首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The cyp102A2 and cyp102A3 genes encoding the two Bacillus subtilis homologues (CYP102A2 and CYP102A3) of flavocytochrome P450 BM3 (CYP102A1) from Bacillus megaterium have been cloned, expressed in Escherichia coli, purified, and characterized spectroscopically and enzymologically. Both enzymes contain heme, flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) cofactors and bind a variety of fatty acid molecules, as demonstrated by conversion of the low-spin resting form of the heme iron to the high-spin form induced by substrate-binding. CYP102A2 and CYP102A3 catalyze the fatty acid-dependent oxidation of reduced nicotinamide adenine dinucleotide phosphate (NADPH) and reduction of artificial electron acceptors at high rates. Binding of carbon monoxide to the reduced forms of both enzymes results in the shift of the heme Soret band to 450 nm, confirming the P450 nature of the enzymes. Reverse-phase high-performance liquid chromatography (HPLC) of products from the reaction of the enzymes with myristic acid demonstrates that both catalyze the subterminal hydroxylation of this substrate, though with different regioselectivity and catalytic rate. Both P450s 102A2 and 102A3 show kinetic and binding preferences for long-chain unsaturated and branched-chain fatty acids over saturated fatty acids, indicating that the former two molecule types may be the true substrates. P450s 102A2 and 102A3 exhibit differing substrate selectivity profiles from each other and from P450 BM3, indicating that they may fulfill subtly different cellular roles. Titration curves for binding and turnover kinetics of several fatty acid substrates with P450s 102A2 and 102A3 are better described by sigmoidal (rather than hyperbolic) functions, suggesting binding of more than one molecule of substrate to the P450s, or possibly cooperativity in substrate binding. Comparison of the amino acid sequences of the three flavocytochromes shows that several important amino acids in P450 BM3 are not conserved in the B. subtilis homologues, pointing to differences in the binding modes for the substrates that may explain the unusual sigmoidal kinetic and titration properties.  相似文献   

2.
P450BM-3, a catalytically self-sufficient, soluble bacterial P450, contains on the same polypeptide a heme domain and a reductase domain. P450BM-3 catalyzes the oxidation of short- and long-chain, saturated and unsaturated fatty acids. The three-dimensional structure of the heme domain both in the absence and in the presence of fatty acid substrates has been determined; however, the fatty acid in the substrate-bound form is not adequately close to the heme iron to permit a prediction regarding the stereoselectivity of oxidation. In the case of long-chain fatty acids, the products can also serve as substrate and be metabolized several times. In the current study, we have determined the absolute configuration of the three primary products of palmitic acid hydroxylation (15-, 14-, and 13-OH palmitic acid). While the 15- and 14-hydroxy compounds are produced in a highly stereoselective manner (98% R, 2% S), the 13-hydroxy is a mixture of 72% R and 28% S. We have also examined the binding of these three hydroxy acids to P450BM-3 and shown that only two of them (14-OH and 13-OH palmitic acid) can bind to and be further metabolized by P450BM-3. The results indicate that in contrast to the flexibility of palmitoleic acid bound to the oxidized enzyme, palmitic acid is rigidly bound in the active site during catalytic turnover.  相似文献   

3.
Cytochrome P450 (P450) 2D6 oxidizes a wide variety of drugs typically at a distance of 5-7 A from a basic nitrogen on the substrate. To investigate the determinants of P450 2D6 catalysis, we analyzed the binding and oxidation of phenethylamine substrates. P450 2D6 discriminated between the various phenethylamines, as evidenced by binding and steady-state results. Whereas the spectral binding affinity for 3-methoxyphenethylamine and 4-methoxyphenethylamine was similar, the affinity for 4-hydroxyphenethylamine was 12-fold weaker than for 3-hydroxyphenethylamine at pH 7.4. The binding of 3,4-dihydroxyphenethylamine was equally poor. These equilibrium dissociation constants were based on the observation of both type I and type II perturbation difference spectra; the former involves displacement of the proximal H(2)O ligand, yielding an iron spin state change, and the latter requires nitrogen ligation to the heme iron. One explanation for the observed type II binding spectra is the presence of both protonated and unprotonated forms of these compounds. To address this possibility, the K(S) values for 3-methoxyphenethylamine and 4-methoxyphenethylamine were determined as a function of pH. Two apparent pK(a) values were determined, which corresponded to a P450 2D6 residue involved in binding and to a lowered pK(a) of a substrate amine group upon binding P450 2D6. The apparent pK(a) of the enzyme residue (6.6) is much higher than the expected pK(a) of Asp301, which has been hypothesized to play a role in binding. Interestingly, the apparent pK(a) for the methoxyphenethylamine derivatives decreased by as much as 2 pH units upon binding to P450 2D6. 3-Methoxyphenethylamine and 4-methoxyphenethylamine underwent sequential oxidations with O-demethylation and subsequent ring hydroxylation to form 3,4-dihydroxyphenethylamine (dopamine). At higher substrate concentrations, the second oxidation was inhibited. This result can be explained by the increasing concentration of the inhibitory unprotonated substrate. Nevertheless, the rates of methoxyphenethylamine oxidations are the highest reported for P450 2D6 substrates.  相似文献   

