4 functions as K(+)-selective transporter at low external Na(+), but transports also Na(+) at high (>10 mm) Na(+) concentrations. These data identify OsHKT2;4 as a new functional type in the K(+) and Na(+)-permeable HKT transporter subfamily. Furthermore, the high permeability to K(+) in OsHKT2;4 supports the hypothesis that this system is dedicated to K(+) transport in the plant.  相似文献   

10.
A novel mouse gene, provisionally named Lx1, has been cloned and sequenced. Lx1 most likely represents the mouse homolog of the rat gene OCT1, which encodes a polyspecific transmembrane transporter that is possibly involved in drug elimination. The LX1 predicted protein is highly hydrophobic, possesses twelve putative transmembrane domains, and also shares significant homology with members of the sugar transporter family, particularly the novel liver-specific transporter NLT. Lx1 mRNA is expressed at high levels in mouse liver, kidney, and intestine, and at low levels in the adrenals and in lactating mammary glands. The Lx1 gene maps very close to the imprinted Igf2r/Mpr300 gene on mouse Chromosome (Chr) 17, in a region that is syntenic to human Chr 6q. Chr 6q has been previously associated with transient neonatal diabetes mellitus and breast cancer. Received: 11 March 1996 / Accepted: 5 June 1996  相似文献   

11.
We have examined the distribution of calcium in Neurospora crassa and investigated the role of four predicted calcium transport proteins. The results of cell fractionation experiments showed 4% of cellular calcium in mitochondria, approximately 11% in a dense vacuolar fraction, 40% in an insoluble form that copurifies with microsomes, and 40% in a high-speed supernatant, presumably from large vacuoles that had broken. Strains lacking NCA-1, a SERCA-type Ca(2+)-ATPase, or NCA-3, a PMC-type Ca(2+)-ATPase, had no obvious defects in growth or distribution of calcium. A strain lacking NCA-2, which is also a PMC-type Ca(2+)-ATPase, grew slowly in normal medium and was unable to grow in high concentrations of calcium tolerated by the wild type. Furthermore, when grown in normal concentrations of calcium (0.68 mM), this strain accumulated 4- to 10-fold more calcium than other strains, elevated in all cell fractions. The data suggest that NCA-2 functions in the plasma membrane to pump calcium out of the cell. In this way, it resembles the PMC-type enzymes of animal cells, not the Pmc1p enzyme in Saccharomyces cerevisiae that resides in the vacuole. Strains lacking the cax gene, which encodes a Ca(2+)/H(+) exchange protein in vacuolar membranes, accumulate very little calcium in the dense vacuolar fraction but have normal levels of calcium in other fractions. The cax knockout strain has no other observable phenotypes. These data suggest that "the vacuole" is heterogeneous and that the dense vacuolar fraction contains an organelle that is dependent upon the CAX transporter for accumulation of calcium, while other components of the vacuolar system have multiple calcium transporters.  相似文献   

12.
有研究表明,干旱、低温和盐等环境胁迫能够诱导LEA基因的表达。为了探索LEA基因家族在高粱响应外界刺激过程中起到的作用,本研究通过生物信息学的方法对LEA基因家族在高粱全基因组水平进行鉴定和分析,于高粱全基因组中共鉴定出35个基因家族成员,不均匀地分布于高粱8条染色体上,结合系统进化树和保守结构域分析结果,将高粱LEA基因家族成员分为7组。亲水性分析和结构无序性预测表明高粱LEA蛋白绝大多数为亲水性且结构无序。基因结构分析显示了各分组基因结构上的保守性。高粱LEA基因的启动子分析发现了一些与激素和非生物胁迫响应相关的顺式作用元件。对激素和干旱胁迫下高粱LEA基因的表达分析发现外界胁迫能够诱导部分高粱LEA基因的表达。  相似文献   

13.
Squamosa启动子结合类蛋白(SPL)基因家族编码一类植物特有的转录因子,其功能涉及作物遗传改良的许多方面,如产量、株型、抗逆性等,具有重要的实际应用价值。虽然SPL基因在很多作物中有广泛研究,但是在高粱中仍有待进一步探索。本研究通过生物信息学方法,利用同源序列法在高粱基因组水平对SPL基因家族进行分离和分析,共获得19个高粱SPL基因,并命名为SbSPL。高粱SbSPL家族基因不均匀地分布于高粱9条染色体上。通过系统进化树、保守结构域和基因结构等分析,将SbSPL基因家族成员分为5组,不同组的SbSPL基因在功能结构上具有保守性。此外,分析了SbSPL基因家族成员的启动子,发现SbSPL基因家族具有响应非生物胁迫相关信号转导的顺式作用元件。利用qRT-PCR技术,发现部分高粱SbSPL基因的表达受干旱胁迫诱导。这些结果揭示了SbSPL基因可能在高粱响应环境非生物胁迫过程中起到重要作用。  相似文献   

