首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bioactive phospholipid, lysophosphatidic acid (LPA), acting through at least five distinct receptors LPA1–LPA5, plays important roles in numerous biological processes. Here we report that LPA induces osteoblastic differentiation of human mesenchymal stem cells hMSC‐TERT. We find that hMSC‐TERT mostly express two LPA receptors, LPA1 and LPA4, and undergo osteoblastic differentiation in serum‐containing medium. Inhibition of LPA1 with Ki16425 completely abrogates osteogenesis, indicating that this process is mediated by LPA in the serum through activation of LPA1. In contrast to LPA1, down‐regulation of LPA4 expression with shRNA significantly increases osteogenesis, suggesting that this receptor normally exerts negative effects on differentiation. Mechanistically, we find that in hMSC‐TERT, LPA induces a rise in both cAMP and Ca2+. The rise in Ca2+ is completely abolished by Ki16425, whereas LPA‐mediated cAMP increase is not sensitive to Ki16425. To test if LPA signaling pathways controlling osteogenesis in vitro translate into animal physiology, we evaluated the bones of LPA4‐deficient mice. Consistent with the ability of LPA4 to inhibit osteoblastic differentiation of stem cells, LPA4‐deficient mice have increased trabecular bone volume, number, and thickness. J. Cell. Biochem. 109: 794–800, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
Lysophosphatidic acid (LPA) and the LPA-generating enzyme autotaxin (ATX) have been implicated in lymphocyte trafficking and the regulation of lymphocyte entry into lymph nodes. High local concentrations of LPA are thought to be present in lymph node high endothelial venules, suggesting a direct influence of LPA on cell migration. However, little is known about the mechanism of action of LPA, and more work is needed to define the expression and function of the six known G protein-coupled receptors (LPA 1–6) in T cells. We studied the effects of 18∶1 and 16∶0 LPA on naïve CD4+ T cell migration and show that LPA induces CD4+ T cell chemorepulsion in a Transwell system, and also improves the quality of non-directed migration on ICAM-1 and CCL21 coated plates. Using intravital two-photon microscopy, lpa2−/− CD4+ T cells display a striking defect in early migratory behavior at HEVs and in lymph nodes. However, later homeostatic recirculation and LPA-directed migration in vitro were unaffected by loss of lpa2. Taken together, these data highlight a previously unsuspected and non-redundant role for LPA2 in intranodal T cell motility, and suggest that specific functions of LPA may be manipulated by targeting T cell LPA receptors.  相似文献   

3.
Lysophosphatidic acid (LPA) is a bioactive lipid that serves as an extracellular signaling molecule acting through cognate G protein-coupled receptors designated LPA(1-6) that mediate a wide range of both normal and pathological effects. Previously, LPA(1), a G(αi)-coupled receptor (which also couples to other G(α) proteins) to reduce cAMP, was shown to be essential for the initiation of neuropathic pain in the partial sciatic nerve ligation (PSNL) mouse model. Subsequent gene expression studies identified LPA(5), a G(α12/13)- and G(q)-coupled receptor that increases cAMP, in a subset of dorsal root ganglion neurons and also within neurons of the spinal cord dorsal horn in a pattern complementing, yet distinct from LPA(1), suggesting its possible involvement in neuropathic pain. We therefore generated an Lpar5 null mutant by targeted deletion followed by PSNL challenge. Homozygous null mutants did not show obvious base-line phenotypic defects. However, following PSNL, LPA(5)-deficient mice were protected from developing neuropathic pain. They also showed reduced phosphorylated cAMP response element-binding protein expression within neurons of the dorsal horn despite continued up-regulation of the characteristic pain-related markers Caα(2)δ(1) and glial fibrillary acidic protein, results that were distinct from those previously observed for LPA(1) deletion. These data expand the influences of LPA signaling in neuropathic pain through a second LPA receptor subtype, LPA(5), involving a mechanistically distinct downstream signaling pathway compared with LPA(1).  相似文献   