4.
Mak PJ  Im SC  Zhang H  Waskell LA  Kincaid JR 《Biochemistry》2008,47(12):3950-3963
Resonance Raman studies of P450 2B4 are reported for the substrate-free form and when bound to the substrates, benzphetamine (BZ) or butylated hydroxytoluene (BHT), the latter representing a substrate capable of inducing an especially effective conversion to the high-spin state. In addition to studies of the ferric resting state, spectra are acquired for the ferrous CO ligated form. Importantly, for the first time, the RR technique is effectively applied to interrogate the changes in active site structure induced by binding of cytochrome P450 reductase (CPR) and Mn(III) cytochrome b 5 (Mn cyt b 5); the manganese derivative of cyt b 5 was employed to avoid spectroscopic interferences. The results, consistent with early work on mammalian P450s, demonstrate that substrate structure has minimal effects on heme structure or the FeCO fragment of the ferrous CO derivatives. Similarly, the data indicate that the protein is flexible and that substrate binding does not exert significant strain on the heme peripheral groups, in contrast to P450 cam, where substantial effects on heme peripheral groups are seen. However, significant differences are observed in the RR spectra of P450 2B4 when bound with the different redox partners, indicating that the heme structure is clearly sensitive to perturbations near the proximal heme binding site. The most substantial changes are displacements of the peripheral vinyl groups toward planarity with the heme macrocycle by cyt b 5 but away from planarity by CPR. These changes can have an impact on heme reduction potential. Most interestingly, these RR results support an earlier observation that the combination of benzphetamine and cyt b 5 binding produce a synergy leading to unique active site structural changes when both are bound.  相似文献   

5.
Specific substrate-induced structural changes in the heme pocket are proposed for human cytochrome P450 aromatase (P450arom) which undergoes three consecutive oxygen activation steps. We have experimentally investigated this heme environment by resonance Raman spectra of both substrate-free and substrate-bound forms of the purified enzyme. The Fe-CO stretching mode (nu(Fe)(-)(CO)) of the CO complex and Fe(3+)-S stretching mode (nu(Fe)(-)(S)) of the oxidized form were monitored as a structural marker of the distal and proximal sides of the heme, respectively. The nu(Fe)(-)(CO) mode was upshifted from 477 to 485 and to 490 cm(-)(1) by the binding of androstenedione and 19-aldehyde-androstenedione, substrates for the first and third steps, respectively, whereas nu(Fe)(-)(CO) was not observed for P450arom with 19-hydroxyandrostenedione, a substrate for the second step, indicating that the heme distal site is very flexible and changes its structure depending on the substrate. The 19-aldehyde-androstenedione binding could reduce the electron donation from the axial thiolate, which was evident from the low-frequency shift of nu(Fe)(-)(S) by 5 cm(-)(1) compared to that of androstenedione-bound P450arom. Changes in the environment in the heme distal site and the reduced electron donation from the axial thiolate upon 19-aldehyde-androstenedione binding might stabilize the ferric peroxo species, an active intermediate for the third step, with the suppression of the formation of compound I (Fe(4+)=O porphyrin(+)(*)) that is the active species for the first and second steps. We, therefore, propose that the substrates can regulate the formation of alternative reaction intermediates by modulating the structure on both the heme distal and proximal sites in P450arom.  相似文献   

