首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

Background

Non-tuberculous mycobacteria recovered from respiratory tract specimens are emerging confounder organisms for the laboratory diagnosis of tuberculosis worldwide. There is an urgent need for new techniques to rapidly identify mycobacteria isolated in clinical practice. Matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF MS) has previously been proven to effectively identify mycobacteria grown in high-concentration inocula from collections. However, a thorough evaluation of its use in routine laboratory practice has not been performed.

Methodology

We set up an original protocol for the MALDI-TOF MS identification of heat-inactivated mycobacteria after dissociation in Tween-20, mechanical breaking of the cell wall and protein extraction with formic acid and acetonitrile. By applying this protocol to as few as 105 colony-forming units of reference isolates of Mycobacterium tuberculosis, Mycobacterium avium, and 20 other Mycobacterium species, we obtained species-specific mass spectra for the creation of a local database. Using this database, our protocol enabled the identification by MALDI-TOF MS of 87 M. tuberculosis, 25 M. avium and 12 non-tuberculosis clinical isolates with identification scores ≥2 within 2.5 hours.

Conclusions

Our data indicate that MALDI-TOF MS can be used as a first-line method for the routine identification of heat-inactivated mycobacteria. MALDI-TOF MS is an attractive method for implementation in clinical microbiology laboratories in both developed and developing countries.  相似文献   

2.

Background

In 2011 northern Germany experienced a large outbreak of Shiga-Toxigenic Escherichia coli O104:H4. The large amount of samples sent to microbiology laboratories for epidemiological assessment highlighted the importance of fast and inexpensive typing procedures. We have therefore evaluated the applicability of a MALDI-TOF mass spectrometry based strategy for outbreak strain identification.

Methods

Specific peaks in the outbreak strain’s spectrum were identified by comparative analysis of archived pre-outbreak spectra that had been acquired for routine species-level identification. Proteins underlying these discriminatory peaks were identified by liquid chromatography tandem mass spectrometry and validated against publicly available databases. The resulting typing scheme was evaluated against PCR genotyping with 294 E. coli isolates from clinical samples collected during the outbreak.

Results

Comparative spectrum analysis revealed two characteristic peaks at m/z 6711 and m/z 10883. The underlying proteins were found to be of low prevalence among genome sequenced E. coli strains. Marker peak detection correctly classified 292 of 293 study isolates, including all 104 outbreak isolates.

Conclusions

MALDI-TOF mass spectrometry allowed for reliable outbreak strain identification during a large outbreak of Shiga-Toxigenic E. coli. The applied typing strategy could probably be adapted to other typing tasks and might facilitate epidemiological surveys as part of the routine pathogen identification workflow.  相似文献   

3.

Background

With long delays observed between sampling and availability of results, the usefulness of blood cultures in the context of emergency infectious diseases has recently been questioned. Among methods that allow quicker bacterial identification from growing colonies, matrix-assisted laser desorption ionisation time-of-flight (MALDI-TOF) mass spectrometry was demonstrated to accurately identify bacteria routinely isolated in a clinical biology laboratory. In order to speed up the identification process, in the present work we attempted bacterial identification directly from blood culture bottles detected positive by the automate.

Methodology/Principal Findings

We prospectively analysed routine MALDI-TOF identification of bacteria detected in blood culture by two different protocols involving successive centrifugations and then lysis by trifluoroacetic acid or formic acid. Of the 562 blood culture broths detected as positive by the automate and containing one bacterial species, 370 (66%) were correctly identified. Changing the protocol from trifluoroacetic acid to formic acid improved identification of Staphylococci, and overall correct identification increased from 59% to 76%. Lack of identification was observed mostly with viridans streptococci, and only one false positive was observed. In the 22 positive blood culture broths that contained two or more different species, only one of the species was identified in 18 samples, no species were identified in two samples and false species identifications were obtained in two cases. The positive predictive value of bacterial identification using this procedure was 99.2%.

Conclusions/Significance

MALDI-TOF MS is an efficient method for direct routine identification of bacterial isolates in blood culture, with the exception of polymicrobial samples and viridans streptococci. It may replace routine identification performed on colonies, provided improvement for the specificity of blood culture broths growing viridans streptococci is obtained in the near future.  相似文献   

4.

