首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Therizinosaurs are a group of herbivorous theropod dinosaurs from the Cretaceous of North America and Asia, best known for their iconically large and elongate manual claws. However, among Therizinosauria, ungual morphology is highly variable, reflecting a general trend found in derived theropod dinosaurs (Maniraptoriformes). A combined approach of shape analysis to characterize changes in manual ungual morphology across theropods and finite-element analysis to assess the biomechanical properties of different ungual shapes in therizinosaurs reveals a functional diversity related to ungual morphology. While some therizinosaur taxa used their claws in a generalist fashion, other taxa were functionally adapted to use the claws as grasping hooks during foraging. Results further indicate that maniraptoriform dinosaurs deviated from the plesiomorphic theropod ungual morphology resulting in increased functional diversity. This trend parallels modifications of the cranial skeleton in derived theropods in response to dietary adaptation, suggesting that dietary diversification was a major driver for morphological and functional disparity in theropod evolution.  相似文献   

2.
Dromaeosaurid theropod dinosaurs possess a strongly recurved, hypertrophied and hyperextensible ungual claw on pedal digit II. This feature is usually suggested to have functioned as a device for disembowelling herbivorous dinosaurs during predation. However, modelling of dromaeosaurid hindlimb function using a robotic model and comparison of pedal ungual morphology with extant analogue taxa both indicate that this distinctive claw did not function as a slashing weapon, but may have acted as an aid to prey capture.  相似文献   

3.
Avian-like breathing mechanics in maniraptoran dinosaurs   总被引:3,自引:0,他引:3  
In 1868 Thomas Huxley first proposed that dinosaurs were the direct ancestors of birds and subsequent analyses have identified a suite of 'avian' characteristics in theropod dinosaurs. Ossified uncinate processes are found in most species of extant birds and also occur in extinct non-avian maniraptoran dinosaurs. Their presence in these dinosaurs represents another morphological character linking them to Aves, and further supports the presence of an avian-like air-sac respiratory system in theropod dinosaurs, prior to the evolution of flight. Here we report a phylogenetic analysis of the presence of uncinate processes in Aves and non-avian maniraptoran dinosaurs indicating that these were homologous structures. Furthermore, recent work on Canada geese has demonstrated that uncinate processes are integral to the mechanics of avian ventilation, facilitating both inspiration and expiration. In extant birds, uncinate processes function to increase the mechanical advantage for movements of the ribs and sternum during respiration. Our study presents a mechanism whereby uncinate processes, in conjunction with lateral and ventral movements of the sternum and gastral basket, affected avian-like breathing mechanics in extinct non-avian maniraptoran dinosaurs.  相似文献   

4.
Shared behavioural, morphological and physiological characteristics are indicative of the evolution of extant birds from nonavian maniraptoran dinosaurs. One such shared character is the presence of uncinate processes and respiratory structures in extant birds. Recent research has suggested a respiratory role for these processes found in oviraptorid and dromaeosaurid dinosaurs. By measuring the geometry of fossil rib cage morphology, we demonstrate that the mechanical advantage, conferred by uncinate processes, for movements of the ribs in the oviraptorid theropod dinosaur, Citipati osmolskae, basal avialan species Zhongjianornis yangi, Confuciusornis sanctus and the more derived ornithurine Yixianornis grabaui, is of the same magnitude as found in extant birds. These skeletal characteristics provide further evidence of a flow-through respiratory system in nonavian theropod dinosaurs and basal avialans, and indicate that uncinate processes are a key adaptation facilitating the ventilation of a lung air sac system that diverged earlier than extant birds.  相似文献   

5.
The origin of flight in birds and theropod dinosaurs is a many-sided and debatable problem. We develop a new approach to the resolution of this problem, combining terrestrial and arboreal hypotheses of the origin of flight. The bipedalism was a key adaptation for the development of flight in both birds and theropods. The bipedalism dismissed the forelimbs from the supporting function and promoted transformation into wings. For the development of true flapping avian flight, a key role was played by the initial universal anisodactylous foot of birds. This foot pattern provided a firm support on both land and trees. Theropod dinosaurs, archaeopteryxes, and some other early feathered creatures had a pamprodactylous foot and, hence, they developed only gliding descent. Early birds descended by flattering parachuting with the use of incipient wings; this gave rise to true flight. Among terrestrial vertebrates, only bats, pterosaurians, and birds developed true flapping flight, although they followed different morphofunctional pathways when solving this task. However, it remains uncertain what initiated the adaptation of the three groups for the air locomotion. Nevertheless, the past decade has provided unexpectedly abundant paleontological data, which facilitate the resolution of this question with reference to birds.  相似文献   