4.
Lysophosphatidic acid (LPA) is a bioactive lysophospholipid mediator that acts through G protein-coupled receptors. Most cell lines in culture express one or more LPA receptors, making it difficult to assign a response to specific LPA receptors. Dissection of the signaling properties of LPA has been hampered by lack of LPA receptor subtype-specific agonists and antagonists. The present study characterizes an ester-linked thiophosphate derivative (1-oleoyl-2-O-methyl-rac-glycerophosphothionate, OMPT) of LPA. OMPT is a functional LPA analogue with potent mitogenic activity in fibroblasts. In contrast to LPA, OMPT does not couple to the pheromone response through the LPA(1) receptor in yeast cells. OMPT induces intracellular calcium increases efficiently in LPA(3) receptor-expressing Sf9 cells but poorly in LPA(2) receptor-expressing cells. Guanosine 5'-O-(3-[(35)S]thio)triphosphate binding assays in mammalian cells showed that LPA exhibits agonistic activity on all three LPA receptor subtypes, whereas OMPT has a potent agonistic effect only on the LPA(3) receptor. In transiently transfected HEK293 cells, OMPT stimulates mitogen-activated protein kinases through the LPA(3) but not the LPA(1) or LPA(2) receptors. Furthermore, OMPT-induced intracellular calcium mobilization in mammalian cells is efficiently inhibited by the LPA(1)/LPA(3) receptor-selective antagonist VPC12249. These results establish that OMPT is an LPA(3)-selective agonist. OMPT binding to the LPA(3) receptor in mammalian cells is sufficient to elicit multiple responses, including activation of G proteins, calcium mobilization, and activation of mitogen-activated protein kinases. Thus OMPT offers a powerful probe for the dissection of LPA signaling events in complex mammalian systems.  相似文献   

5.
The phospholipid lysophosphatidic acid (LPA) is a normal constituent of serum that functions as a lipid growth factor and intracellular signaling molecule. In this report, we have investigated the signaling mechanism and function of the tyrosine kinase RAFTK/Pyk2 in LPA-induced cell migration. Analysis of tyrosine phosphorylation upon LPA stimulation in neuroendocrine PC12 cells revealed 6 major tyrosine-phosphorylated proteins with estimated sizes of 180, 120, 115, 68, 44, and 42 kDa. These proteins were identified as epidermal growth factor receptor (EGFR), focal adhesion kinase, RAFTK/Pyk2, paxillin, Erk 1, and Erk 2, respectively. Using specific pharmacological inhibitors, we found that the tyrosine phosphorylation of RAFTK/Pyk2 was intracellular Ca2+-dependent, but not EGFR-dependent, during LPA stimulation of these cells. Moreover, the cytoskeletal and signal scaffolding protein, paxillin, associated with and was regulated by RAFTK/Pyk2 in a Ca2+-dependent manner. Characterization of LPA receptors showed that LPA1 (Edg2) and LPA2 (Edg4) are major receptors for LPA, while LPA3 receptor (Edg7) expression was limited. Upon using the LPA1/LPA3 receptor-specific antagonist VPC 32179, we observed that inhibition of the LPA1/LPA3 receptors had no effect on the LPA-induced phosphorylation of RAFTK, strongly suggesting that the LPA2 receptor is a key mediator of RAFTK phosphorylation. Furthermore, LPA induced PC12 cell migration, which was subsequently blocked by the dominant-negative form of FAK, FRNK. Expression of a dominant-negative form of the small GTPase Ras also blocked LPA-induced cell migration and RAFTK phosphorylation. Taken together, these results indicate that RAFTK is a key signaling molecule that mediates LPA-induced PC12 cell migration in a Ras-dependent manner.  相似文献   

6.
7.
《Matrix biology》2006,25(4):223-231
Engagement of integrin receptors by the extracellular matrix (ECM) protein fibronectin (FN) activates intracellular signaling, cytoskeletal reorganization and cellular tension. The soluble factor lysophosphatidic acid (LPA) acts through Rho GTPase and its effector Rho kinase (ROCK) to enhance α5β1 integrin-mediated cell spreading on the Arg-Gly-Asp (RGD) cell-binding domain of FN. A second cell-binding site for α4 integrins resides in the CS1 segment of the alternatively spliced V region of FN. We show here that LPA treatment of α4β1-expressing CHOα4 cells on FN induced a significant decrease in spread cell area. LPA also decreased apoptosis induced by serum-deprivation in CHOα4 and human A375 melanoma cells in an α4β1-dependent manner. Improvement in cell viability and changes in cell morphology were dependent on ROCK and on the number of substrate binding sites for α4β1. LPA signaling combined with α4β1-mediated adhesion appears to sustain cell viability in situations where FN matrix is limiting. Such cooperation may impact dynamic cellular events such as wound healing, fibrosis, and metastasis.  相似文献   

