首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 539 毫秒
1.
URAT1 and GLUT9 are two primary urate transporters involved in the renal urate handling. Renal urate underexcretion was reported in uric acid stone formers (UASF) in previous clinical studies. The aim of this study was to investigate the clinical features and possible impact of protein expression of URAT1 and GLUT9 in renal tissues of patients with uric acid (UA) nephrolithiasis. 23 UASF, 27 patients with calcium oxalate (CaOx) stones, and 22 normal controls were enrolled in this study. Clinical data revealed that older age of onset, high plasma UA concentration, low urinary PH, and relative renal urate underexcretion were associated with UASF. By immunohistochemical or western blotting analysis, a significant increase in the relative expression quantity of URAT1 in renal tissue of UASF was found compared to patients with CaOx nephrolithiasis and normal controls. In conclusion, our results suggested that upregulated URAT1 protein expression might contribute to the relative urate underexcretion from the kidney of UASF.  相似文献   

2.
3.
Urate is the final metabolite of purine in humans. Renal urate handling is clinically important because under-reabsorption or underexcretion causes hypouricemia or hyperuricemia, respectively. We have identified a urate-anion exchanger, URAT1, localized at the apical side and a voltage-driven urate efflux transporter, URATv1, expressed at the basolateral side of the renal proximal tubules. URAT1 and URATv1 are vital to renal urate reabsorption because the experimental data have illustrated that functional loss of these transporter proteins affords hypouricemia. While mutations affording enhanced function via these transporter proteins on urate handling is unknown, we have constructed kidney-specific transgenic (Tg) mice for URAT1 or URATv1 to investigate this problem. In our study, each transgene was under the control of the mouse URAT1 promoter so that transgene expression was directed to the kidney. Plasma urate concentrations in URAT1 and URATv1 Tg mice were not significantly different from that in wild-type (WT) mice. Urate excretion in URAT1 Tg mice was similar to that in WT mice, while URATv1 Tg mice excreted more urate compared with WT. Our results suggest that hyperfunctioning URATv1 in the kidney can lead to increased urate reabsorption and may contribute to the development of hyperuricemia.  相似文献   

4.
Urate is the final metabolite of purine in humans. Renal urate handling is clinically important because under-reabsorption or underexcretion causes hypouricemia or hyperuricemia, respectively. We have identified a urate-anion exchanger, URAT1, localized at the apical side and a voltage-driven urate efflux transporter, URATv1, expressed at the basolateral side of the renal proximal tubules. URAT1 and URATv1 are vital to renal urate reabsorption because the experimental data have illustrated that functional loss of these transporter proteins affords hypouricemia. While mutations affording enhanced function via these transporter proteins on urate handling is unknown, we have constructed kidney-specific transgenic (Tg) mice for URAT1 or URATv1 to investigate this problem. In our study, each transgene was under the control of the mouse URAT1 promoter so that transgene expression was directed to the kidney. Plasma urate concentrations in URAT1 and URATv1 Tg mice were not significantly different from that in wild-type (WT) mice. Urate excretion in URAT1 Tg mice was similar to that in WT mice, while URATv1 Tg mice excreted more urate compared with WT. Our results suggest that hyperfunctioning URATv1 in the kidney can lead to increased urate reabsorption and may contribute to the development of hyperuricemia.  相似文献   

5.
Although dietary, genetic, or disease-related excesses in urate production may contribute to hyperuricemia, impaired renal excretion of uric acid is the dominant cause of hyperuricemia in the majority of patients with gout. The aims of this review are to highlight exciting and clinically pertinent advances in our understanding of how uric acid is reabsorbed by the kidney under the regulation of urate transporter (URAT)1 and other recently identified urate transporters; to discuss urate-lowering agents in clinical development; and to summarize the limitations of currently available antihyperuricemic drugs. The use of uricosuric drugs to treat hyperuricemia in patients with gout is limited by prior urolothiasis or renal dysfunction. For this reason, our discussion focuses on the development of the novel xanthine oxidase inhibitor febuxostat and modified recombinant uricase preparations.  相似文献   