6.
The origin and early evolution of birds has been a major topic in evolutionary biology. In the 20th century, evolutionary scenarios posited either ground-based bird ancestors or tree-dwelling ancestors. This has since been recognised as a false dichotomy [1]. We suggest that part of the problem is the loose categorisation of many extant bird species as either ground or tree locomotors when considering hind-limb function [2-7]. In reality these are not mutually exclusive alternatives. Many extant birds exhibit different degrees of ground- and tree-based behaviours. We thus propose they can be better placed on a spectrum - rather than a dichotomy - according to the extent of ground and/or tree foraging they exhibit. To test this system we analysed the toe claws of 249 species of Holocene birds, revealing that claw curvature increases as tree foraging becomes more predominant. Improved claw morphometrics allow more direct comparisons between extant and extinct birds in order to infer the behaviours of the latter. In contrast to previous studies [2-6], we find that claw curvatures of Mesozoic birds and closely related non-avian theropod dinosaurs, differ significantly from Holocene arboreal birds and more closely resemble those of Holocene 'ground-foraging' birds.  相似文献   

7.
Ectothermy is a primitive state; therefore, a shared common ancestor of crocodiles, dinosaurs, and birds was at some point ectothermic. Birds, the extant descendants of the dinosaurs, are endothermic. Neither the metabolic transition within this lineage nor the place the dinosaurs held along the ectothermic-endothermic continuum is defined. This paper presents a conceptual model for the evolution of endothermy in the theropod-bird lineage. It is recognized that other animals (some fish, insects, etc.) are functionally endothermic. However, endothermy in other clades is beyond the scope of this paper, and we address the onset of endothermy in only the theropod/bird clade. The model begins with simple changes in a single gene of a common ancestor, and it includes a series of concomitant physiological and morphological changes, beginning perhaps as early as the first archosaurian common ancestor of dinosaurs and crocodiles. These changes continued to accumulate within the theropod-avian lineage, were maintained and refined through selective forces, and culminated in extant birds. Metabolic convergence or homoplasy is evident in the inherent differences between the endothermy of mammals and the endothermy of extant birds. The strength and usefulness of this model lie in the phylogenetic, genetic, evolutionary, and adaptive plausibility of each of the suggested developmental steps toward endothermy. The model, although conceptual in nature, relies on an extensive knowledge base developed by numerous workers in each of these areas. In addition, the model integrates known genetic, metabolic, and developmental aspects of extant taxa that phylogenetically bracket theropod dinosaurs for comparison with information derived from the fossil record of related extinct taxa.  相似文献   

8.
Despite the ubiquity of raptors in terrestrial ecosystems, many aspects of their predatory behaviour remain poorly understood. Surprisingly little is known about the morphology of raptor talons and how they are employed during feeding behaviour. Talon size variation among digits can be used to distinguish families of raptors and is related to different techniques of prey restraint and immobilisation. The hypertrophied talons on digits (D) I and II in Accipitridae have evolved primarily to restrain large struggling prey while they are immobilised by dismemberment. Falconidae have only modest talons on each digit and only slightly enlarged D-I and II. For immobilisation, Falconini rely more strongly on strike impact and breaking the necks of their prey, having evolved a ‘tooth’ on the beak to aid in doing so. Pandionidae have enlarged, highly recurved talons on each digit, an adaptation for piscivory, convergently seen to a lesser extent in fishing eagles. Strigiformes bear enlarged talons with comparatively low curvature on each digit, part of a suite of adaptations to increase constriction efficiency by maximising grip strength, indicative of specialisation on small prey. Restraint and immobilisation strategy change as prey increase in size. Small prey are restrained by containment within the foot and immobilised by constriction and beak attacks. Large prey are restrained by pinning under the bodyweight of the raptor, maintaining grip with the talons, and immobilised by dismemberment (Accipitridae), or severing the spinal cord (Falconini). Within all raptors, physical attributes of the feet trade off against each other to attain great strength, but it is the variable means by which this is achieved that distinguishes them ecologically. Our findings show that interdigital talon morphology varies consistently among raptor families, and that this is directly correlative with variation in their typical prey capture and restraint strategy.  相似文献   