14.
大豆miR-171基因家族的进化与功能分析   总被引:1,自引:0,他引:1  
运用生物信息学方法在miRBase搜索大豆miR-171(gma-miR-171)基因家族的序列,分析gma-miR-171序列的进化特征并预测其靶基因。结果表明,在miRBase中共搜索到21条gma-miR-171基因家族序列。序列分析发现,gma-miR-171基因家族序列保守性较差,只有2个碱基完全保守。对gma-miR-171基因进行定位,21个成员分散在12条染色体上,其中Chr06上gma-miR-171基因最多,共4个。进化分析表明,位于同一条染色体上的gma-miR-171基因没有表现出较近的亲缘关系。靶基因预测获得14个gma-miR-171基因家族的靶基因,包括蛋白激酶、磷酸酶、输出蛋白、转录因子等,说明gma-miR-171基因家族在大豆中具有广泛的调控功能。  相似文献   

15.
In plants and fungi, vacuolar transporters help remove potentially toxic cations from the cytosol. Metal/H(+) antiporters are involved in metal sequestration into the vacuole. However, the specific transport properties and the ability to manipulate these transporters to alter substrate specificity are poorly understood. The Arabidopsis thaliana cation exchangers, CAX1 and CAX2, can both transport Ca(2+) into the vacuole. There are 11 CAX-like transporters in Arabidopsis; however, CAX2 was the only characterized CAX transporter capable of vacuolar Mn(2+) transport when expressed in yeast. To determine the domains within CAX2 that mediate Mn(2+) specificity, six CAX2 mutants were constructed that contained different regions of the CAX1 transporter. One class displayed no alterations in Mn(2+) or Ca(2+) transport, the second class showed a reduction in Ca(2+) transport and no measurable Mn(2+) transport, and the third mutant, which contained a 10-amino acid domain from CAX1 (CAX2-C), showed no reduction in Ca(2+) transport and a complete loss of Mn(2+) transport. The subdomain analysis of CAX2-C identified a 3-amino acid region that is responsible for Mn(2+) specificity of CAX2. This study provides evidence for the feasibility of altering substrate specificity in a metal/H(+) antiporter, an important family of transporters found in a variety of organisms.  相似文献   

16.
The cosmid-derived microsatellite CSSM 25 has previously been shown to map to bovine syntenic group U2 by link-age and hybrid somatic cell analysis. We have mapped the cosmid by fluorescent in situ hybridization to bovine Chromosome (Chr) 9q17-21 and ovine Chr 8q17-21 and hence assign U2 to Chr 9 in cattle. Bovine Chr 9 and ovine Chr 8 show strong banding pattern homology, and the localization of CSSM 25 to the same region confirms the strong conservation of gene locations on these chromosomes.  相似文献   

17.
Cytogenetic maps of sorghum chromosomes 3-7, 9, and 10 were constructed on the basis of the fluorescence in situ hybridization (FISH) of approximately 18-30 BAC probes mapped across each of these chromosomes. Distal regions of euchromatin and pericentromeric regions of heterochromatin were delimited for all 10 sorghum chromosomes and their DNA content quantified. Euchromatic DNA spans approximately 50% of the sorghum genome, ranging from approximately 60% of chromosome 1 (SBI-01) to approximately 33% of chromosome 7 (SBI-07). This portion of the sorghum genome is predicted to encode approximately 70% of the sorghum genes ( approximately 1 gene model/12.3 kbp), assuming that rice and sorghum encode a similar number of genes. Heterochromatin spans approximately 411 Mbp of the sorghum genome, a region characterized by a approximately 34-fold lower rate of recombination and approximately 3-fold lower gene density compared to euchromatic DNA. The sorghum and rice genomes exhibit a high degree of macrocolinearity; however, the sorghum genome is approximately 2-fold larger than the rice genome. The distal euchromatic regions of sorghum chromosomes 3-7 and 10 are approximately 1.8-fold larger overall and exhibit an approximately 1.5-fold lower average rate of recombination than the colinear regions of the homeologous rice chromosomes. By contrast, the pericentromeric heterochromatic regions of these chromosomes are on average approximately 3.6-fold larger in sorghum and recombination is suppressed approximately 15-fold compared to the colinear regions of rice chromosomes.  相似文献   