8.
Kim J  Keys JR  Eckhart AD 《Cellular signalling》2006,18(10):1695-1701
Many G protein-coupled receptors can couple to multiple G proteins to convey their intracellular signaling cascades. The receptors for lysophosphatidic acid (LPA) possess this ability. LPA receptors are important mediators of a wide variety of biological actions including cell migration, proliferation and survival which are processes that can all have a considerable impact on vascular smooth muscle (VSM) and blood vessels. To date, confirmation of G proteins involved has mostly relied on the inhibition of Gi-mediated signaling via pertussis toxin (PTx). We were interested in the specific involvement of LPA-Gq-mediated signaling therefore we isolated aorta VSM cells (VSMCs) from transgenic mice that express a peptide inhibitor of Gq, GqI, exclusively in VSM. We detected both LPA1 and LPA2 receptor expression in mouse VSM whereas LPA1 and LPA3 were expressed in rat VSM. SM22-GqI did not alter LPA-induced migration but it was sufficient to attenuate LPA-induced proliferation. GqI expression also attenuated LPA-induced ERK1/2 and Akt activation by 40-50%. To test the feasibility of this peptide as a potential therapeutic agent, we also generated adenovirus encoding the GqI. Transient expression of GqI was capable of inhibiting both LPA-induced migration and proliferation of VSMCs isolated from rat and mouse. Furthermore, ERK activation in response to LPA was also attenuated in VSMCs with Adv-GqI. Therefore, LPA receptors couple to Gq in VSMC and mediate migration and proliferation which may be mediated through activation of ERK1/2 and Akt. Our data also suggest that both chronic and transient expression of the GqI peptide is an effective strategy to lower Gq-mediated LPA signaling and may be a successful therapeutic strategy to combat diseases with enhanced VSM growth such as occurs following angioplasty or stent implantation.  相似文献   

9.
The enhanced migration found in tumor cells is often caused by external stimuli and the sequential participation of cytoskeleton‐related signaling molecules. However, until now, the molecular connection between the lysophosphatidic acid (LPA) receptor and nonmuscle myosin II (NM II) has not been analyzed in detail for LPA‐induced migration. Here, we demonstrate that LPA induces migration by activating the LPA1 receptor which promotes phosphorylation of the 20 kDa NM II light chain through activation of Rho kinase (ROCK). We show that LPA‐induced migration is insensitive to pertussis toxin (PTX) but does require the LPA1 receptor as determined by siRNA and receptor antagonists. LPA activates ROCK and also increases GTP‐bound RhoA activity, concomitant with the enhanced membrane recruitment of RhoA. LPA‐induced migration and invasion are attenuated by specific inhibitors including C3 cell‐permeable transferase and Y‐27632. We demonstrate that NM II plays an important role in LPA‐induced migration and invasion by inhibiting its cellular function with blebbistatin and shRNA lentivirus directed against NM II‐A or II‐B. Inhibition or loss of either NM II‐A or NM II‐B in 4T1 cells results in a decrease in migration and invasion. Restoration of the expression of NM II‐A or NM II‐B also rescued LPA‐induced migration. Taken together, these results suggest defined pathways for signaling through the LPA1 receptor to promote LPA‐mediated NM II activation and subsequent cell migration in 4T1 breast cancer cells. J. Cell. Physiol. 226: 2881–2893, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

