首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Nature shows as human beings live and grow inside social structures. This assumption allows us to explain and explore how it may shape most of our behaviours and choices, and why we are not just blindly driven by instincts: our decisions are based on more complex cognitive reasons, based on our connectedness on different spaces. Thus, human cooperation emerges from this complex nature of social network. Our paper, focusing on the evolutionary dynamics, is intended to explore how and why it happens, and what kind of impact is caused by homophily among people. We investigate the evolution of human cooperation using evolutionary game theory on multiplex. Multiplexity, as an extra dimension of analysis, allows us to unveil the hidden dynamics and observe non-trivial patterns within a population across network layers. More importantly, we find a striking role of homophily, as the higher the homophily between individuals, the quicker is the convergence towards cooperation in the social dilemma. The simulation results, conducted both macroscopically and microscopically across the network layers in the multiplex, show quantitatively the role of homophily in human cooperation.  相似文献   

2.
Indirect reciprocity, one of the many mechanisms proposed to explain the evolution of cooperation, is the idea that altruistic actions can be rewarded by third parties. Upstream or generalized reciprocity is one type of indirect reciprocity in which individuals help someone if they have been helped by somebody else in the past. Although empirically found to be at work in humans, the evolution of upstream reciprocity is difficult to explain from a theoretical point of view. A recent model of upstream reciprocity, first proposed by Nowak and Roch (2007) and further analyzed by Iwagami and Masuda (2010), shows that while upstream reciprocity alone does not lead to the evolution of cooperation, it can act in tandem with mechanisms such as network reciprocity and increase the total level of cooperativity in the population. We argue, however, that Nowak and Roch's model systematically leads to non-uniform interaction rates, where more cooperative individuals take part in more games than less cooperative ones. As a result, the critical benefit-to-cost ratios derived under this model in previous studies are not invariant with respect to the addition of participation costs. We show that accounting for these costs can hinder and even suppress the evolution of upstream reciprocity, both for populations with non-random encounters and graph-structured populations.  相似文献   

3.
《Ethology and sociobiology》1988,9(2-4):119-136
Egg trading is a kind of mating behavior occuring in simultaneously hermaphroditic coral-reef fishes in the family Serranidae. It is a form of delayed reciprocity in which individuals give up eggs to be fertilized in exchange for the opportunity to fertilize the eggs of a partner. The behavior is consistent with the Tit-for-Tat model of cooperation. Egg trading possesses three unusual but potentially important features. First, it almost certainly originated through interactions among unrelated individuals, unlike other examples of delayed reciprocity. Second, it probably originated not as cooperation but as a form of defection or cheating. Third, egg trading and related behavior can account at least in part for the maintenance of the monogamous mating systems of several serranines under ecological conditions in which such systems would not be expected to originate or persist. The reason is that the effects of such behavior patterns are positively frequency-dependent. Much social behavior probably has frequency-dependent effects, and internally generated stability may therefore be involved in the evolution of many animal social systems. However, the extent of its influence is not yet known.  相似文献   

4.
Masuda N 《PloS one》2011,6(10):e25190
Upstream reciprocity (also called generalized reciprocity) is a putative mechanism for cooperation in social dilemma situations with which players help others when they are helped by somebody else. It is a type of indirect reciprocity. Although upstream reciprocity is often observed in experiments, most theories suggest that it is operative only when players form short cycles such as triangles, implying a small population size, or when it is combined with other mechanisms that promote cooperation on their own. An expectation is that real social networks, which are known to be full of triangles and other short cycles, may accommodate upstream reciprocity. In this study, I extend the upstream reciprocity game proposed for a directed cycle by Boyd and Richerson to the case of general networks. The model is not evolutionary and concerns the conditions under which the unanimity of cooperative players is a Nash equilibrium. I show that an abundance of triangles or other short cycles in a network does little to promote upstream reciprocity. Cooperation is less likely for a larger population size even if triangles are abundant in the network. In addition, in contrast to the results for evolutionary social dilemma games on networks, scale-free networks lead to less cooperation than networks with a homogeneous degree distribution.  相似文献   