6.
Bacillus megaterium flavocytochrome P450 BM3 (BM3) is a high activity fatty acid hydroxylase, formed by the fusion of soluble cytochrome P450 and cytochrome P450 reductase modules. Short chain (C6, C8) alkynes were shown to be substrates for BM3, with productive outcomes (i.e. alkyne hydroxylation) dependent on position of the carbon-carbon triple bond in the molecule. Wild-type P450 BM3 catalyses ω-3 hydroxylation of both 1-hexyne and 1-octyne, but is suicidally inactivated in NADPH-dependent turnover with non-terminal alkynes. A F87G mutant of P450 BM3 also undergoes turnover-dependent heme destruction with the terminal alkynes, pointing to a key role for Phe87 in controlling regioselectivity of alkyne oxidation. The terminal alkynes access the BM3 heme active site led by the acetylene functional group, since hydroxylated products are not observed near the opposite end of the molecules. For both 1-hexyne and 1-octyne, the predominant enantiomeric product formed (up to ~90%) is the (S)-(-)-1-alkyn-3-ol form. Wild-type P450 BM3 is shown to be an effective oxidase catalyst of terminal alkynes, with strict regioselectivity of oxidation and potential biotechnological applications. The absence of measurable octanoic or hexanoic acid products from oxidation of the relevant 1-alkynes is also consistent with previous studies suggesting that removal of the phenyl group in the F87G mutant does not lead to significant levels of ω-oxidation of alkyl chain substrates.  相似文献   

7.
Cytochrome P450 enzymes (P450s) are exceptionally versatile monooxygenases, mediating hydroxylations of unactivated C-H bonds, epoxidations, dealkylations, and N- and S-oxidations as well as other less common reactions. In the conventional view of the catalytic cycle, based upon studies of P450s in vitro, substrate binding to the Fe(III) resting state facilitates the first 1-electron reduction of the heme. However, the resting state of P450s in vivo has not been examined. In the present study, whole cell difference spectroscopy of bacterial (CYP101A1 and CYP176A1, i.e. P450cam and P450cin) and mammalian (CYP1A2, CYP2C9, CYP2A6, CYP2C19, and CYP3A4) P450s expressed within intact Escherichia coli revealed that both Fe(III) and Fe(II) forms of the enzyme are present in the absence of substrates. The relevance of this finding was supported by similar observations of Fe(II) P450 heme in intact rat hepatocytes. Electron paramagnetic resonance (EPR) spectroscopy of the bacterial forms in intact cells showed that a proportion of the P450 in cells was in an EPR-silent form in the native state consistent with the presence of Fe(II) P450. Coexpression of suitable cognate electron donors increased the degree of endogenous reduction to over 80%. A significant proportion of intracellular P450 remained in the Fe(II) form after vigorous aeration of cells. The addition of substrates increased the proportion of Fe(II) heme, suggesting a kinetic gate to heme reduction in the absence of substrate. In summary, these observations suggest that the resting state of P450s should be regarded as a mixture of Fe(III) and Fe(II) forms in both aerobic and oxygen-limited conditions.  相似文献   

8.
A putative binding region for cumene hydroperoxide in the active site of cytochrome P4501A1 was identified using photoaffinity labeling. Thr501 was determined as the most likely site of modification by azidocumene used as the photoaffinity label (T. Cvrk and H. W. Strobel, (1998) Arch. Biochem. Biophys. 349, 95-104). To evaluate further the role of this amino acid residue a site-directed mutagenesis approach was employed. P4501A1 wild type and two mutants, P4501A1Glu501 and P4501A1Phe501, were expressed in and purified from Escherichia coli and used for kinetic analysis to confirm the role of Thr501 residue in cumene hydroperoxide binding. The mutation resulted in a two- to fourfold decrease in the rate of heme degradation in the presence of 0.5 mM cumene hydroperoxide. The mutations do not prevent or significantly alter binding of the tested substrates; however, binding of 2-phenyl-2-propanol (product generated from cumene hydroperoxide) to P4501A1Glu501 and P4501A1Phe501 exhibited four- and eightfold decreases, respectively, suggesting that the mutations strongly affected the affinity of cumene hydroperoxide for the P4501A1 active site. The kinetic analysis of cumene hydroperoxide-supported reactions showed that both mutants exhibit increased Km and decreased VMax values for all tested substrates. Furthermore, the mutations affected product distribution in testosterone hydroxylation. On the basis of P4501A1Glu501 and P4501A1Phe501 characterization, it can be concluded that Thr501 plays an important role in cumene hydroperoxide/P4501A1 interaction.  相似文献   

