首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Small heat shock proteins (sHsps) regulate cellular functions not only under stress, but also during normal development, when they are expressed in organ-specific patterns. Here we demonstrate that two small heat shock proteins expressed in embryonic zebrafish heart, hspb7 and hspb12, have roles in the development of left–right asymmetry. In zebrafish, laterality is determined by the motility of cilia in Kupffer's vesicle (KV), where hspb7 is expressed; knockdown of hspb7 causes laterality defects by disrupting the motility of these cilia. In embryos with reduced hspb7, the axonemes of KV cilia have a 9+0 structure, while control embyros have a predominately 9+2 structure. Reduction of either hspb7 or hspb12 alters the expression pattern of genes that propagate the signals that establish left–right asymmetry: the nodal-related gene southpaw (spaw) in the lateral plate mesoderm, and its downstream targets pitx2, lefty1 and lefty2. Partial depletion of hspb7 causes concordant heart, brain and visceral laterality defects, indicating that loss of KV cilia motility leads to coordinated but randomized laterality. Reducing hspb12 leads to similar alterations in the expression of downstream laterality genes, but at a lower penetrance. Simultaneous reduction of hspb7 and hspb12 randomizes heart, brain and visceral laterality, suggesting that these two genes have partially redundant functions in the establishment of left–right asymmetry. In addition, both hspb7 and hspb12 are expressed in the precardiac mesoderm and in the yolk syncytial layer, which supports the migration and fusion of mesodermal cardiac precursors. In embryos in which the reduction of hspb7 or hspb12 was limited to the yolk, migration defects predominated, suggesting that the yolk expression of these genes rather than heart expression is responsible for the migration defects.  相似文献   

2.
Although the zebrafish has become a popular model organism for vertebrate developmental and genetic analyses, its use in transgenic studies still suffers from the scarcity of homologous gene promoters. In the present study, three different zebrafish cDNA clones were isolated and sequenced completely, and their expression patterns were characterized by whole‐mount in situ hybridization as well as by Northern blot hybridization. The first clone encodes a type II cytokeratin (CK), which is specifically expressed in skin epithelia in early embryos and prominently expressed in the adult skin tissue. The second clone is muscle specific and encodes a muscle creatine kinase (MCK). The third clone, expressed ubiquitously in all tissues, is derived from an acidic ribosomal phosphoprotein P0 (arp) gene. In order to test the fidelity of zebrafish embryos in transgenic expression, the promoters of the three genes were isolated using a rapid linker‐mediated PCR approach and subsequently ligated to a modified green fluorescent protein (gfp) reporter gene. When the three hybrid GFP constructs were introduced into zebrafish embryos by microinjection, the three promoters were activated faithfully in developing zebrafish embryos. The 2.2‐kb ck promoter was sufficient to direct GFP expression in skin epithelia, although a weak expression in muscle was also observed in a few embryos. This pattern of transgenic expression is consistent with the expression pattern of the endogenous cytokeratin gene. The 1.5‐kb mck promoter/gfp was expressed exclusively in skeletal muscles and not elsewhere. By contrast, the 0.8‐kb ubiquitous promoter plus the first intron of the arp gene were capable of expressing GFP in a variety of tissues, including the skin, muscle, lens, neurons, notochord, and circulating blood cells. Our experiments, therefore, further demonstrated that zebrafish embryos can faithfully express exogenously introduced genes under the control of zebrafish promoters. Dev. Genet. 25:158–167, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

3.
Members of the heat shock protein 90 (Hsp90) family of molecular chaperones play important roles in allowing a select group of intracellular signaling molecules reach and maintain functionally active conformations. We have previously shown that hsp90alpha gene expression in early zebrafish embryos is restricted to a subgroup of paraxial-mesoderm derived somitic cells prior to muscle formation and that the gene is downregulated in mature trunk and tail muscle fibers. Here we have compared the expression of the hsp90alpha gene to muscle regulatory genes during development of slow and fast muscle fibers in normal embryos and in embryos carrying mutations which affect somitic muscle formation. We show that hsp90alpha is first expressed early during the development of slow somitic muscle progenitors shortly following myoD activation and at a point prior to or co-incident with the expression of other known muscle regulatory genes. Expression of hsp90alpha is also activated in the midline of flh mutants when these cells switch from a notochord to a muscle fate. Conversely, expression is not detectable in cells of the paraxial mesoderm lineage which fail to converge in spt mutants and which do not activate expression of other muscle specific marker genes. Finally, expression of hsp90alpha is downregulated in slow muscle fibers by 24 h of age but becomes detectable in the later developing fast fibers at this time. Thus, hsp90alpha is expressed in developing muscle progenitors during short temporal and spatial windows of both slow and fast fiber lineages in the zebrafish somite.  相似文献   