5.
For many years in evolutionary science, the consensus view has been that while reciprocal altruism can evolve in dyadic interactions, it is unlikely to evolve in sizable groups. This view had been based on studies which have assumed cooperation to be discrete rather than continuous (i.e., individuals can either fully cooperate or else fully defect, but they cannot continuously vary their level of cooperation). In real world cooperation, however, cooperation is often continuous. In this paper, we re-examine the evolution of reciprocity in sizable groups by presenting a model of the n-person prisoner's dilemma that assumes continuous rather than discrete cooperation. This model shows that continuous reciprocity has a dramatically wider basin of attraction than discrete reciprocity, and that this basin's size increases with efficiency of cooperation (marginal per capita return). Further, we find that assortative interaction interacts synergistically with continuous reciprocity to a much greater extent than it does with discrete reciprocity. These results suggest that previous models may have underestimated reciprocity's adaptiveness in groups. However, we also find that the invasion of continuous reciprocators into a population of unconditional defectors becomes realistic only within a narrow parameter space in which the efficiency of cooperation is close to its maximum bound. Therefore our model suggests that continuous reciprocity can evolve in large groups more easily than discrete reciprocity only under unusual circumstances.  相似文献   

6.
Generalized reciprocity (help anyone, if helped by someone) is a minimal strategy capable of supporting cooperation between unrelated individuals. Its simplicity makes it an attractive model to explain the evolution of reciprocal altruism in animals that lack the information or cognitive skills needed for other types of reciprocity. Yet, generalized reciprocity is anonymous and thus defenseless against exploitation by defectors. Recognizing that animals hardly ever interact randomly, we investigate whether social network structure can mitigate this vulnerability. Our results show that heterogeneous interaction patterns strongly support the evolution of generalized reciprocity. The future probability of being rewarded for an altruistic act is inversely proportional to the average connectivity of the social network when cooperators are rare. Accordingly, sparse networks are conducive to the invasion of reciprocal altruism. Moreover, the evolutionary stability of cooperation is enhanced by a modular network structure. Communities of reciprocal altruists are protected against exploitation, because modularity increases the mean access time, that is, the average number of steps that it takes for a random walk on the network to reach a defector. Sparseness and community structure are characteristic properties of vertebrate social interaction patterns, as illustrated by network data from natural populations ranging from fish to primates.  相似文献   

7.
Signals regarding the behavior of others are an essential element of human moral systems and there are important evolutionary connections between language and large-scale cooperation. In particular, social communication may be required for the reputation tracking needed to stabilize indirect reciprocity. Additionally, scholars have suggested that the benefits of indirect reciprocity may have been important for the evolution of language and that social signals may have coevolved with large-scale cooperation. This paper investigates the possibility of such a coevolution. Using the tools of evolutionary game theory, we present a model that incorporates primitive “moral signaling” into a simple setting of indirect reciprocity. This model reveals some potential difficulties for the evolution of “moral signals.” We find that it is possible for “moral signals” to evolve alongside indirect reciprocity, but without some external pressure aiding the evolution of a signaling system, such a coevolution is unlikely.  相似文献   

8.
Indirect reciprocity is often claimed as one of the key mechanisms of human cooperation. It works only if there is a reputational score keeping and each individual can inform with high probability which other individuals were good or bad in the previous round. Gossip is often proposed as a mechanism that can maintain such coherence of reputations in the face of errors of transmission. Random errors, however, are not the only source of uncertainty in such situations. The possibility of deceptive communication, where the signallers aim to misinform the receiver cannot be excluded. While there is plenty of evidence for deceptive communication in humans the possibility of deception is not yet incorporated into models of indirect reciprocity. Here we show that when deceptive strategies are allowed in the population it will cause the collapse of the coherence of reputations and thus in turn it results the collapse of cooperation. This collapse is independent of the norms and the cost and benefit values. It is due to the fact that there is no selection for honest communication in the framework of indirect reciprocity. It follows that indirect reciprocity can be only proposed plausibly as a mechanism of human cooperation if additional mechanisms are specified in the model that maintains honesty.  相似文献   