10.
Lysophosphatidic acid (LPA) acts via binding to specific G protein-coupled receptors and has been implicated in the biology of breast cancer. Here, we characterize LPA receptor expression patterns in common established breast cancer cell lines and their contribution to breast cancer cell motility. By measuring expression of the LPA receptors LPA1, LPA2, and LPA3 with real-time quantitative PCR, we show that the breast cancer cell lines tested can be clustered into three main groups: cells that predominantly express LPA1 (BT-549, Hs578T, MDA-MB-157, MDA-MB-231, and T47D), cells that predominantly express LPA2 (BT-20, MCF-7, MDA-MB-453, and MDA-MB-468), and a third group that shows comparable expression level of these two receptors (MDA-MB-175 and MDA-MB-435). LPA3 expression was detected primarily in MDA-MB-157 cells. Using a Transwell chemotaxis assay to monitor dose response, we find that cells predominantly expressing LPA1 have a peak migration rate at 100 nM LPA that drops off dramatically at 1 µM LPA, whereas cells predominantly expressing LPA2 show the peak migration rate at 1 µM LPA, which remains high at 10 µM. Using BT-20 cells, LPA2-specific small interfering RNA, and C3 exotransferase, we demonstrate that LPA2 can mediate LPA-stimulated cell migration and activation of the small GTPase RhoA. Using LPA2 small interfering RNA, exogenous expression of LPA1, and treatment with Ki16425 LPA receptor antagonist in the BT-20 cells, we further find that LPA1 and LPA2 cooperate to promote LPA-stimulated chemotaxis. In summary, our results suggest that the expression of both LPA1 and LPA2 may contribute to chemotaxis and may permit cells to respond optimally to a wider range of LPA concentrations, thus revealing a new aspect of LPA signaling. G protein-coupled receptor; lysophosphatidic acid; chemotactic migration; GTPase  相似文献   

11.
17beta-Estradiol induced LPA(1) receptor desensitization in C9 cells stably expressing LPA(1) receptors and transiently expressing estrogen receptor alpha. Such desensitization was evidenced by a reduction in lysophosphatidic acid-mediated Ca(2+)mobilization and it was associated to receptor phosphorylation and internalization. These effects of 17beta-estradiol were rapid (taking place over 5 min) and were blocked by the estrogen receptor antagonist ICI 182780. Similarly, inhibitors of phosphoinositide 3-kinase (wortmannin and LY294002) and of protein kinase C (staurosporine and G? 6976) blocked 17beta-estradiol-induced LPA(1) receptor desensitization and phosphorylation. Confocal microscopy evidenced LPA(1) receptor internalization in response to 17beta-estradiol treatment. Association between LPA(1) receptors and protein kinase C alpha was suggested by co-immunoprecipitation assays. Protein kinase C alpha was associated with LPA(1) receptors in the absence of stimulus and such association further increased in a dynamic fashion in response to 17beta-estradiol. The results demonstrated that in C9 cells estrogens modulate LPA(1) action through estrogen receptor alpha with the participation of protein kinase C alpha and phosphoinositide 3-kinase.  相似文献   

12.
13.
Glycogen synthase kinase-3 (GSK-3) is a multifunctional serine/threonine kinase that is usually inactivated by serine phosphorylation in response to extracellular cues. However, GSK-3 can also be activated by tyrosine phosphorylation, but little is known about the upstream signaling events and tyrosine kinase(s) involved. Here we describe a G protein signaling pathway leading to GSK-3 activation during lysophosphatidic acid (LPA)-induced neurite retraction. Using neuronal cells expressing the LPA(1) receptor, we show that LPA(1) mediates tyrosine phosphorylation and activation of GSK-3 with subsequent phosphorylation of the microtubule-associated protein tau via the G(i)-linked PIP(2) hydrolysis-Ca(2+) mobilization pathway. LPA concomitantly activates the Ca(2+)-dependent tyrosine kinase Pyk2, which is detected in a complex with GSK-3beta. Inactivation or knockdown of Pyk2 inhibits LPA-induced (but not basal) tyrosine phosphorylation of GSK-3 and partially inhibits LPA-induced neurite retraction, similar to what is observed following GSK-3 inhibition. Thus, Pyk2 mediates LPA(1)-induced activation of GSK-3 and subsequent phosphorylation of microtubule-associated proteins. Pyk2-mediated GSK-3 activation is initiated by PIP(2) hydrolysis and may serve to destabilize microtubules during actomyosin-driven neurite retraction.  相似文献   