6.
Hyperuricemia is a significant factor in a variety of diseases, including gout and cardiovascular diseases. Although renal excretion largely determines plasma urate concentration, the molecular mechanism of renal urate handling remains elusive. Previously, we identified a major urate reabsorptive transporter, URAT1 (SLC22A12), on the apical side of the renal proximal tubular cells. However, it is not known how urate taken up by URAT1 exits from the tubular cell to the systemic circulation. Here, we report that a sugar transport facilitator family member protein GLUT9 (SLC2A9) functions as an efflux transporter of urate from the tubular cell. GLUT9-expressed Xenopus oocytes mediated saturable urate transport (K(m): 365+/-42 microm). The transport was Na(+)-independent and enhanced at high concentrations of extracellular potassium favoring negative to positive potential direction. Substrate specificity and pyrazinoate sensitivity of GLUT9 was distinct from those of URAT1. The in vivo role of GLUT9 is supported by the fact that a renal hypouricemia patient without any mutations in SLC22A12 was found to have a missense mutation in SLC2A9, which reduced urate transport activity in vitro. Based on these data, we propose a novel model of transcellular urate transport in the kidney; urate [corrected] is taken up via apically located URAT1 and exits the cell via basolaterally located GLUT9, which we suggest be renamed URATv1 (voltage-driven urate transporter 1).  相似文献   

7.
Since the molecular cloning of the renal apical urate/anion exchanger URAT1 (SLC22A12), several membrane proteins relevant to urate transport have been identified. In addition, the identification of PDZ (PSD-95, DglA, and ZO-1) domain protein PDZK1 as a binding partner of URAT1, and the emerging role of PDZ scaffold for renal apical transporters have led to a new concept of renal urate transport: urate-transporting multimolecular complex, or “urate transportsome,” that may form an ultimate functional unit at the apical membrane of renal proximal tubules. Elucidation of urate transportsome will lead to the new drug development for hyperuricemia.  相似文献   

8.
Since the molecular cloning of the renal apical urate/anion exchanger URAT1 (SLC22A12), several membrane proteins relevant to urate transport have been identified. In addition, the identification of PDZ (PSD-95, DglA, and ZO-1) domain protein PDZK1 as a binding partner of URAT1, and the emerging role of PDZ scaffold for renal apical transporters have led to a new concept of renal urate transport: urate-transporting multimolecular complex, or "urate transportsome," that may form an ultimate functional unit at the apical membrane of renal proximal tubules. Elucidation of urate transportsome will lead to the new drug development for hyperuricemia.  相似文献   

9.
Renal hypouricemia is an inherited disorder characterized by impaired renal urate (uric acid) reabsorption and subsequent low serum urate levels, with severe complications such as exercise-induced acute renal failure and nephrolithiasis. We previously identified SLC22A12, also known as URAT1, as a causative gene of renal hypouricemia. However, hypouricemic patients without URAT1 mutations, as well as genome-wide association studies between urate and SLC2A9 (also called GLUT9), imply that GLUT9 could be another causative gene of renal hypouricemia. With a large human database, we identified two loss-of-function heterozygous mutations in GLUT9, which occur in the highly conserved “sugar transport proteins signatures 1/2.” Both mutations result in loss of positive charges, one of which is reported to be an important membrane topology determinant. The oocyte expression study revealed that both GLUT9 isoforms showed high urate transport activities, whereas the mutated GLUT9 isoforms markedly reduced them. Our findings, together with previous reports on GLUT9 localization, suggest that these GLUT9 mutations cause renal hypouricemia by their decreased urate reabsorption on both sides of the renal proximal tubules. These findings also enable us to propose a physiological model of the renal urate reabsorption in which GLUT9 regulates serum urate levels in humans and can be a promising therapeutic target for gout and related cardiovascular diseases.  相似文献   