4.
5.
6.
7.
8.
9.
Previous studies have identified two zebrafish mutants, cloche and groom of cloche, which lack the majority of the endothelial lineage at early developmental stages. However, at later stages, these avascular mutant embryos generate rudimentary vessels, indicating that they retain the ability to generate endothelial cells despite this initial lack of endothelial progenitors. To further investigate molecular mechanisms that allow the emergence of the endothelial lineage in these avascular mutant embryos, we analyzed the gene expression profile using microarray analysis on isolated endothelial cells. We find that the expression of the genes characteristic of the mesodermal lineages are substantially elevated in the kdrl + cells isolated from avascular mutant embryos. Subsequent validation and analyses of the microarray data identifies Sox11b, a zebrafish ortholog of SRY-related HMG box 11 (SOX11), which have not previously implicated in vascular development. We further define the function sox11b during vascular development, and find that Sox11b function is essential for developmental angiogenesis in zebrafish embryos, specifically regulating sprouting angiogenesis. Taken together, our analyses illustrate a complex regulation of endothelial specification and differentiation during vertebrate development.  相似文献   

10.
Constitutive expression of Hsp27 has been demonstrated in vertebrate embryos, especially in developing skeletal and cardiac muscle. Results of several previous studies have indicated that Hsp27 could play a role in the development of these tissues. For example, inhibition of Hsp27 expression has been reported to cause defective development of mammalian myoblasts in vitro and frog embryos in vivo. In contrast, transgenic mice lacking Hsp27 develop normally. Here, we examined the distribution of Hsp27 protein in developing and adult zebrafish and effects of suppressing Hsp27 expression using phosphorodiamidate morpholino oligonucleotides (PMO) on zebrafish development. Consistent with our previous analysis of hsp27 messenger RNA expression, we detected the protein Hsp27 in cardiac, smooth, and skeletal muscle of both embryonic and adult zebrafish. However, embryos lacking detectable Hsp27 after injection of antisense hsp27 PMO exhibited comparable heart beat rates to that of control embryos and cardiac morphology was indistinguishable in the presence or absence of Hsp27. Loss of Hsp27 also had no effect on the structure of the skeletal muscle myotomes in the developing embryo. Finally, embryos injected with antisense hsp27 and scrambled control PMO displayed equal motility. We conclude that Hsp27 is dispensable for zebrafish morphogenesis but could play a role in long-term maintenance of heart and muscle tissues. Tucker and Ustyugov contributed equally to this work.  相似文献   

11.
12.
Hypermethioninemic patients exhibit a variable degree of neurological dysfunction. However, the mechanisms involved in these alterations have not been completely clarified. Cholinergic system has been implicated in many physiological processes, including cognitive performances, as learning, and memory. Parameters of cholinergic signaling have already been characterized in zebrafish brain. Since zebrafish is a small freshwater teleost which is a vertebrate model for modeling behavioral and functional parameters related to human pathogenesis and for clinical treatment screenings, in the present study we investigated the effects of short- and long-term methionine exposure on cognitive impairment, AChE activity and gene expression in zebrafish. For the studies, animals were exposed at two methionine concentrations (1.5 and 3.0 mM) during 1 h or 7 days (short- or long-term treatments, respectively). We observed a significant increase in AChE activity of zebrafish brain membranes after long-term methionine exposure at 3.0 mM. However, AChE gene expression decreased significantly in both concentrations tested after 7 days of treatment, suggesting that post-translational events are involved in the enhancement of AChE activity. Methionine treatment induces memory deficit in zebrafish after long-term exposure to this amino acid, which could be related, at least in part, with cognitive impairment observed in hypermethioninemia. Therefore, the results here presented raise a new perspective to use the zebrafish as a complementary vertebrate model for studying inborn errors of metabolism, which may help to better understand the pathophysiology of this disease.  相似文献   