9.
Over many years of his life, the British naturalist Alfred Russel Wallace (1823–1913) explored the tropical forests of Malaysia, collecting numerous specimens, including hundreds of birds, many of them new to science. Subsequently, Wallace published a series of papers on systematic ornithology, and discovered a new species on top of a volcano on Ternate, where he wrote, in 1858, his famous essay on natural selection. Based on this hands-on experience, and an analysis of an Archaeopteryx fossil, Wallace suggested that birds may have descended from dinosaurian ancestors. Here, we describe the “dinosaur-bird hypothesis” that originated with the work of Thomas H. Huxley (1825–1895). We present the strong evidence linking theropod dinosaurs to birds, and briefly outline the long and ongoing controversy around this concept. Dinosaurs preserving plumage, nesting sites and trace fossils provide overwhelming evidence for the dinosaurian origin of birds. Based on these recent findings of paleontological research, we conclude that extant birds indeed descended, with some modifications, from small, Mesozoic theropod dinosaurs. In the light of Wallace’s view of bird origins, we critically evaluate recent opposing views to this idea, including Ernst Mayr’s (1904–2005) arguments against the “dinosaur-bird hypothesis”, and document that this famous ornithologist was not correct in his assessment of this important aspect of vertebrate evolution.  相似文献   

10.
In terms of their diversity and longevity, dinosaurs and birds were/are surely among the most successful of terrestrial vertebrates. Unfortunately, interpreting many aspects of the biology of dinosaurs and the earliest of the birds presents formidable challenges because they are known only from fossils. Nevertheless, a variety of attributes of these taxa can be inferred by identification of shared anatomical structures whose presence is causally linked to specialized functions in living reptiles, birds, and mammals. Studies such as these demonstrate that although dinosaurs and early birds were likely to have been homeothermic, the absence of nasal respiratory turbinates in these animals indicates that they were likely to have maintained reptile-like (ectothermic) metabolic rates during periods of rest or routine activity. Nevertheless, given the metabolic capacities of some extant reptiles during periods of elevated activity, early birds were probably capable of powered flight. Similarly, had, for example, theropod dinosaurs possessed aerobic metabolic capacities and habits equivalent to those of some large, modern tropical latitude lizards (e.g., Varanus), they may well have maintained significant home ranges and actively pursued and killed large prey. Additionally, this scenario of active, although ectothermic, theropod dinosaurs seems reinforced by the likely utilization of crocodilian-like, diaphragm breathing in this group. Finally, persistent in vivo burial of their nests and apparent lack of egg turning suggests that clutch incubation by dinosaurs was more reptile- than birdlike. Contrary to previous suggestions, there is little if any reliable evidence that some dinosaur young may have been helpless and nestbound (altricial) at hatching.  相似文献   

11.
Based on evolutionary morphological analysis of the fore and hind limbs of extinct and extant birds, a new compromise hypothesis of the origin of flight in birds and theropod dinosaurs is proposed. The bipedalism and anisodactylous foot suitable for various functions were key adaptations for the development of flight. The bipedalism freed forelimbs from the supporting function and promoted transformation into wings, as animals moved from one tree branch to another and descended from trees. At the initial stage, the strong hind limbs provided the opportunity to climb and leap onto trees, bushes, or eminence, while the anisodactylous foot provided a firm support on both dry land and trees. The support provided by this foot allowed the reduction of the tail, which was initially composed of a long row of vertebrae. Thus, a stage of gliding flight was not necessarily passed by early birds. In the other lineages of feathered creatures, functional changes in forelimbs that resulted in the formation of wings developed in parallel and followed almost the same scenario.  相似文献   