Background

Whole-cell matrix–assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) has been successfully applied for bacterial identification and typing of many pathogens. The fast and reliable qualities of MALDI-TOF MS make it suitable for clinical diagnostics. MALDI-TOF MS for the identification and cluster analysis of Streptococcus pyogenes, however, has not been reported. The goal of our study was to evaluate this approach for the rapid identification and typing of S. pyogenes.

Methods

65 S. pyogenes isolates were obtained from the hospital. The samples were prepared and MALDI-TOF MS measurements were conducted as previously reported. Identification of unknown spectra was performed via a pattern recognition algorithm with a reference spectra and a dendrogram was constructed using the statistical toolbox in Matlab 7.1 integrated in the MALDI Biotyper 2.0 software.

Results

For identification, 61 of 65 S. pyogenes isolates could be identified correctly by MALDI-TOF MS with BioType 2.0 when compared to biochemical identification (API Strep), with an accuracy of 93.85%. In clustering analysis, 44 of 65 isolates were in accordance with those established by M typing, with a matching rate of 67.69%. When only the M type prevalence in China was considered, 41 of 45 isolates were in agreement with M typing, with a matching rate of 91.1%.

Conclusions

It was here shown that MALDI-TOF MS with Soft Biotype 2.0 and its database could facilitate rapid identification of S. pyogenes. It may present an attractive alternative to traditional biochemical methods of identification. However, for classification, more isolates and advances in the MALDI-TOF MS technology are needed to improve accuracy.  相似文献   

5.

Background

Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) allows rapid and reliable identification of microorganisms, particularly clinically important pathogens.

Methodology/Principal Findings

We compared the identification efficiency of MALDI-TOF MS with that of Phoenix®, API® and 16S ribosomal DNA sequence analysis on 1,019 strains obtained from routine diagnostics. Further, we determined the agreement of MALDI-TOF MS identifications as compared to 16S gene sequencing for additional 545 strains belonging to species of Enterococcus, Gardnerella, Staphylococcus, and Streptococcus. For 94.7% of the isolates MALDI-TOF MS results were identical with those obtained with conventional systems. 16S sequencing confirmed MALDI-TOF MS identification in 63% of the discordant results. Agreement of identification of Gardnerella, Enterococcus, Streptococcus and Staphylococcus species between MALDI-TOF MS and traditional method was high (Crohn''s kappa values: 0.9 to 0.93).

Conclusions/Significance

MALDI-TOF MS represents a rapid, reliable and cost-effective identification technique for clinically relevant bacteria.  相似文献   

6.

Background

Cutaneous leishmaniasis is caused by several Leishmania species that are associated with variable outcomes before and after therapy. Optimal treatment decision is based on an accurate identification of the infecting species but current methods to type Leishmania isolates are relatively complex and/or slow. Therefore, the initial treatment decision is generally presumptive, the infecting species being suspected on epidemiological and clinical grounds. A simple method to type cultured isolates would facilitate disease management.

Methodology

We analyzed MALDI-TOF spectra of promastigote pellets from 46 strains cultured in monophasic medium, including 20 short-term cultured isolates from French travelers (19 with CL, 1 with VL). As per routine procedure, clinical isolates were analyzed in parallel with Multilocus Sequence Typing (MLST) at the National Reference Center for Leishmania.

Principal Findings

Automatic dendrogram analysis generated a classification of isolates consistent with reference determination of species based on MLST or hsp70 sequencing. A minute analysis of spectra based on a very simple, database-independent analysis of spectra based on the algorithm showed that the mutually exclusive presence of two pairs of peaks discriminated isolates considered by reference methods to belong either to the Viannia or Leishmania subgenus, and that within each subgenus presence or absence of a few peaks allowed discrimination to species complexes level.

Conclusions/Significance

Analysis of cultured Leishmania isolates using mass spectrometry allows a rapid and simple classification to the species complex level consistent with reference methods, a potentially useful method to guide treatment decision in patients with cutaneous leishmaniasis.  相似文献   

7.