9.
In social networks, it is conventionally thought that two individuals with more overlapped friends tend to establish a new friendship, which could be stated as homophily breeding new connections. While the recent hypothesis of maximum information entropy is presented as the possible origin of effective navigation in small-world networks. We find there exists a competition between information entropy maximization and homophily in local structure through both theoretical and experimental analysis. This competition suggests that a newly built relationship between two individuals with more common friends would lead to less information entropy gain for them. We demonstrate that in the evolution of the social network, both of the two assumptions coexist. The rule of maximum information entropy produces weak ties in the network, while the law of homophily makes the network highly clustered locally and the individuals would obtain strong and trust ties. A toy model is also presented to demonstrate the competition and evaluate the roles of different rules in the evolution of real networks. Our findings could shed light on the social network modeling from a new perspective.  相似文献   

10.
Many mechanisms for the emergence and maintenance of altruistic behavior in social dilemma situations have been proposed. Indirect reciprocity is one such mechanism, where other-regarding actions of a player are eventually rewarded by other players with whom the original player has not interacted. The upstream reciprocity (also called generalized indirect reciprocity) is a type of indirect reciprocity and represents the concept that those helped by somebody will help other unspecified players. In spite of the evidence for the enhancement of helping behavior by upstream reciprocity in rats and humans, theoretical support for this mechanism is not strong. In the present study, we numerically investigate upstream reciprocity in heterogeneous contact networks, in which the players generally have different number of neighbors. We show that heterogeneous networks considerably enhance cooperation in a game of upstream reciprocity. In heterogeneous networks, the most generous strategy, by which a player helps a neighbor on being helped and in addition initiates helping behavior, first occupies hubs in a network and then disseminates to other players. The scenario to achieve enhanced altruism resembles that seen in the case of the Prisoner's Dilemma game in heterogeneous networks.  相似文献   

11.
As is well-known, spatial reciprocity plays an important role in facilitating the emergence of cooperative traits, and the effect of direct reciprocity is also obvious for explaining the cooperation dynamics. However, how the combination of these two scenarios influences cooperation is still unclear. In the present work, we study the evolution of cooperation in 2×2 games via considering both spatial structured populations and direct reciprocity driven by the strategy with 1-memory length. Our results show that cooperation can be significantly facilitated on the whole parameter plane. For prisoner''s dilemma game, cooperation dominates the system even at strong dilemma, where maximal social payoff is still realized. In this sense, R-reciprocity forms and it is robust to the extremely strong dilemma. Interestingly, when turning to chicken game, we find that ST-reciprocity is also guaranteed, through which social average payoff and cooperation is greatly enhanced. This reciprocity mechanism is supported by mean-field analysis and different interaction topologies. Thus, our study indicates that direct reciprocity in structured populations can be regarded as a more powerful factor for the sustainability of cooperation.  相似文献   

12.
Indirect reciprocity potentially provides an important means for generating cooperation based on helping those who help others. However, the use of ‘image scores’ to summarize individuals’ past behaviour presents a dilemma: individuals withholding help from those of low image score harm their own reputation, yet giving to defectors erodes cooperation. Explaining how indirect reciprocity could evolve has therefore remained problematic. In all previous treatments of indirect reciprocity, individuals are assigned potential recipients and decide whether to cooperate or defect based on their reputation. A second way of achieving discrimination is through partner choice, which should enable individuals to avoid defectors. Here, I develop a model in which individuals choose to donate to anyone within their group, or to none. Whereas image scoring with random pairing produces cycles of cooperation and defection, with partner choice there is almost maximal cooperation. In contrast to image scoring with random pairing, partner choice results in almost perfect contingency, producing the correlation between giving and receiving required for cooperation. In this way, partner choice facilitates much higher and more stable levels of cooperation through image scoring than previously reported and provides a simple mechanism through which systems of helping those who help others can work.  相似文献   