10.
A series of curcumin derivatives as potent dual inhibitors of xanthine oxidase (XOD) and urate transporter 1 (URAT1) was discovered as anti-hyperuricemic agents. These compounds proved efficient effects on anti-hyperuricemic activity and uricosuric activity in vivo. More importantly, some of them exhibited proved efficient effects on inhibiting XOD activity and suppressing uptake of uric acid via URAT1 in vitro. Especially, the treatment of 4d was demonstrated to improve uric acid over-production and under-excretion in oxonate-induced hyperuricemic mice through regulating XOD activity and URAT1 expression. Docking study was performed to elucidate the potent XOD inhibition of 4d. Compound 4d may serve as a tool compound for further design of anti-hyperuricemic drugs targeting both XOD and URAT1.  相似文献   

11.
Shima Y  Teruya K  Ohta H 《Life sciences》2006,79(23):2234-2237
Serum uric acid levels are maintained by urate synthesis and excretion. URAT1 (coded by SLC22CA12) was recently proposed to be the major absorptive urate transporter protein in the kidney regulating blood urate levels. Because genetic background is known to affect serum urate levels, we hypothesized that genetic variations in SLC22A12 may predispose humans to hyperuricemia and gout. We investigated rs893006 polymorphism (GG, GT and TT) in SLC22A12 in a total of 326 Japanese subjects. Differences in clinical characteristics among the genotype groups were tested by the analysis of variance (ANOVA). In male subjects, mean serum uric acid levels were significantly different among the three genotypes. Levels in the GG genotype subjects were the highest, followed by those with the GT and TT genotypes. However, no differences between the groups were seen in the distributions of creatinine, Fasting plasma glucose (FPG), HbA(1c), total cholesterol, triglyceride, HDL cholesterol levels or BMI. A single nucleotide polymorphism (SNP) in the urate transporter gene SLC22CA12 was found to be associated with elevated serum uric acid levels among Japanese subjects. This SNP may be an independent genetic marker for predicting hyperuricemia.  相似文献   

12.
ATP-binding cassette transporter, sub-family G, member 2 (ABCG2/BCRP) is identified as a high-capacity urate exporter, and its dysfunction has an association with serum uric acid levels and gout/hyperuricemia risk. Generally, hyperuricemia has been classified into urate “overproduction type,” “underexcretion type,” and “combined type” based on only renal urate excretion, without considering an extra-renal pathway such as gut excretion. In this study, we investigated the effects of ABCG2 dysfunction on human urate handling and the mechanism of hyperuricemia.

Clinical parameters for urate handling including urinary urate excretion (UUE) were examined in 644 Japanese male outpatients with hyperuricemia. The severity of their ABCG2 dysfunction was estimated by genotype combination of two common ABCG2 variants, nonfunctional Q126X (rs72552713) and half-functional Q141K (rs2231142).

Contrary to the general understanding that ABCG2 dysfunction leads to decreased renal urate excretion, UUE was significantly increased by ABCG2 dysfunction (P = 3.60 × 10?10). Mild, moderate, and severe ABCG2 dysfunctions significantly raised the risk of “overproduction” hyperuricemia including overproduction type and combined type, conferring risk ratios of 1.36, 1.66, and 2.35, respectively.

The present results suggest that common dysfunctional variants of ABCG2 decrease extra-renal urate excretion including gut excretion and cause hyperuricemia. Thus, “overproduction type” in the current concept of hyperuricemia should be renamed “renal overload type,” which is caused by two different mechanisms, “extra-renal urate underexcretion” and genuine “urate overproduction.”