Background

In Africa, there are several problems with the specific identification of bacteria. Recently, MALDI-TOF mass spectrometry has become a powerful tool for the routine microbial identification in many clinical laboratories.

Methodology/Principal Findings

This study was conducted using feces from 347 individuals (162 with diarrhea and 185 without diarrhea) sampled in health centers in Dakar, Senegal. Feces were transported from Dakar to Marseille, France, where they were cultured using different culture conditions. The isolated colonies were identified using MALDI-TOF. If a colony was unidentified, 16S rRNA sequencing was performed. Overall, 2,753 isolates were tested, allowing for the identification of 189 bacteria from 5 phyla, including 2 previously unknown species, 11 species not previously reported in the human gut, 10 species not previously reported in humans, and 3 fungi. 2,718 bacterial isolates (98.8%) out of 2,750 yielded an accurate identification using mass spectrometry, as did the 3 Candida albicans isolates. Thirty-two bacterial isolates not identified by MALDI-TOF (1.2%) were identified by sequencing, allowing for the identification of 2 new species. The number of bacterial species per fecal sample was significantly higher among patients without diarrhea (8.6±3) than in those with diarrhea (7.3±3.4; P = 0.0003). A modification of the gut microbiota was observed between the two groups. In individuals with diarrhea, major commensal bacterial species such as E. coli were significantly decreased (85% versus 64%), as were several Enterococcus spp. (E. faecium and E. casseliflavus) and anaerobes, such as Bacteroides spp. (B. uniformis and B. vulgatus) and Clostridium spp. (C. bifermentans, C. orbiscindens, C. perfringens, and C. symbosium). Conversely, several Bacillus spp. (B. licheniformis, B. mojavensis, and B. pumilus) were significantly more frequent among patients with diarrhea.

Conclusions/Significance

MALDI-TOF is a potentially powerful tool for routine bacterial identification in Africa, allowing for a quick identification of bacterial species.  相似文献   

8.

Background

MALDI-TOF mass spectrometry (MS) is a reliable method for bacteria identification. Some databases used for this purpose lack reference profiles for Brucella species, which is still an important pathogen in wide areas around the world. We report the creation of profiles for MALDI-TOF Biotyper 2.0 database (Bruker Daltonics, Germany) and their usefulness for identifying brucellae from culture plates and blood cultures.

Methodology/Principal Findings

We created MALDI Biotyper 2.0 profiles for type strains belonging to B. melitensis biotypes 1, 2 and 3; B. abortus biotypes 1, 2, 5 and 9; B. suis, B. canis, B ceti and B. pinnipedialis. Then, 131 clinical isolates grown on plate cultures were used in triplicate to check identification. Identification at genus level was always correct, although in most cases the three replicates reported different identification at species level. Simulated blood cultures were performed with type strains belonging to the main human pathogenic species (B. melitensis, B. abortus, B. suis and B. canis), and studied by MALDI-TOF MS in triplicate. Identification at genus level was always correct.

Conclusions/Significance

MALDI-TOF MS is reliable for Brucella identification to the genus level from culture plates and directly from blood culture bottles.  相似文献   

9.

Background

Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for yeast identification is limited by the requirement for protein extraction and for robust reference spectra across yeast species in databases. We evaluated its ability to identify a range of yeasts in comparison with phenotypic methods.

Methods

MALDI-TOF MS was performed on 30 reference and 167 clinical isolates followed by prospective examination of 67 clinical strains in parallel with biochemical testing (total n = 264). Discordant/unreliable identifications were resolved by sequencing of the internal transcribed spacer region of the rRNA gene cluster.