13.
All social species face various “collective action problems” (CAPs) or “social dilemmas,” meaning problems in achieving cooperating when the best move from a selfish point of view yields an inferior collective outcome. Compared to most other species, humans are very good at solving these challenges, suggesting that something rather peculiar about human sociality facilitates collective action. This article proposes that language — the uniquely human faculty of symbolic communication — fundamentally alters the possibilities for collective action. I explore these issues using simple game-theoretic models and empirical evidence (both ethnographic and experimental). I review several standard mechanisms for the evolution of cooperation — mutualism, reciprocal altruism, indirect reciprocity and signaling — highlighting their limitations when it comes to explaining large-group cooperation, as well as the ways in which language helps overcome those limitations. Language facilitates complex coordination and is essential for establishing norms governing production efforts and distribution of collective goods that motivate people to cooperate voluntarily in large groups. Language also significantly lowers the cost of detecting and punishing “free riders,” thus greatly enhancing the scope and power of standard conditional reciprocity. In addition, symbolic communication encourages new forms of collectively beneficial displays and reputation management — what evolutionists often term “signaling” and “indirect reciprocity.” Thus, language reinforces existing forces that favor the evolution of cooperation, as well as creating new opportunities for collective action not available even to our closest primate relatives.  相似文献   

14.
Reciprocity is often invoked to explain cooperation. Reciprocity is cognitively demanding, and both direct and indirect reciprocity require that individuals store information about the propensity of their partners to cooperate. By contrast, generalized reciprocity, wherein individuals help on the condition that they received help previously, only relies on whether an individual received help in a previous encounter. Such anonymous information makes generalized reciprocity hard to evolve in a well‐mixed population, as the strategy will lose out to pure defectors. Here we analyze a model for the evolution of generalized reciprocity, incorporating assortment of encounters, to investigate the conditions under which it will evolve. We show that, in a well‐mixed population, generalized reciprocity cannot evolve. However, incorporating assortment of encounters can favor the evolution of generalized reciprocity in which indiscriminate cooperation and defection are both unstable. We show that generalized reciprocity can evolve under both the prisoner's dilemma and the snowdrift game.  相似文献   

15.
Evolution of cooperation among genetically unrelated individuals has been of considerable concern in various fields such as biology, economics, and psychology. The evolution of cooperation is often explained by reciprocity. Under reciprocity, cooperation can prevail in a society because a donor of cooperation receives reciprocation from the recipient of the cooperation, called direct reciprocity, or from someone else in the community, called indirect reciprocity. Nowak and Sigmund [1993. Chaos and the evolution of cooperation. Proc. Natl. Acad. Sci. USA 90, 5091-5094] have demonstrated that directly reciprocal cooperation in two-person prisoner's dilemma games with mutation of strategies can be maintained dynamically as periodic or chaotic oscillation. Furthermore, Eriksson and Lindgren [2005. Cooperation driven by mutations in multi-person Prisoner's Dilemma. J. Theor. Biol. 232, 399-409] have reported that directly reciprocal cooperation in n-person prisoner's dilemma games (n>2) can be maintained as periodic oscillation. Is dynamic cooperation observed only in direct reciprocity? Results of this study show that indirectly reciprocal cooperation in n-person prisoner's dilemma games can be maintained dynamically as periodic or chaotic oscillation. This is, to our knowledge, the first demonstration of chaos in indirect reciprocity. Furthermore, the results show that oscillatory dynamics are observed in common in the evolution of reciprocal cooperation whether for direct or indirect.  相似文献   

16.
One of the current theoretical challenges to the explanatory powers of Evolutionary Theory is the understanding of the observed evolutionary survival of cooperative behavior when selfish actions provide higher fitness (reproductive success). In unstructured populations natural selection drives cooperation to extinction. However, when individuals are allowed to interact only with their neighbors, specified by a graph of social contacts, cooperation-promoting mechanisms (known as lattice reciprocity) offer to cooperation the opportunity of evolutionary survival. Recent numerical works on the evolution of Prisoner's Dilemma in complex network settings have revealed that graph heterogeneity dramatically enhances the lattice reciprocity. Here we show that in highly heterogeneous populations, under the graph analog of replicator dynamics, the fixation of a strategy in the whole population is in general an impossible event, for there is an asymptotic partition of the population in three subsets, two in which fixation of cooperation or defection has been reached and a third one which experiences cycles of invasion by the competing strategies. We show how the dynamical partition correlates with connectivity classes and characterize the temporal fluctuations of the fluctuating set, unveiling the mechanisms stabilizing cooperation in macroscopic scale-free structures.  相似文献   