Our new concept will lead to a more accurate diagnosis and more effective therapeutic strategy for hyperuricemia and gout.  相似文献   

13.
The evolutionary loss of hepatic urate oxidase (uricase) has resulted in humans with elevated serum uric acid (urate). Uricase loss may have been beneficial to early primate survival. However, an elevated serum urate has predisposed man to hyperuricemia, a metabolic disturbance leading to gout, hypertension, and various cardiovascular diseases. Human serum urate levels are largely determined by urate reabsorption and secretion in the kidney. Renal urate reabsorption is controlled via two proximal tubular urate transporters: apical URAT1 (SLC22A12) and basolateral URATv1/GLUT9 (SLC2A9). In contrast, the molecular mechanism(s) for renal urate secretion remain unknown. In this report, we demonstrate that an orphan transporter hNPT4 (human sodium phosphate transporter 4; SLC17A3) was a multispecific organic anion efflux transporter expressed in the kidneys and liver. hNPT4 was localized at the apical side of renal tubules and functioned as a voltage-driven urate transporter. Furthermore, loop diuretics, such as furosemide and bumetanide, substantially interacted with hNPT4. Thus, this protein is likely to act as a common secretion route for both drugs and may play an important role in diuretics-induced hyperuricemia. The in vivo role of hNPT4 was suggested by two hyperuricemia patients with missense mutations in SLC17A3. These mutated versions of hNPT4 exhibited reduced urate efflux when they were expressed in Xenopus oocytes. Our findings will complete a model of urate secretion in the renal tubular cell, where intracellular urate taken up via OAT1 and/or OAT3 from the blood exits from the cell into the lumen via hNPT4.  相似文献   

14.
Renal hypouricemia (MIM 220150) is an inherited disorder characterized by low serum uric acid levels and has severe complications such as exercise-induced acute renal failure and urolithiasis. We have previously reported that URAT1/SLC22A12 encodes a renal urate-anion exchanger and that its mutations cause renal hypouricemia type 1 (RHUC1). With the large health-examination database of the Japan Maritime Self-Defense Force, we found two missense mutations (R198C and R380W) of GLUT9/SLC2A9 in hypouricemia patients. R198C and R380W occur in highly conserved amino acid motifs in the “sugar transport proteins signatures” that are observed in GLUT family transporters. The corresponding mutations in GLUT1 (R153C and R333W) are known to cause GLUT1 deficiency syndrome because arginine residues in this motif are reportedly important as the determinants of the membrane topology of human GLUT1. Therefore, on the basis of membrane topology, the same may be true of GLUT9. GLUT9 mutants showed markedly reduced urate transport in oocyte expression studies, which would be the result of the loss of positive charges in those conserved amino acid motifs. Together with previous reports on GLUT9 localization, our findings suggest that these GLUT9 mutations cause renal hypouricemia type 2 (RHUC2) by their decreased urate reabsorption on both sides of the renal proximal tubule cells. However, a previously reported GLUT9 mutation, P412R, was unlikely to be pathogenic. These findings also enable us to propose a physiological model of the renal urate reabsorption via GLUT9 and URAT1 and can lead to a promising therapeutic target for gout and related cardiovascular diseases.  相似文献   

15.
Renal hypouricemia (MIM 220150) is an inherited disorder characterized by low serum uric acid levels and has severe complications such as exercise-induced acute renal failure and urolithiasis. We have previously reported that URAT1/SLC22A12 encodes a renal urate-anion exchanger and that its mutations cause renal hypouricemia type 1 (RHUC1). With the large health-examination database of the Japan Maritime Self-Defense Force, we found two missense mutations (R198C and R380W) of GLUT9/SLC2A9 in hypouricemia patients. R198C and R380W occur in highly conserved amino acid motifs in the "sugar transport proteins signatures" that are observed in GLUT family transporters. The corresponding mutations in GLUT1 (R153C and R333W) are known to cause GLUT1 deficiency syndrome because arginine residues in this motif are reportedly important as the determinants of the membrane topology of human GLUT1. Therefore, on the basis of membrane topology, the same may be true of GLUT9. GLUT9 mutants showed markedly reduced urate transport in oocyte expression studies, which would be the result of the loss of positive charges in those conserved amino acid motifs. Together with previous reports on GLUT9 localization, our findings suggest that these GLUT9 mutations cause renal hypouricemia type 2 (RHUC2) by their decreased urate reabsorption on both sides of the renal proximal tubule cells. However, a previously reported GLUT9 mutation, P412R, was unlikely to be pathogenic. These findings also enable us to propose a physiological model of the renal urate reabsorption via GLUT9 and URAT1 and can lead to a promising therapeutic target for gout and related cardiovascular diseases.  相似文献   