Principal Findings

Twenty (67%; 16 species), and 24 (80%) of 30 reference strains were identified to species, (spectral score ≥2.0) and genus (score ≥1.70)-level, respectively. Of clinical isolates, 140/167 (84%) strains were correctly identified with scores of ≥2.0 and 160/167 (96%) with scores of ≥1.70; amongst Candida spp. (n = 148), correct species assignment at scores of ≥2.0, and ≥1.70 was obtained for 86% and 96% isolates, respectively (vs. 76.4% by biochemical methods). Prospectively, species-level identification was achieved for 79% of isolates, whilst 91% and 94% of strains yielded scores of ≥1.90 and ≥1.70, respectively (100% isolates identified by biochemical methods). All test scores of 1.70–1.90 provided correct species assignment despite being identified to “genus-level”. MALDI-TOF MS identified uncommon Candida spp., differentiated Candida parapsilosis from C. orthopsilosis and C. metapsilosis and distinguished between C. glabrata, C. nivariensis and C. bracarensis. Yeasts with scores of <1.70 were rare species such as C. nivariensis (3/10 strains) and C. bracarensis (n = 1) but included 4/12 Cryptococcus neoformans. There were no misidentifications. Four novel species-specific spectra were obtained. Protein extraction was essential for reliable results.

Conclusions

MALDI-TOF MS enabled rapid, reliable identification of clinically-important yeasts. The addition of spectra to databases and reduction in identification scores required for species-level identification may improve its utility.  相似文献   

10.

Background

Klebsiella pneumoniae is one of the most important pathogens responsible for nosocomial outbreaks worldwide. Epidemiological analyses are useful in determining the extent of an outbreak and in elucidating the sources and the spread of infections. The aim of this study was to investigate the epidemiological spread of K. pneumoniae strains using a MALDI-TOF MS approach.

Methods

Five hundred and thirty-five strains of K. pneumoniae were collected between January 2008 and March 2011 from hospitals in France and Algeria and were identified using MALDI-TOF. Antibiotic resistance patterns were investigated. Clinical and epidemiological data were recorded in an Excel file, including clustering obtained from the MSP dendrogram, and were analyzed using PASW Statistics software.

Results

Antibiotic susceptibility and phenotypic tests of the 535 isolates showed the presence of six resistance profiles distributed unequally between the two countries. The MSP dendrogram revealed five distinct clusters according to an arbitrary cut-off at the distance level of 500. Data mining analysis of the five clusters showed that K. pneumoniae strains isolated in Algerian hospitals were significantly associated with respiratory infections and the ESBL phenotype, whereas those from French hospitals were significantly associated with urinary tract infections and the wild-type phenotype.

Conclusions

MALDI-TOF was found to be a promising tool to identify and differentiate between K. pneumoniae strains according to their phenotypic properties and their epidemiological distribution. This is the first time that MALDI-TOF has been used as a rapid tool for typing K. pneumoniae clinical isolates.  相似文献   

11.

Background

The MALDI (matrix-assisted laser desorption/ionization) Biotyper system for bacterial identification has already been utilized in clinical microbiology laboratories as a successful clinical application of protoemics. However, in cases of Nocardia, mass spectra suitable for MALDI Biotyper identification are often not obtained if such specimens are processed like general bacteria. This problem is related to the insufficiencies in bacterial spectrum databases that preclude accurate specimen identification. Here, we developed a bacterial processing method to improve mass spectra from specimens of the genus Nocardia. In addition, with the new processing method, we constructed a novel in-house bacterial database that combines a commercial database and mass spectra of Nocardia strains from the Department of Clinical Laboratory at Chiba University Hospital (DCLC) and the Medical Mycology Research Center at Chiba University (MMRC).

Results

The newly developed method (Nocardia Extraction Method at DCLC [NECLC]) based on ethanol-formic acid extraction (EFAE) improved mass spectra obtained from Nocardia specimens. The Nocardia in-house database at Chiba University Hospital (NDCUH) was then successfully validated. In brief, prior to introduction of the NECLC and NDCUH, 10 of 64 (15.6%) clinical isolates were identified at the species level and 16 isolates (25.0%) could only be identified at the genus level. In contrast, after the introduction, 58 isolates (90.6%) were identified at the species level and 6 isolates (9.4%) were identified at the genus level.

Conclusions

The results of this study suggest that MALDI-TOF (time-of-flight) Biotyper system can identify Nocardia accurately in a short time in combination with a simple processing method and an in-house database.

Electronic supplementary material

The online version of this article (doi:10.1186/s12014-015-9078-5) contains supplementary material, which is available to authorized users.  相似文献   

12.

