首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Background: Ursodeoxycholic acid (UDCA) may slow progression in primary biliary cirrhosis (PBC), but its effect on survival is controversial. We have previously demonstrated that oxidant stress, with severely depressed plasma glutathione, is a feature of untreated PBC; this study examines the effect of UDCA on lipid peroxidation, antioxidant status and associated processes.

Patients and Methods: Markers of lipid peroxidation, antioxidant status, hepatic fibrogenesis, inflammation, cholestasis and synthetic function were measured at 0, 3, 6, 9 and 12 months in blood and urine from 35 PBC patients receiving UDCA.

Results: Plasma glutathione, reflecting intrahepatic levels, climbed steadily on UDCA; although still subnormal, the median value at 12 months was 2.4-fold higher than the untreated level. Liver enzyme markers and C-reactive protein also improved, whilst PIIINP improved steadily, but the change did not attain statistical significance. Serum bilirubin remained unchanged and total antioxidant capacity, albumin and vitamin E decreased after 12 months' UDCA treatment. 8-Isoprostane increased and malondialdehyde was unchanged.

Conclusions: UDCA treatment partially corrected plasma glutathione status and some other biomarkers greatly improved, but lipid peroxidation was not reduced. UDCA may, therefore, require supplementation with glutathione precursors and/or antioxidant cocktails to reduce oxidant stress and thus delay disease progression to cirrhosis.  相似文献   

2.
3.
Role of taurine on acid secretion in the rat stomach   总被引:1,自引:0,他引:1  

Background  

Taurine has chemical structure similar to an inhibitory neurotransmitter, γ-aminobutyric acid (GABA). Previous studies on GABA in the stomach suggest GABAergic neuron is involved in acid secretion, but the effects of taurine are poor understood.  相似文献   

4.
Biliary secretion of bile acid glucuronides was studied in control rats and in rats with a congenital defect in hepatobiliary transport of organic anions (GY rats). In control animals, hepatobiliary transport of [3H]lithocholic acid 3-O-glucuronide and [3H]cholic acid 3-O-glucuronide was efficient (greater than 95% in 1 h) and comparable to that of [14C]taurocholic acid. Secretion of both glucuronides was impaired in GY rats (24% and 71% at 1 h), whereas that of taurocholate was similar to control values. However, recovery of the glucuronides in bile was nearly complete within 24 h; virtually no radioactivity was found in urine. In control rats, biliary secretion of lithocholic acid 3-O-glucuronide, but not that of cholic acid 3-O-glucuronide or taurocholate, could be delayed by simultaneous infusion of dibromosulphthalein. In mutant rats, dibromosulphthalein infusion was also able to inhibit secretion of cholic acid 3-O-glucuronide. [3H]Hydroxyetianic acid, a C20 short-chain bile acid, was secreted by control rats as a mixture of 20% carboxyl-linked and 80% hydroxyl-linked (3-O-)glucuronide; secretion was very efficient (99% in 1 h). In GY rats, secretion was drastically impaired (16% at 1 h and 74% over a 24-h period). Initially, the mutant secreted more carboxyl- than hydroxyl-linked glucuronide, but the ratio reached that of control animals after 24 h. The rates of formation of both types of hydroxyetianic acid glucuronide by hepatic microsomes from mutant rats were similar or even slightly higher than those of control microsomes. These findings indicate that bile acid 3-O-glucuronides, but probably not carboxyl-linked glucuronides, are secreted into bile by a transport system shared with organic anions such as conjugated bilirubin and dibromosulphthalein, but different from that for amino acid-conjugated bile acids.  相似文献   