16.
The urate-anion exchanger URAT1 is a member of the organic anion transporter (OAT) family that regulates blood urate level in humans and is targeted by uricosuric and antiuricosuric agents. URAT1 is expressed only in the kidney, where it is thought to participate in tubular urate reabsorption. We found that the multivalent PDZ (PSD-95, Drosophila discs-large protein, Zonula occludens protein 1) domain-containing protein, PDZK1 interacts with URAT1 in a yeast two-hybrid screen. Such an interaction requires the PDZ motif of URAT1 in its extreme intracellular C-terminal region and the first, second, and fourth PDZ domains of PDZK1 as identified by yeast two-hybrid assay, in vitro binding assay and surface plasmon resonance analysis (K(D) = 1.97-514 nM). Coimmunoprecipitation studies revealed that the wild-type URAT1, but not its mutant lacking the PDZ-motif, directly interacts with PDZK1. Colocalization of URAT1 and PDZK1 was observed at the apical membrane of renal proximal tubular cells. The association of URAT1 with PDZK1 enhanced urate transport activities in HEK293 cells (1.4-fold), and the deletion of the URAT1 C-terminal PDZ motif abolished this effect. The augmentation of the transport activity was accompanied by a significant increase in the V(max) of urate transport via URAT1 and was associated with the increased surface expression level of URAT1 protein from HEK293 cells stably expressing URAT1 transfected with PDZK1. Taken together, the present study indicates the novel role of PDZK1 in regulating the functional activity of URAT1-mediated urate transport in the apical membrane of renal proximal tubules.  相似文献   

17.
Renal hypouricemia (RHUC), as an infrequent hereditary disease, is associated with severe complications such as exercise-induced acute renal failure (EIARF). Loss-of-function mutations in urate transporter gene URAT1 (Type 1) and in glucose transporter gene GLUT9 (Type 2) are major causes of this disorder. In this study, URAT1 and GLUT9 were screened in two uncorrelated families from mainland China and a total of five mutations were identified in exons, including two novel heterozygous URAT1 mutations. In four members of the first family, c.151delG (p.A51fsX64) in exon 1 was detected, which resulted in a frameshift and truncated the original 553-residue-protein to 63 amino acid protein. A missense mutation c.C1546A (p.P516T) in exon 9 in GLUT9 was revealed in the second family, which caused a functional protein substitution at codon 516. These two novel mutations were neither identified in the subsequent scanning of 200 ethnically matched healthy control subjects with normal serum UA level nor in a 1000 genome project database. Thus our report identifies two novel loss-of-function mutations (c.151delG in URAT1 and p.P516T in GLUT9) which cause RHUC and renal dysfunction in two independent RHUC pedigrees.  相似文献   

18.
Hyperuricemia is caused by hepatic overproduction of uric acid and/or underexcretion of urate from the kidneys and small intestine. Although increased intake of citrus fruits, a fructose-rich food, is associated with increased risk of gout in humans, hesperidin, a flavonoid naturally present in citrus fruits, reportedly reduces serum uric acid (SUA) levels by inhibiting xanthine oxidase (XOD) activity in rats. However, the effects of hesperidin on renal and intestinal urate excretion were previously unknown. In this study, we used glucosyl hesperidin (GH), which has greater bioavailability than hesperidin, to clarify comprehensive mechanisms underlying the hypouricemic effects of hesperidin in vivo. GH dose-dependently decreased SUA levels in mice with hyperuricemia induced by potassium oxonate and a fructose-rich diet, and inhibited XOD activity in the liver. GH decreased renal urate excretion without changes in kidney URAT1, ABCG2 or GLUT9 expressions, suggesting that reducing uric acid pool size by inhibiting XOD decreased renal urate excretion. We also found that GH had no effect on intestinal urate excretion or protein expression of ABCG2. Therefore, we concluded that GH exhibits a hypouricemic effect by inhibiting XOD activity in the liver without increasing renal or intestinal urate excretion. Of note, this is the first study to elucidate the effect of a flavonoid on intestinal urate excretion using a mice model, whose findings should prove useful in future food science research in the area of urate metabolism. Taking these findings together, GH may be useful for preventing hyperuricemia, especially in people with the overproduction type.  相似文献   