12.
The hypothesis of the direct origin of birds from theropod dinosaurs has recently become widespread. Direct sisterly relationships between theropods and birds were assumed in the basis of random and formal synapomorphies, such as the number of caudal vertebrae, relative length of the humerus, and flattening of the dorsal margin of the pubis. In essence, this hypothesis is supported by the characters of theropods and birds, such as the presence of feathering, furcula, uncinate processes of ribs, pygostyle, double-condyled dorsal joint of the quadrate, and posteriorly turned pubis, which are recognized as homologies. Until recently, these characters have been regarded as avian apomorphies; however, they are presently known in various coelurosaurian groups. At the same time, they occur in various combinations in the Dromaeosauridae, Troodontidae, Oviraptoridae, Therizinosauridae, and Tyrannosauridae. None of the theropod groups possesses the entire set of these characters. This suggests that theropods and birds acquired them in parallel. Theropod dinosaurs and Sauriurae (Archaeornithes and Enantiornithes) show a number of important system synapomorphies, which indicate that they are closely related. Ornithurine birds lack such synapomorphies; however, their monophyly is supported by a large number of diagnostic characters. The hypothesis of independent origin of Sauriurae and Ornithurae is substantiated; the former are considered to have evolved from theropods in the Jurassic, while the latter deviated from a basal archosauromorph group in the Late Triassic. The hypothesis that birds existed in the Early Mesozoic is supported by the findings of small avian footprints in the Upper Triassic and Lower Jurassic of different continents.  相似文献   

13.
The origin and early evolution of birds   总被引:9,自引:0,他引:9  
Birds evolved from and are phylogenetically recognized as members of the theropod dinosaurs; their first known member is the Late Jurassic Archaeopteryx, now represented by seven skeletons and a feather, and their closest known non-avian relatives are the dromaeosaurid theropods such as Deinonychus. Bird flight is widely thought to have evolved from the trees down, but Archaeopteryx and its outgroups show no obvious arboreal or tree-climbing characters, and its wing planform and wing loading do not resemble those of gliders. The ancestors of birds were bipedal, terrestrial, agile, cursorial and carnivorous or omnivorous. Apart from a perching foot and some skeletal fusions, a great many characters that are usually considered ‘avian’ (e.g. the furcula, the elongated forearm, the laterally flexing wrist and apparently feathers) evolved in non-avian theropods for reasons unrelated to birds or to flight. Soon after Archaeopteryx, avian features such as the pygostyle, fusion of the carpometacarpus, and elongated curved pedal claws with a reversed, fully descended and opposable hallux, indicate improved flying ability and arboreal habits. In the further evolution of birds, characters related to the flight apparatus phylogenetically preceded those related to the rest of the skeleton and skull. Mesozoic birds are more diverse and numerous than thought previously and the most diverse known group of Cretaceous birds, the Enantiornithes, was not even recognized until 1981. The vast majority of Mesozoic bird groups have no Tertiary records: Enantiornithes, Hesperornithiformes, Ichthyornithiformes and several other lineages disappeared by the end of the Cretaceous. By that time, a few Linnean ‘Orders’ of extant birds had appeared, but none of these taxa belongs to extant ‘families’, and it is not until the Paleocene or (in most cases) the Eocene that the majority of extant bird ‘Orders’ are known in the fossil record. There is no evidence for a major or mass extinction of birds at the end of the Cretaceous, nor for a sudden ‘bottleneck’ in diversity that fostered the early Tertiary origination of living bird ‘Orders’.  相似文献   

14.
A recent study proposed that incubation behaviour (i.e. type of parental care) in theropod dinosaurs can be inferred from an allometric analysis of clutch volume in extant birds. However, the study in question failed to account for factors known to affect egg and clutch size in living bird species. A new scaling analysis of avian clutch mass demonstrates that type of parental care cannot be distinguished by conventional allometry because of the confounding effects of phylogeny and hatchling maturity. Precociality of young but not paternal care in the theropod ancestors of birds is consistent with the available data.  相似文献   