5.
Formation of taurine and isethionic acid in rat brain   总被引:4,自引:0,他引:4  
  相似文献   

6.
Administration of guanidinoethanesulfonate (GES) to male rats for 5 weeks resulted in a 90% decrease in the hepatic taurine concentration. This depletion of hepatic taurine was associated with a 570% increase in the concentration of glycine-conjugated bile acids, a 30% decrease in the concentration of taurine-conjugated bile acids, and an increase in the ratio of glycine- to taurine-conjugated bile acids from 0.046 to 0.45. The total concentration of bile salts in the bile and the turnover of cholic acid were not affected by administration of GES. The data indicate that the taurine-depleted rat conserves taurine to some extent by using glycine instead of taurine for bile salt synthesis but not by decreasing the daily fractional turnover of bile acids.  相似文献   

7.
Rosmarinic acid (RA) is contained in various Lamiaceae herbs used commonly as culinary herbs. Although RA has various potent physiological actions, little is known on its bioavailability. We therefore investigated the absorption and metabolism of orally administered RA in rats. After being deprived of food for 12 h, RA (50 mg/kg body weight) or deionized water was administered orally to rats. Blood samples were collected from a cannula inserted in the femoral artery before and at designated time intervals after administration of RA. Urine excreted within 0 to 8 h and 8 to 18 h post-administration was also collected. RA and its related metabolites in plasma and urine were measured by LC-MS after treatment with sulfatase and/or beta-glucuronidase. RA, mono-methylated RA (methyl-RA) and m-coumaric acid (COA) were detected in plasma, with peak concentrations being reached at 0.5, 1 and 8 h after RA administration, respectively. RA, methyl-RA, caffeic acid (CAA), ferulic acid (FA) and COA were detected in urine after RA administration. These components in plasma and urine were present predominantly as conjugated forms such as glucuronide or sulfate. The percentage of the original oral dose of RA excreted in the urine within 18 h of administration as free and conjugated forms was 0.44 +/- 0.21% for RA, 1.60 +/- 0.74% for methyl-RA, 1.06 +/- 0.35% for CAA, 1.70 +/- 0.45% for FA and 0.67 +/- 0.29% for COA. Approximately 83% of the total amount of these metabolites was excreted in the period 8 to 18 h after RA administration. These results suggest that RA was absorbed and metabolized as conjugated and/or methylated forms, and that the majority of RA absorbed was degraded into conjugated and/or methylated forms of CAA, FA and COA before being excreted gradually in the urine.  相似文献   

8.
The concentrations of taurine in a number of brain regions and in other tissues of rhesus morkeys fed a taurine-free human infant formula for 3 months are substantially lower than in similar monkeys fed the same formula supplemented with taurine. Activities of enzymes involved in taurine biosynthesis were not different in the two groups except for liver cysteinesulfinic acid decarboxylase, which was greater in the monkeys fed formula alone. There was no difference in the biliary bile acid composition, but the proportion of bile acids conjugated with taurine was significantly greater in the monkeys fed formula supplemented with taurine. These results indicate that the effects of a taurine-deficient diet on infant primates are widespread.  相似文献   

9.
Parra P  Serra F  Palou A 《PloS one》2010,5(9):e13005

Background

Investigation of microRNAs (miRNAs) in obesity, their genetic targets and influence by dietary modulators is of great interest because it may potentially identify novel pathways involved in this complex metabolic disorder and influence future therapeutic approaches. This study aimed to determine whether miRNAs expression may be influenced by conjugated linoleic acid (CLA), currently used to induce fat loss.

Methodology/Principal Findings

We determined retroperitoneal adipose tissue (rWAT) expression of five miRNAs related to adipocyte differentiation (miRNA-143) and lipid metabolism (miRNA-103 and -107) and altered in obesity (miRNA-221 and -222), using the TaqMan®MicroRNA Assay (Applied-Biosystems). In the first experiment, mice were fed with a standard fat diet and orally treated with sunflower oil (control group) and 3 or 10 mg CLA/day for 37 days. In the second experiment, mice were fed with a high fat diet for 65 days. For the first 30 days, mice received the same doses of CLA described above and, from that time onwards, animals received a double dose. Results showed that expression of selected miRNAs was modified in response to CLA treatment and metabolic status. Interestingly, a strong correlation was observed between miR-103 and -107 expression, as well as miR-221 and -222 in both experiments. Moreover, changes in miRNAs expression correlated with several adipocyte gene expressions: miR-103 and -107 correlated with genes involved in fatty acid metabolism whereas miR-221 and miR-222 correlated with the expression of adipocytokines. Regarding the minor changes observed in miR-143 expression, no differences in expression of adipogenic markers were observed.