14.
Recently, we isolated a subset of glycolipoproteins from Panax ginseng, that we designated gintonin, and demonstrated that it induced [Ca2+]i transients in cells via G protein-coupled receptor (GPCR) signaling pathway(s). However, active components responsible for Ca2+ mobilization and the corresponding receptor(s) were unknown. Active component(s) for [Ca2+]i transients of gintonin were analyzed by liquid chromatography-electrospray ionization-tandem mass spectrometry and ion-mobility mass spectrometry, respectively. The corresponding receptor(s)were investigated through gene expression assays. We found that gintonin contains LPA C18:2 and other LPAs. Proteomic analysis showed that ginseng major latex-like protein and ribonuclease-like storage proteins are protein components of gintonin. Gintonin induced [Ca2+]i transients in B103 rat neuroblastoma cells transfected with human LPA receptors with high affinity in order of LPA2 >LPA5 > LPA1 > LPA3 > LPA4. The LPA1/LPA3 receptor antagonist Ki16425 blocked gintonin action in cells expressing LPA1 or LPA3. Mutations of binding sites in the LPA3 receptor attenuated gintonin action. Gintonin acted via pertussis toxin (PTX)-sensitive and -insensitive G protein-phospholipase C (PLC)-inositol 1,4,5-trisphosphate (IP3)-Ca2+ pathways. However, gintonin had no effects on other receptors examined. In human umbilical vein endothelial cells (HUVECs) gintonin stimulated cell proliferation and migration. Gintonin stimulated ERK1/2 phosphorylation. PTX blocked gintonin-mediated migration and ERK1/2 phosphorylation. In PC12 cells gintonin induced morphological changes, which were blocked by Rho kinase inhibitorY-27632. Gintonin contains GPCR ligand LPAs in complexes with ginseng proteins and could be useful in the development of drugs targeting LPA receptors.  相似文献   

15.
Cytokines and growth factors in malignant ascites are thought to modulate a variety of cellular activities of cancer cells and normal host cells. The motility of cancer cells is an especially important activity for invasion and metastasis. Here, we examined the components in ascites, which are responsible for cell motility, from patients and cancer cell-injected mice. Ascites remarkably stimulated the migration of pancreatic cancer cells. This response was inhibited or abolished by pertussis toxin, monoglyceride lipase, an enzyme hydrolyzing lysophosphatidic acid (LPA), and Ki16425 and VPC12249, antagonists for LPA receptors (LPA1 and LPA3), but not by an LPA3-selective antagonist. These agents also inhibited the response to LPA but not to the epidermal growth factor. In malignant ascites, LPA is present at a high level, which can explain the migration activity, and the fractionation study of ascites by lipid extraction and subsequent thin-layer chromatography indicated LPA as an active component. A significant level of LPA1 receptor mRNA is expressed in pancreatic cancer cells with high migration activity to ascites but not in cells with low migration activity. Small interfering RNA against LPA1 receptors specifically inhibited the receptor mRNA expression and abolished the migration response to ascites. These results suggest that LPA is a critical component of ascites for the motility of pancreatic cancer cells and LPA1 receptors may mediate this activity. LPA receptor antagonists including Ki16425 are potential therapeutic drugs against the migration and invasion of cancer cells.  相似文献   

16.
Mitogenic action of LPA in prostate   总被引:4,自引:0,他引:4  
The lipid growth factor lysophosphatidic acid (LPA) elicits multiple cellular responses, including cell growth and survival. LPA acts upon target cells by activating its cognate receptors, which belong to the G protein-coupled endothelial differentiation gene (EDG) family. To date, three known LPA receptors, termed LPA1, LPA2 and LPA3, have been molecularly characterized and cloned. Here, we review recent data describing the molecular steps involved in the LPA receptor-mediated activation of mitogenic extracellular signal-regulated kinase (ERK) pathway in prostate cancer. Induction of ERK by LPA proceeds via Gbetagamma-dependent activation of tyrosine kinases, including the epidermal growth factor (EGF) receptor and c-Src. Further, LPA-induced ERK activation involves matrix metalloproteinases (MMPs), which cause the release of active EGFR ligands. Finally, we present data demonstrating a correlation between the mitogenic effects of LPA and expression of the lp(A1) gene in the prostate cancer cells.  相似文献   

17.
Lysophosphatidic acid (LPA) is a bioactive lipid mediator with diverse physiological and pathological actions on many types of cells. Originally, LPA was thought to elicit its biological functions through three subtypes of endothelial differentiation gene (Edg) family G protein-coupled receptors (LPA1, LPA2 and LPA3) until our group identified a fourth subtype, LPA4. The discovery of this receptor, which is structurally distinct from the Edg family LPA receptors, led to the identification of two additional LPA receptors, LPA5 and LPA6, homologous to LPA4. These 'non-Edg family' LPA receptors now provide a new framework for understanding the diverse functions of LPA, including vascular development, platelet activation and hair growth. In this review, we summarize the identification, intracellular signalling and biological functions of this novel cluster of LPA receptors.  相似文献   