19.
Uric acid (urate) is the end product of purine metabolism in humans. Human kidneys reabsorb a large proportion of filtered urate. This extensive renal reabsorption, together with the fact that humans do not possess uricase that catalyzes the biotransformation of urate into allantoin, results in a higher plasma urate concentration in humans compared to other mammals. A major determinant of plasma urate concentration is renal excretion as a function of the balance between reabsorption and secretion. We previously identified that renal urate absorption in proximal tubular epithelial cells occurs mainly via apical urate/anion exchanger, URAT1/SLC22A12, and by facilitated diffusion along the trans-membrane potential gradient by the basolateral voltage-driven urate efflux transporter, URATv1/SLC2A9/GLUT9. In contrast, the molecular mechanism by which renal urate secretion occurs remains elusive. Recently, we reported a newly characterized human voltage-driven drug efflux transporter, hNPT4/SLC17A3, which functions as a urate exit pathway located at the apical side of renal proximal tubules. This transporter protein has been hypothesized to play an important role with regard to net urate efflux. An in vivo role of hNPT4 is supported by the fact that missense mutations in SLC17A3 present in hyperuricemia patients with urate underexcretion abolished urate efflux capacity in vitro. Herein, we report data demonstrating that loop diuretics and thiazide diuretics substantially interact with hNPT4. These data provide molecular evidence for loop and thiazide-diuretics-induced hyperuricemia. Thus, we propose that hNPT4 is an important transepithelial proximal tubular transporter that transports diuretic drugs and operates functionally with basolateral organic anion transporters 1/3 (OAT1/OAT3).  相似文献   

20.
Uric acid (urate) is the end product of purine metabolism in humans. Human kidneys reabsorb a large proportion of filtered urate. This extensive renal reabsorption, together with the fact that humans do not possess uricase that catalyzes the biotransformation of urate into allantoin, results in a higher plasma urate concentration in humans compared to other mammals. A major determinant of plasma urate concentration is renal excretion as a function of the balance between reabsorption and secretion. We previously identified that renal urate absorption in proximal tubular epithelial cells occurs mainly via apical urate/anion exchanger, URAT1/SLC22A12, and by facilitated diffusion along the trans-membrane potential gradient by the basolateral voltage-driven urate efflux transporter, URATv1/SLC2A9/GLUT9. In contrast, the molecular mechanism by which renal urate secretion occurs remains elusive. Recently, we reported a newly characterized human voltage-driven drug efflux transporter, hNPT4/SLC17A3, which functions as a urate exit pathway located at the apical side of renal proximal tubules. This transporter protein has been hypothesized to play an important role with regard to net urate efflux. An in vivo role of hNPT4 is supported by the fact that missense mutations in SLC17A3 present in hyperuricemia patients with urate underexcretion abolished urate efflux capacity in vitro. Herein, we report data demonstrating that loop diuretics and thiazide diuretics substantially interact with hNPT4. These data provide molecular evidence for loop and thiazide-diuretics-induced hyperuricemia. Thus, we propose that hNPT4 is an important transepithelial proximal tubular transporter that transports diuretic drugs and operates functionally with basolateral organic anion transporters 1/3 (OAT1/OAT3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号