Conclusions/Significance

Although elucidating the functional implications of miRNAs is beyond the scope of this study, these findings provide the first evidence that miRNAs expression may be influenced by dietary manipulation, reflecting or even contributing to the new metabolic state originated by CLA treatment.  相似文献   

10.
11.
The ability of conjugated linoleic acid (CLA) to reduce adiposity may be due to changes in energy expenditure and/or direct effects on adipocyte lipid metabolism. The aim of the present work was to analyse if CLA supplementation modifies lipolytic activity in adipose tissue from hamsters fed on high-fat diet. Hamsters were divided into two groups and fed on diets supplemented with either 0.5% linoleic acid (control) or 0.5% trans-10,cis-12 CLA. After 6 weeks, animals were fasted overnight and adipose tissues were dissected and weighed. Adipocytes were isolated by collagenase digestion and incubated in Krebs-Ringer bicarbonate buffer with or without several agents acting at different levels of the lipolytic cascade. Adipocyte diameters were measured by microscopy. Adipose tissue DNA content was assessed by spectrophotometry. Animals fed on CLA diet showed significantly reduced adipose tissue mass. No differences between both groups was found for basal lipolysis, lipolytic effects of isoproterenol, forskolin, dibutyryl-cAMP and isobutylmethylxanthine, and pD2 for isoproterenol. A similar total DNA amount was found in adipose tissue of both groups, showing that CLA diet had no effect on total cell number per fat pad. Although DNA content per gram tissue, an indirect reverse index of cell size, was significantly increased in CLA fed hamsters, microscopy did not reveal differences in medium mature adipocyte diameter, nor in cell size distribution between both groups. These results suggest that adipose tissue size reduction induced by trans-10,cis-12 CLA intake is not due to changes in lipolysis. Reduced preadipocyte differentiation into mature adipocytes may account for this fat-lowering effect.  相似文献   

12.
13.
Saransaari P  Oja SS 《Amino acids》2008,34(3):429-436
Summary. Nitric oxide (NO) has been shown to regulate neurotransmitter release in the brain; both inhibitory and excitatory effects have been seen. Taurine is essential for the development and survival of neural cells and protects them under cell-damaging conditions. In the brain stem, it regulates many vital functions such as cardiovascular control and arterial blood pressure. Now we studied the effects of the NO-generating compounds hydroxylamine (HA), S-nitroso-N-acetylpenicillamine (SNAP) and sodium nitroprusside (SNP) on the release of preloaded [3H]taurine under normal and ischemic conditions in slices prepared from the mouse brain stem from developing (7-day-old) to young adult (3-month-old) mice. In general, the effects of NO on the release were somewhat complex and difficult to explain, as expected from the multifunctional role of NO in the central nervous system. The basal initial release under normal conditions was enhanced by the NO donors 5 mM HA and 1.0 mM SNAP at both ages, but SNP was inhibitory in developing mice. The release was markedly enhanced by K+ stimulation. The effects of HA, SNAP and SNP on the basal release were not antagonized by the NO synthase inhibitor NG-nitro-L-arginine (L-NNA, 1.0 mM), demonstrating that mechanisms other than NO synthesis are involved. Taurine release in developing mice in the presence of SNP was reduced by the inhibitor of soluble guanylate cyclase, 1H-(1,2,3)oxadiazolo(4,3-a)quinoxalin-1-one (ODQ), indicating the possible involvement of cGMP. In normoxia, N-methyl-D-aspartate (NMDA, 1.0 mM) enhanced the SNAP- and HA-evoked taurine release in developing mice and the HA-evoked release in adults. In ischemia, both K+ stimulation and NMDA potentiated the NO-induced release, particularly in the immature mice, probably without the involvement of the NO synthase or cGMP. The substantial release of taurine in the developing brain stem evoked by NO donors together with NMDA might represent signs of important mechanisms against excitotoxicity which protect the brain stem under cell-damaging conditions. Authors’ address: Prof. Pirjo Saransaari, Brain Research Center, Medical School University of Tampere, Tampere, FIN-3 3014, Finland  相似文献   