17.
The evolution of cooperation in social dilemmas has been of considerable concern in various fields such as sociobiology, economics and sociology. It might be that, in the real world, reputation plays an important role in the evolution of cooperation. Recently, studies that have addressed indirect reciprocity have revealed that cooperation can evolve through reputation, even though pairs of individuals interact only a few times. To our knowledge, most indirect reciprocity models have presumed dyadic interaction; no studies have attempted analysis of the evolution of cooperation in large communities where the effect of reputation is included. We investigate the evolution of cooperation in sizable groups in which the reputation of individuals affects the decision-making process. This paper presents the following: (i) cooperation can evolve in a four-person case, (ii) the evolution of cooperation becomes difficult as group size increases, even if the effect of reputation is included, and (iii) three kinds of final social states exist. In medium-sized communities, cooperative species can coexist in a stable manner with betrayal species.  相似文献   

18.
Transforming the dilemma   总被引:1,自引:0,他引:1  
How does natural selection lead to cooperation between competing individuals? The Prisoner's Dilemma captures the essence of this problem. Two players can either cooperate or defect. The payoff for mutual cooperation, R, is greater than the payoff for mutual defection, P. But a defector versus a cooperator receives the highest payoff, T, where as the cooperator obtains the lowest payoff, S. Hence, the Prisoner's Dilemma is defined by the payoff ranking T > R > P > S . In a well‐mixed population, defectors always have a higher expected payoff than cooperators, and therefore natural selection favors defectors. The evolution of cooperation requires specific mechanisms. Here we discuss five mechanisms for the evolution of cooperation: direct reciprocity, indirect reciprocity, kin selection, group selection, and network reciprocity (or graph selection). Each mechanism leads to a transformation of the Prisoner's Dilemma payoff matrix. From the transformed matrices, we derive the fundamental conditions for the evolution of cooperation. The transformed matrices can be used in standard frameworks of evolutionary dynamics such as the replicator equation or stochastic processes of game dynamics in finite populations.  相似文献   

19.
The evolution of cooperation among nonrelatives has been explained by direct, indirect, and strong reciprocity. Animals should base the decision to help others on expected future help, which they may judge from past behavior of their partner. Although many examples of cooperative behavior exist in nature where reciprocity may be involved, experimental evidence for strategies predicted by direct reciprocity models remains controversial; and indirect and strong reciprocity have been found only in humans so far. Here we show experimentally that cooperative behavior of female rats is influenced by prior receipt of help, irrespective of the identity of the partner. Rats that were trained in an instrumental cooperative task (pulling a stick in order to produce food for a partner) pulled more often for an unknown partner after they were helped than if they had not received help before. This alternative mechanism, called generalized reciprocity, requires no specific knowledge about the partner and may promote the evolution of cooperation among unfamiliar nonrelatives.  相似文献   

20.
Strong reciprocity, defined as a predisposition to help others and to punish those that are not helping, has been proposed as a potent force leading to the evolution of cooperation and altruism. However, the conditions under which strong reciprocity might be favored are not clear. Here we investigate the selective pressure on strong reciprocity by letting both limited dispersal (i.e., spatial structure) and recombination between helping and punishment jointly determine the evolutionary dynamics of strong reciprocity. Our analytical model suggests that when helping and punishment are perfectly linked traits (no recombination occurring between them), strong reciprocity can spread even when the initial frequency of strong reciprocators is close to 0 in the population (i.e., a rare mutant can invade). By contrast, our results indicate that when recombination can occur between helping and punishment (i.e., both traits coevolve) and is stronger than selection, punishment is likely to invade a population of defectors only when it gives a direct fitness benefit to the actor. Overall, our results delineate the conditions under which strong reciprocity is selected for in a spatially structured population and highlight that the forces behind its evolution involves kinship (be it genetic or cultural).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号