Background:

Multidrug resistance in Salmonella enteritidis isolates is a public health problem worldwide; the present study, therefore, was designed for antimicrobial-resistance determination in this strain.

Methods:

Salmonella strains isolated from poultry samples by biochemical positive and negative tests were subjected to PCR and identified as Salmonella enteritidis. For detection and identification of Salmonella enteritidis isolates, sdfI gene-specific primers were used.

Results:

We found that 100% of isolates were resistant to ampicillin, 90% were resistant to cephalothin and streptomycin, 70% were resistant to cefotaxime, and 60% were resistant to kanamycin and gentamicin.

Conclusion:

Salmonella enteritidis isolates had antimicrobial resistance to mentioned antibiotics. Key Words: Antibiotic Resistance, PCR, Poultry, Salmonella enteritidis  相似文献   

13.

Objective

Early diagnosis of invasive aspergillosis is essential for positive patient outcome. Likewise genotyping of fungal isolates is desirable for outbreak control in clinical setting. We designed a molecular assay that combines detection, identification, and genotyping of Aspergillus fumigatus in a single reaction.

Methods

To this aim we combined 20 markers in a multiplex reaction and the results were seen following mini-sequencing readings. Pure culture extracts were firstly tested. Thereafter, Aspergillus-DNA samples obtained from clinical specimens of patients with possible, probable, or proven aspergillosis according to European Organization for the Research and Treatment of Cancer/Mycoses Study Group (EORTC/MSG) criteria.

Results

A new set of designed primers allowed multilocus sequence typing (MLST) gene amplification in a single multiplex reaction. The newly proposed SNaPAfu assay had a specificity of 100%, a sensitivity of 89% and detection limit of 1 ITS copy/mL (∼0.5 fg genomic Aspergillus-DNA/mL). The marker A49_F was detected in 89% of clinical samples. The SNaPAfu assay was accurately performed on clinical specimens using only 1% of DNA extract (total volume 50 µL) from 1 mL of used bronchoalveolar lavage.

Conclusions

The first highly sensitive and specific, time- and cost-economic multiplex assay was implemented that allows detection, identification, and genotyping of A. fumigatus strains in a single amplification followed by mini-sequencing reaction. The new test is suitable to clinical routine and will improve patient management.  相似文献   

14.

Background

Nocardia sp. causes a variety of clinical presentations. The incidence of nocardiosis varies geographically according to several factors, such as the prevalence of HIV infections, transplants, neoplastic and rheumatic diseases, as well as climate, socio-economic conditions and laboratory procedures for Nocardia detection and identification. In Brazil the paucity of clinical reports of Nocardia infections suggests that this genus may be underestimated as a cause of human diseases and/or either neglected or misidentified in laboratory specimens. Accurate identification of Nocardia species has become increasingly important for clinical and epidemiological investigations. In this study, seven clinical Nocardia isolates were identified by multilocus sequence analysis (MLSA) and their antimicrobial susceptibility was also determined. Most Nocardia isolates were associated to pulmonary disease.

Methodology/Principal Findings

The majority of Brazilian human isolates in cases reported in literature were identified as Nocardia sp. Molecular characterization was used for species identification of Nocardia nova, Nocardia cyriacigeorgica, Nocardia asiatica and Nocardia exalbida/gamkensis. Data indicated that molecular analysis provided a different Nocardia speciation than the initial biochemical identification for most Brazilian isolates. All Nocardia isolates showed susceptibility to trimethoprim-sulfamethoxazole, the antimicrobial of choice in the treatment nocardiosis. N. nova isolated from different clinical specimens from one patient showed identical antimicrobial susceptibility patterns and two distinct clones.

Conclusions/Significance

Although Brazil is the world''s fifth-largest country in terms of land mass and population, pulmonary, extrapulmonary and systemic forms of nocardiosis were reported in only 6 of the 26 Brazilian states from 1970 to 2013. A least 33.8% of these 46 cases of nocardiosis proved fatal. Interestingly, coinfection by two clones may occur in patients presenting nocardiosis. Nocardia infection may be more common throughout the Brazilian territory and in other developing tropical countries than is currently recognized and MLSA should be used more extensively as an effective method for Nocardia identification.  相似文献   

15.