15.
Pneumatic (air‐filled) postcranial bones are unique to birds among extant tetrapods. Unambiguous skeletal correlates of postcranial pneumaticity first appeared in the Late Triassic (approximately 210 million years ago), when they evolved independently in several groups of bird‐line archosaurs (ornithodirans). These include the theropod dinosaurs (of which birds are extant representatives), the pterosaurs, and sauropodomorph dinosaurs. Postulated functions of skeletal pneumatisation include weight reduction in large‐bodied or flying taxa, and density reduction resulting in energetic savings during foraging and locomotion. However, the influence of these hypotheses on the early evolution of pneumaticity has not been studied in detail previously. We review recent work on the significance of pneumaticity for understanding the biology of extinct ornithodirans, and present detailed new data on the proportion of the skeleton that was pneumatised in 131 non‐avian theropods and Archaeopteryx. This includes all taxa known from significant postcranial remains. Pneumaticity of the cervical and anterior dorsal vertebrae occurred early in theropod evolution. This ‘common pattern’ was conserved on the line leading to birds, and is likely present in Archaeopteryx. Increases in skeletal pneumaticity occurred independently in as many as 12 lineages, highlighting a remarkably high number of parallel acquisitions of a bird‐like feature among non‐avian theropods. Using a quantitative comparative framework, we show that evolutionary increases in skeletal pneumaticity are significantly concentrated in lineages with large body size, suggesting that mass reduction in response to gravitational constraints at large body sizes influenced the early evolution of pneumaticity. However, the body size threshold for extensive pneumatisation is lower in theropod lineages more closely related to birds (maniraptorans). Thus, relaxation of the relationship between body size and pneumatisation preceded the origin of birds and cannot be explained as an adaptation for flight. We hypothesise that skeletal density modulation in small, non‐volant, maniraptorans resulted in energetic savings as part of a multi‐system response to increased metabolic demands. Acquisition of extensive postcranial pneumaticity in small‐bodied maniraptorans may indicate avian‐like high‐performance endothermy.  相似文献   

16.
Evolutionary transformations are recorded by fossils with transitional morphologies, and are key to understanding the history of life. Reconstructing these transformations requires interpreting functional attributes of extinct forms by exploring how similar features function in extant organisms. However, extinct-extant comparisons are often difficult, because extant adult forms frequently differ substantially from fossil material. Here, we illustrate how postnatal developmental transitions in extant birds can provide rich and novel insights into evolutionary transformations in theropod dinosaurs. Although juveniles have not been a focus of extinct-extant comparisons, developing juveniles in many groups transition through intermediate morphological, functional and behavioral stages that anatomically and conceptually parallel evolutionary transformations. Exploring developmental transitions may thus disclose observable, ecologically relevant answers to long puzzling evolutionary questions.  相似文献   

17.
Among extant vertebrates, pneumatization of postcranial bones is unique to birds, with few known exceptions in other groups. Through reduction in bone mass, this feature is thought to benefit flight capacity in modern birds, but its prevalence in non-avian dinosaurs of variable sizes has generated competing hypotheses on the initial adaptive significance of postcranial pneumaticity. To better understand the evolutionary history of postcranial pneumaticity, studies have surveyed its distribution among non-avian dinosaurs. Nevertheless, the degree of pneumaticity in the basal coelurosaurian group Ornithomimosauria remains poorly known, despite their potential to greatly enhance our understanding of the early evolution of pneumatic bones along the lineage leading to birds. Historically, the identification of postcranial pneumaticity in non-avian dinosaurs has been based on examination of external morphology, and few studies thus far have focused on the internal architecture of pneumatic structures inside the bones. Here, we describe the vertebral pneumaticity of the ornithomimosaur Archaeornithomimus with the aid of X-ray computed tomography (CT) imaging. Complementary examination of external and internal osteology reveals (1) highly pneumatized cervical vertebrae with an elaborate configuration of interconnected chambers within the neural arch and the centrum; (2) anterior dorsal vertebrae with pneumatic chambers inside the neural arch; (3) apneumatic sacral vertebrae; and (4) a subset of proximal caudal vertebrae with limited pneumatic invasion into the neural arch. Comparisons with other theropod dinosaurs suggest that ornithomimosaurs primitively exhibited a plesiomorphic theropod condition for axial pneumaticity that was extended among later taxa, such as Archaeornithomimus and large bodied Deinocheirus. This finding corroborates the notion that evolutionary increases in vertebral pneumaticity occurred in parallel among independent lineages of bird-line archosaurs. Beyond providing a comprehensive view of vertebral pneumaticity in a non-avian coelurosaur, this study demonstrates the utility and need of CT imaging for further clarifying the early evolutionary history of postcranial pneumaticity.  相似文献   