18.
Vacuolar localized Ca(2+)/H(+) exchangers such as Arabidopsis thaliana cation exchanger 1 (CAX1) play important roles in Ca(2+) homeostasis. When expressed in yeast, CAX1 is regulated via an N-terminal autoinhibitory domain. In yeast expression assays, a 36 amino acid N-terminal truncation of CAX1, termed sCAX1, and variants with specific mutations in this N-terminus, show CAX1-mediated Ca(2+)/H(+) antiport activity. Furthermore, transgenic plants expressing sCAX1 display increased Ca(2+) accumulation and heightened activity of vacuolar Ca(2+)/H(+) antiport. Here the properties of N-terminal CAX1 variants in plants and yeast expression systems are compared and contrasted to determine if autoinhibition of CAX1 is occurring in planta. Initially, using ionome analysis, it has been demonstrated that only yeast cells expressing activated CAX1 transporters have altered total calcium content and fluctuations in zinc and nickel. Tobacco plants expressing activated CAX1 variants displayed hypersensitivity to ion imbalances, increased calcium accumulation, heightened concentrations of other mineral nutrients such as potassium, magnesium and manganese, and increased activity of tonoplast-enriched Ca(2+)/H(+) transport. Despite high in planta gene expression, CAX1 and N-terminal variants of CAX1 which were not active in yeast, displayed none of the aforementioned phenotypes. Although several plant transporters appear to contain N-terminal autoinhibitory domains, this work is the first to document clearly N-terminal-dependent regulation of a Ca(2+) transporter in transgenic plants. Engineering the autoinhibitory domain thus provides a strategy to enhance transport function to affect agronomic traits.  相似文献   

19.
Long terminal repeat (LTR) retrotransposons are the major class I mobile elements in plants. They play crucial roles in gene expansion, diversification and evolution. However, their captured genes are yet to be genome-widely identified and characterized in most of plants although many genomes have been completely sequenced. In this study, we have identified 7,043 and 23,915 full-length LTR retrotransposons in the rice and sorghum genomes, respectively. High percentages of rice full-length LTR retrotransposons were distributed near centromeric region in each of the chromosomes. In contrast, sorghum full-length LTR retrotransposons were not enriched in centromere regions. This dissimilarity could be due to the discrepant retrotransposition during and after divergence from their common ancestor thus might be contributing to species divergence. A total of 672 and 1,343 genes have been captured by these elements in rice and sorghum, respectively. Gene Ontology (GO) and gene set enrichment analysis (GSEA) showed that no over-represented GO term was identified in LTR captured rice genes. For LTR captured sorghum genes, GO terms with functions in DNA/RNA metabolism and chromatin organization were over-represented. Only 36% of LTR captured rice genes were expressed and expression divergence was estimated as 11.9%. Higher percentage of LTR captured rice genes have evolved into pseudogenes under neutral selection. On the contrary, higher percentage of LTR captured sorghum genes were under purifying selection and 72.4% of them were expressed. Thus, higher percentage of LTR captured sorghum genes was functional. Small RNA analysis suggested that some of LTR captured genes in rice and sorghum might have been involved in negative regulation. On the other hand, positive selection has been observed in both rice and sorghum LTR captured genes and some of them were still expressed and functional. The data suggest that some of these LTR captured genes might have evolved into new gene functions.  相似文献   

20.
The high-affinity K+ (HAK) transporter gene family is the largest family in plant that functions as potassium transporter and is important for various aspects of plant life. In the present study, we identified 27 members of this family in rice genome. The phylogenetic tree divided the land plant HAK transporter proteins into 6 distinct groups. Although the main characteristic of this family was established before the origin of seed plants, they also showed some differences between the members of non-seed and seed plants. The HAK genes in rice were found to have expanded in lineage-specific manner after the split of monocots and dicots, and both segmental duplication events and tandem duplication events contributed to the expansion of this family. Functional divergence analysis for this family provided statistical evidence for shifted evolutionary rate after gene duplication. Further analysis indicated that both point mutant with positive selection and gene conversion events contributed to the evolution of this family in rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号