Background

Daptomycin remains one of our last-line anti-staphylococcal agents. This study aims to characterize the genetic evolution to daptomycin resistance in S. aureus.

Methods

Whole genome sequencing was performed on a unique collection of isogenic, clinical (21 strains) and laboratory (12 strains) derived strains that had been exposed to daptomycin and developed daptomycin-nonsusceptibility. Electron microscopy (EM) and lipid membrane studies were performed on selected isolates.

Results

On average, six coding region mutations were observed across the genome in the clinical daptomycin exposed strains, whereas only two mutations on average were seen in the laboratory exposed pairs. All daptomycin-nonsusceptible strains had a mutation in a phospholipid biosynthesis gene. This included mutations in the previously described mprF gene, but also in other phospholipid biosynthesis genes, including cardiolipin synthase (cls2) and CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase (pgsA). EM and lipid membrane composition analyses on two clinical pairs showed that the daptomycin-nonsusceptible strains had a thicker cell wall and an increase in membrane lysyl-phosphatidylglycerol.

Conclusion

Point mutations in genes coding for membrane phospholipids are associated with the development of reduced susceptibility to daptomycin in S. aureus. Mutations in cls2 and pgsA appear to be new genetic mechanisms affecting daptomycin susceptibility in S. aureus.  相似文献   

16.

Purpose of Review

The diagnosis of invasive fungal disease remains challenging in the clinical laboratory. In this paper, the use of matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) for the identification of filamentous fungi as well as its application for antifungal resistance testing and strain typing is evaluated.

Recent Findings

Most studies report very high accuracy for the identification of filamentous fungi by MALDI-TOF MS. Its cost effectiveness, short analysis time, and low error rate and the fact that it can also discriminate between closely related and cryptic species make it appropriate for implementation in the clinical routine. Two drawbacks remain in the availability of extended reference spectra databases and the fact that this technique can only be applied on isolates.

Summary

More work on (simultaneous) antifungal susceptibility testing and strain typing is needed. The application of MALDI-TOF MS directly on clinical specimens would further improve the diagnosis of invasive fungal disease and improve its successful management.
  相似文献   

17.

Background

The enoyl-acyl carrier protein (ACP) reductase enzyme (FabI) is the target for a series of antimicrobial agents including novel compounds in clinical trial and the biocide triclosan. Mutations in fabI and heterodiploidy for fabI have been shown to confer resistance in S. aureus strains in a previous study. Here we further determined the fabI upstream sequence of a selection of these strains and the gene expression levels in strains with promoter region mutations.

Results

Mutations in the fabI promoter were found in 18% of triclosan resistant clinical isolates, regardless the previously identified molecular mechanism conferring resistance. Although not significant, a higher rate of promoter mutations were found in strains without previously described mechanisms of resistance. Some of the mutations identified in the clinical isolates were also detected in a series of laboratory mutants. Microarray analysis of selected laboratory mutants with fabI promoter region mutations, grown in the absence of triclosan, revealed increased fabI expression in three out of four tested strains. In two of these strains, only few genes other than fabI were upregulated. Consistently with these data, whole genome sequencing of in vitro selected mutants identified only few mutations except the upstream and coding regions of fabI, with the promoter mutation as the most probable cause of fabI overexpression. Importantly the gene expression profiling of clinical isolates containing similar mutations in the fabI promoter also showed, when compared to unrelated non-mutated isolates, a significant up-regulation of fabI.

Conclusions

In conclusion, we have demonstrated the presence of C34T, T109G, and A101C mutations in the fabI promoter region of strains with fabI up-regulation, both in clinical isolates and/or laboratory mutants. These data provide further observations linking mutations upstream fabI with up-regulated expression of the fabI gene.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1544-y) contains supplementary material, which is available to authorized users.  相似文献   

18.

Background

The Mycobacterium tuberculosis complex (MTC) comprises closely related species responsible for strictly human and zoonotic tuberculosis. Accurate species determination is useful for the identification of outbreaks and epidemiological links. Mycobacterium africanum and Mycobacterium canettii are typically restricted to Africa and M. bovis is a re-emerging pathogen. Identification of these species is difficult and expensive.