18.
Oviraptorosaurs are bird‐like theropod dinosaurs that thrived in the final pre‐extinction ecosystems during the latest Cretaceous, and the beaked, toothless skulls of derived species are regarded as some of the most peculiar among dinosaurs. Their aberrant morphologies are hypothesized to have been caused by rapid evolution triggered by an ecological/biological driver, but little is known about how their skull shapes and functional abilities diversified. Here, we use quantitative techniques to study oviraptorosaur skull form and mandibular function. We demonstrate that the snout is particularly variable, that mandibular form and upper/lower beak form are significantly correlated with phylogeny, and that there is a strong and significant correlation between mandibular function and mandible/lower beak shape, suggesting a form–function association. The form–function relationship and phylogenetic signals, along with a moderate allometric signal in lower beak form, indicate that similar mechanisms governed beak shape in oviraptorosaurs and extant birds. The two derived oviraptorosaur clades, oviraptorids and caenagnathids, are significantly separated in morphospace and functional space, indicating that they partitioned niches. Oviraptorids coexisting in the same ecosystem are also widely spread in morphological and functional space, suggesting that they finely partitioned feeding niches, whereas caenagnathids exhibit extreme disparity in beak size. The diversity of skull form and function was likely key to the diversification and evolutionary success of oviraptorosaurs in the latest Cretaceous.  相似文献   

19.

Background

A new investigation of the sedimentology and ichnology of the Early Jurassic Moyeni tracksite in Lesotho, southern Africa has yielded new insights into the behavior and locomotor dynamics of early dinosaurs.

Methodology/Principal Findings

The tracksite is an ancient point bar preserving a heterogeneous substrate of varied consistency and inclination that includes a ripple-marked riverbed, a bar slope, and a stable algal-matted bar top surface. Several basal ornithischian dinosaurs and a single theropod dinosaur crossed its surface within days or perhaps weeks of one another, but responded to substrate heterogeneity differently. Whereas the theropod trackmaker accommodated sloping and slippery surfaces by gripping the substrate with its pedal claws, the basal ornithischian trackmakers adjusted to the terrain by changing between quadrupedal and bipedal stance, wide and narrow gauge limb support (abduction range = 31°), and plantigrade and digitigrade foot posture.

Conclusions/Significance

The locomotor adjustments coincide with changes in substrate consistency along the trackway and appear to reflect ‘real time’ responses to a complex terrain. It is proposed that these responses foreshadow important locomotor transformations characterizing the later evolution of the two main dinosaur lineages. Ornithischians, which shifted from bipedal to quadrupedal posture at least three times in their evolutionary history, are shown to have been capable of adopting both postures early in their evolutionary history. The substrate-gripping behavior demonstrated by the early theropod, in turn, is consistent with the hypothesized function of pedal claws in bird ancestors.  相似文献   

20.
The morphological basis of hallucal orientation in extant birds   总被引:2,自引:0,他引:2  
The perching foot of living birds is commonly characterized by a reversed or opposable digit I (hallux). Primitively, the hallux of nonavian theropod dinosaurs was unreversed and lay parallel to digits II-IV. Among basal birds, a unique digital innovation evolved in which the hallux opposes digits II-IV. This digital configuration is critical for grasping and perching. I studied skeletons of modern birds with a range of hallucal designs, from unreversed (anteromedially directed) to fully reversed (posteriorly directed). Two primary correlates of hallucal orientation were revealed. First, the fossa into which metatarsal I articulates is oriented slightly more posteriorly on the tarsometatarsus, rotating the digit as a unit. Second, metatarsal I exhibits a distinctive torsion of its distal shaft relative to its proximal articulation with the tarsometatarsus, reorienting the distal condyles and phalanges of digit I. Herein, I present a method that facilitates the re-evaluation of hallucal orientation in fossil avians based on morphology alone. This method also avoids potential misinterpretations of hallucal orientation in fossil birds that could result from preserved appearance alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号