13.
14.
15.
16.
The role of cell division in the expression of muscle actin and its relationship to acetylcholinesterase (AChE) development was examined in cleavage-arrested embryos of the ascidian Styela. Muscle actin expression was detected by two-dimensional gel electrophoresis of radioactively labelled proteins and by in situ hybridization with a cDNA probe, whereas AChE activity was assayed by enzyme histochemistry. In the majority of cases, muscle actin expression was first detected in embryos arrested after the 16-cell stage. Some embryos showed muscle actin expression after arrest at the 8-cell stage, however, muscle actin mRNA did not accumulate in embryos arrested at earlier cleavages. The cells that expressed muscle actin in 8- to 64-cell cleavage-arrested embryos belonged to the primary muscle lineage; secondary muscle cell precursors did not express muscle actin. Zygotic muscle actin mRNA appeared to accumulate with myoplasmic pigment granules in the perinuclear region of cleavage-arrested embryos, suggesting that the myoplasm may have a role in the organization of muscle cells. In contrast to muscle actin, AChE was detected in a small proportion of embryos treated with cytochalasin as early as the 1- or 2-cell stage, and most embryos treated with cytochalasin at later cleavages expressed this enzyme in some of their cells. Most primary muscle lineage cells expressed both muscle actin mRNA and AChE, however, some cells expressed only muscle actin mRNA or AChE. The results suggest that at least three cleavages are required for muscle actin expression and that muscle actin and AChE expression can be uncoupled in cleavage-arrested embryos.  相似文献   

17.
The mammalian small heat shock protein (sHSPs) family is comprised of 10 members and includes HSPB1, which is proposed to play an essential role in cellular physiology, acting as a molecular chaperone to regulate diverse cellular processes. Whilst differential roles for sHSPs are suggested for specific tissues, the relative contribution of individual sHSP family members in cellular and organ physiology remains unclear. To address the function of HSPB1 in vivo and determine its tissue-specific expression during development and in the adult, we generated knock-in mice where the coding sequence of hspb1 is replaced by a lacZ reporter gene. Hspb1 expression marks myogenic differentiation with specific expression first confined to developing cardiac muscles and the vascular system, and later in skeletal muscles with specific expression at advanced stages of myoblast differentiation. In the adult, hspb1 expression was observed in other tissues, such as stratified squamous epithelium of skin, oronasal cavity, tongue, esophagus, and uterine cervix but its expression was most prominent in the musculature. Interestingly, in cardiac muscle hsbp1 expression was down-regulated during the neonatal period and maintained to a relatively low steady-level throughout adulthood. Despite this widespread expression, hspb1-/- mice were viable and fertile with no apparent morphological abnormalities in tissues under physiological conditions. However, at the cellular level and under stress conditions (heat challenge), HSPB1 act synergistically with the stress-induced HSPA1 (HSP70) in thermotolerance development, protecting cells from apoptosis. Our data thus indicate a nonessential role for HSPB1 in embryonic development and for maintenance of tissues under physiological conditions, but also shows that it plays an important role by acting synergistically with other HSPs during stress conditions to exert cytoprotection and anti-apoptotic effects.  相似文献   

18.
Three homologues of the Drosophilaregion-specific homeotic gene spalt (sal) have been isolated in zebrafish, sall1a, sall1b and sall3. Phylogenetic analysis of these genes against known salDNA sequences showed zebrafish sall1aand sall1b to be orthologous to other vertebrate sal-1 genes and zebrafish sall3to be orthologous to other vertebrate sal-3 genes, except Xenopus sall3. Phylogenetic reconstruction suggests that zebrafish sall1a and sall1bresulted from a gene duplication event occurring prior to the divergence of the ray-finned and lobe-finned fish lineages. Analysis of the expression pattern of the zebrafish sal genes shows that sall1a and sall3 share expression domains with both orthologous and non-orthologous vertebrate sal genes. Both are expressed in various regions of the CNS, including in primary motor neurons. Outside of the CNS, sall1a expression is observed in the otic vesicle (ear), heart and in a discrete region of the pronephric ducts. These analyses indicate that orthologies between zebrafish sal genes and other vertebrate sal genes do not imply equivalence of expression pattern and, therefore, that biological functions are not entirely conserved. However we suggest that, like other vertebrate sal genes, zebrafish sal genes have a role in neural development. Also, expression of zebrafish sall1a in the otic vesicle, heart sac and the pronephric ducts of zebrafish embryos is possibly consistent with some of the abnormalities seen in Sall1-deficient mice and in Townes-Brocks Syndrome, a human disorder which is caused by mutations in the human spalt gene SALL1.  相似文献   

19.
20.
The zebrafish is a vertebrate model compatible with the paradigms of drug discovery. The small size and transparency of zebrafish embryos make them amenable for the automation necessary in high-throughput screenings. We have developed an automated high-throughput platform for in vivo chemical screenings on zebrafish embryos that includes automated methods for embryo dispensation, compound delivery, incubation, imaging and analysis of the results. At present, two different assays to detect cardiotoxic compounds and angiogenesis inhibitors can be automatically run in the platform, showing the versatility of the system. A validation of these two assays with known positive and negative compounds, as well as a screening for the detection of unknown anti-angiogenic compounds, have been successfully carried out in the system developed. We present a totally automated platform that allows for high-throughput screenings in a vertebrate organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号