Methodology/Principal Findings

The Exact Tandem Repeat D (ETR-D; alias Mycobacterial Interspersed Repetitive Unit 4) was sequenced in MTC species type strains and 110 clinical isolates, in parallel to reference polyphasic identification based on phenotype profiling and sequencing of pncA, oxyR, hsp65, gyrB genes and the major polymorphism tandem repeat. Inclusion of M. tuberculosis isolates in the expanding, antibiotic-resistant Beijing clone was determined by Rv0927c gene sequencing. The ETR-D (780-bp) sequence unambiguously identified MTC species type strain except M. pinnipedii and M. microti thanks to six single nucleotide polymorphisms, variable numbers (1–7 copies) of the tandem repeat and two deletions/insertions. The ETR-D sequencing agreed with phenotypic identification in 107/110 clinical isolates and with reference polyphasic molecular identification in all isolates, comprising 98 M. tuberculosis, 5 M. bovis BCG type, 5 M. canettii, and 2 M. africanum. For M. tuberculosis isolates, the ETR-D sequence was not significantly associated with the Beijing clone.

Conclusions/Significance

ETR-D sequencing allowed accurate, single-step identification of the MTC at the species level. It circumvented the current expensive, time-consuming polyphasic approach. It could be used to depict epidemiology of zoonotic and human tuberculosis, especially in African countries where several MTC species are emerging.  相似文献   

19.

Background

We present an easily applicable test for rapid binary typing of Staphylococcus aureus: binary interspace (IS) typing. This test is a further development of a previously described molecular typing technique that is based on length polymorphisms of the 16S-23S rDNA interspace region of S. aureus.

Methodology/Principal Findings

A novel approach of IS-typing was performed in which binary profiles are created. 424 human and animal derived MRSA and MSSA isolates were tested and a subset of these isolates was compared with multi locus sequence typing (MLST) and Amplified Fragment Length Polymorphism (AFLP). Binary IS typing had a high discriminatory potential and a good correlation with MLST and AFLP.

Conclusions/Significance

Binary IS typing is easy to perform and binary profiles can be generated in a standardized fashion. These two features, combined with the high correlation with MLST clonal complexes, make the technique applicable for large-scale inter-laboratory molecular epidemiological comparisons.  相似文献   

20.

Background

Multilocus PCR coupled with electrospray ionization mass spectrometry (PCR/ESI-MS) is a new strategy for pathogen identification, but information about its application in fungal identification remains sparse.

Methods

One-hundred and twelve strains and isolates of clinically important fungi and Prototheca species were subjected to both rRNA gene sequencing and PCR/ESI-MS. Three regions of the rRNA gene were used as targets for sequencing: the 5′ end of the large subunit rRNA gene (D1/D2 region), and the internal transcribed spacers 1 and 2 (ITS1 and ITS2 regions). Microbial identification (Micro ID), acquired by combining results of phenotypic methods and rRNA gene sequencing, was used to evaluate the results of PCR/ESI-MS.

Results

For identification of yeasts and filamentous fungi, combined sequencing of the three regions had the best performance (species-level identification rate of 93.8% and 81.8% respectively). The highest species-level identification rate was achieved by sequencing of D1/D2 for yeasts (92.2%) and ITS2 for filamentous fungi (75.8%). The two Prototheca species could be identified to species level by D1/D2 sequencing but not by ITS1 or ITS2. For the 102 strains and isolates within the coverage of PCR/ESI-MS identification, 87.3% (89/102) achieved species-level identification, 100% (89/89) of which were concordant to Micro ID on species/complex level. The species-level identification rates for yeasts and filamentous fungi were 93.9% (62/66) and 75% (27/36) respectively.

Conclusions

rRNA gene sequencing provides accurate identification information, with the best results obtained by a combination of ITS1, ITS2 and D1/D2 sequencing. Our preliminary data indicated that PCR/ESI-MS method also provides a rapid and accurate identification for many clinical relevant fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号