14.
15.
1) After immunization of rabbits with two structurally similar haptenes—p-aminobenzoic acid and sulphanilic acid—conjugated with the same BGG molecule, three groups of animals can be differentiated, according to the type of antibody response; a) animals forming antibodies well against both haptenes, b) animals forming no, or low titres of antibodies against both haptenes and c) animals forming antibodies well against one of the given haptenes, but not (or only in very low titres) against the other. 2) Hybridization experiments showed that the capability or incapability to synthesize antibodies against a given haptene depends on the genotypical constitution of the individual concerned.  相似文献   

16.
Anti-cancer and anti-angiogenesis effects of green tea catechins have been demonstrated. It has been found that chemical modification of tea catechins improves their biological activities. We examined the chemical modification of epicatechin enhanced anti-cancer and anti-angiogenic effects. Epicatechin conjugated with fatty acid (acyl-catechin) strongly inhibited DNA polymerase activity, HL-60 cancer cell growth and angiogenesis. Epicatechin conjugated with palmitic acid ((2R,3R)-3',4',5,7-tetrahydroxyflavan-3-yl hexadecanoate, epicatechin-C16) was the strongest inhibitor in DNA polymerase alpha, beta, lambda and angiogenesis assays. Epicatechin-C16 also suppressed human endothelial cell (HUVEC) tube formation on reconstituted basement membrane, suggesting that it affected not only DNA polymerase activity but also the signal transduction pathways needed for the tube formation in HUVECs. These results suggest that acylation of epicatechin is an effective chemical modification to improve the anti-cancer activity of epicatechin.  相似文献   

17.
Taurine is the major free amino acid of the vertebrate retina. Treatment of rats with guanidinoethyl sulfonate (GES), a taurine analogue which competes with taurine for transport sites, leads to depletion of 60% of retinal taurine with little effect on other free amino acids. Supplementation of the diet with 0.3% taurine gives partial protection against depletion, confirming that taurine-GES competition underlies part of the effects. The magnitude of the depletion suggests the importance of taurine transport across the blood-retinal barrier for the maintenance of retinal taurine levels.  相似文献   

18.
19.
20.
Biliary epithelial cells (BEC) were isolated from normal rat liver with high purity (> 95%) as revealed by morphological criteria as well as staining for gamma-glutamyl transferase and cytokeratin 19. During cultivation for 96 hr flattening of the cells and a loss of microvilli was apparent, while the cytokeratin 19-positive phenotype was maintained. The BEC contained a sodium-dependent as well as a sodium-independent uptake system for glutamate with high capacity. Both activities increased transiently during cultivation peaking after 72 and 48 hr, respectively. After 72 hr, apparent kinetic constants could be calculated for the sodium dependent (Km = 13.6 mM; Vmax = 388 nmoles/min/mg protein) and for the sodium-independent system. (Km = 10.8 mM; Vmax = 132 nmoles/min/mg protein). The transient increase of both transport systems was suppressed by dexamethasone. The sodium-dependence showed a threshold concentration of about 35 mM sodium. Inhibition by kainate was much less potent for BEC than for hepatocytes. These data indicate that BEC contain transport systems for glutamate different from those in hepatocytes and which may be involved in the intrahepatic reabsorbtion of glutamate from bile.Abbreviations BEC biliary epithelial cells - DMEM Dulbecco's Modified Eagle's Medium - GGT gamma-glutamyl transferase - Dex dexamethasone - Glu glutamate - N-Me-AIB N-methyl-aminoisobutyrate - Hep hepatocytes - FBS Fetal bovine serum  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号