18.
Lysophosphatidic acid (LPA) is a ligand of multiple G protein–coupled receptors. The LPA1–3 receptors are members of the endothelial cell differentiation gene (Edg) family. LPA4/p2y9/GPR23, a member of the purinergic receptor family, and recently identified LPA5/GPR92 and p2y5 are structurally distant from the canonical Edg LPA receptors. Here we report targeted disruption of lpa4 in mice. Although LPA4-deficient mice displayed no apparent abnormalities, LPA4-deficient mouse embryonic fibroblasts (MEFs) were hypersensitive to LPA-induced cell migration. Consistent with negative modulation of the phosphatidylinositol 3 kinase pathway by LPA4, LPA4 deficiency potentiated Akt and Rac but decreased Rho activation induced by LPA. Reconstitution of LPA4 converted LPA4-negative cells into a less motile phenotype. In support of the biological relevance of these observations, ectopic expression of LPA4 strongly inhibited migration and invasion of human cancer cells. When coexpressed with LPA1 in B103 neuroblastoma cells devoid of endogenous LPA receptors, LPA4 attenuated LPA1-driven migration and invasion, indicating functional antagonism between the two subtypes of LPA receptors. These results provide genetic and biochemical evidence that LPA4 is a suppressor of LPA-dependent cell migration and invasion in contrast to the motility-stimulating Edg LPA receptors.  相似文献   

19.
p2y5 is an orphan G protein-coupled receptor that is closely related to the fourth lysophosphatidic acid (LPA) receptor, LPA4. Here we report that p2y5 is a novel LPA receptor coupling to the G13-Rho signaling pathway. “LPA receptor-null” RH7777 and B103 cells exogenously expressing p2y5 showed [3H]LPA binding, LPA-induced [35S]guanosine 5′-3-O-(thio)triphosphate binding, Rho-dependent alternation of cellular morphology, and Gs/13 chimeric protein-mediated cAMP accumulation. LPA-induced contraction of human umbilical vein endothelial cells was suppressed by small interfering RNA knockdown of endogenously expressed p2y5. We also found that 2-acyl-LPA had higher activity to p2y5 than 1-acyl-LPA. A recent study has suggested that p2y5 is an LPA receptor essential for human hair growth. We confirmed that p2y5 is a functional LPA receptor and propose to designate this receptor LPA6.  相似文献   

20.
The high mortality of melanoma is caused by rapid spread of cancer cells, which occurs unusually early in tumour evolution. Unlike most solid tumours, thickness rather than cytological markers or differentiation is the best guide to metastatic potential. Multiple stimuli that drive melanoma cell migration have been described, but it is not clear which are responsible for invasion, nor if chemotactic gradients exist in real tumours. In a chamber-based assay for melanoma dispersal, we find that cells migrate efficiently away from one another, even in initially homogeneous medium. This dispersal is driven by positive chemotaxis rather than chemorepulsion or contact inhibition. The principal chemoattractant, unexpectedly active across all tumour stages, is the lipid agonist lysophosphatidic acid (LPA) acting through the LPA receptor LPAR1. LPA induces chemotaxis of remarkable accuracy, and is both necessary and sufficient for chemotaxis and invasion in 2-D and 3-D assays. Growth factors, often described as tumour attractants, cause negligible chemotaxis themselves, but potentiate chemotaxis to LPA. Cells rapidly break down LPA present at substantial levels in culture medium and normal skin to generate outward-facing gradients. We measure LPA gradients across the margins of melanomas in vivo, confirming the physiological importance of our results. We conclude that LPA chemotaxis provides a strong drive for melanoma cells to invade outwards. Cells create their own gradients by acting as a sink, breaking down locally present LPA, and thus forming a gradient that is low in the tumour and high in the surrounding areas. The key step is not acquisition of sensitivity to the chemoattractant, but rather the tumour growing to break down enough LPA to form a gradient. Thus the stimulus that drives cell dispersal is not the presence of LPA itself, but the self-generated, outward-directed gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号