9.
Resonance Raman spectra are reported for both the heme domain and holoenzyme of cytochrome P450BM3 in the resting state and for the ferric NO, ferrous CO, and ferrous NO adducts in the absence and presence of the substrate, palmitate. Comparison of the spectrum of the palmitate-bound form of the heme domain with that of the holoenzyme indicates that the presence of the flavin reductase domain alters the structure of the heme domain in such a way that water accessibility to the distal pocket is greater for the holoenzyme, a result that is consistent with analogous studies of cytochrome P450cam. The data for the exogenous ligand adducts are compared to those previously reported for corresponding derivatives of cytochrome P450cam and document significant and important differences for the two proteins. Specifically, while the binding of substrate induces relatively dramatic changes in the nu(Fe-XY) modes of the ferrous CO, ferric NO, and ferrous NO derivatives of cytochrome P450cam, no significant changes are observed for the corresponding derivatives of cytochrome P450BM3 upon binding of palmitate. In fact, the spectral data for substrate-free cytochrome P450BM3 provide evidence for distortion of the Fe-XY fragment, even in the absence of substrate. This apparent distortion, which is nonexistent in the case of substrate-free cytochrome P450cam, is most reasonably attributed to interaction of the Fe-XY fragment with the F87 phenylalanine side chain. This residue is known to lie very close to the heme iron in the substrate-free derivative of cytochrome P450BM3 and has been suggested to prevent hydroxylation of the terminal, omega, position of long-chain fatty acids.  相似文献   

10.
Myoglobin (Mb) is used as a model system for other heme proteins and the reactions they catalyze. The latest novel function to be proposed for myoglobin is a P450 type hydroxylation activity of aromatic carbons (Watanabe, Y., and Ueno, T. (2003) Bull. Chem. Soc. Jpn. 76, 1309-1322). Because Mb does not contain a specific substrate binding site for aromatic compounds near the heme, an engineered tryptophan in the heme pocket was used to model P450 hydroxylation of aromatic compounds. The monooxygenation product was not previously isolated because of rapid subsequent oxidation steps (Hara, I., Ueno, T., Ozaki, S., Itoh, S., Lee, K., Ueyama, N., and Watanabe, Y. (2001) J. Biol. Chem. 276, 36067-36070). In this work, a Mb variant (F43W/H64D/V68I) is used to characterize the monooxygenated intermediate. A modified (+16 Da) species forms upon the addition of 1 eq of H2O2. This product was digested with chymotrypsin, and the modified peptide fragments were isolated and characterized as 6-hydroxytryptophan using matrix-assisted laser desorption ionization time-of-flight tandem mass spectroscopy and 1H NMR. This engineered Mb variant represents the first enzyme to preferentially hydroxylate the indole side chain of Trp at the C6 position. Finally, heme extraction was used to demonstrate that both the formation of the 6-hydroxytryptophan intermediate (+16 Da) and subsequent oxidation to form the +30 Da final product are catalyzed by the heme cofactor, most probably via the compound I intermediate. These results provide insight into the mechanism of hydroxylation of aromatic carbons by heme proteins, demonstrating that non-thiolate-ligated heme enzymes can perform this function. This establishes Mb compound I as a model for P450 type aromatic hydroxylation chemistry.  相似文献   

11.
Homologous 1-naphtoxyalcanthiols of the type 1-C10H7O(CH2)nSH (n = 2-7) are used for structural studies of the microsomal cytochrome P450 active centre. It was found that the strongest complex of thiol with P450 is formed for n = 3. Microsomal oxidation of P450 substrates aminopyrine and benz(a) pyrene is inhibited by the 1-naphtoxyalcanthiols studied. A non-monotonous dependence of pI50 on n was found, the compound with a chain length n = 3 appeared to be the most effective inhibitor. The interaction of this thiol (n = 3) with both the heme group of P450 and the hydrophobic substrate zone is supposed and the distance between these points was estimated. It is possible to employ this approach for structural studies on the active centers of different isoforms of P450.  相似文献   

12.
The kinetic characteristics and mechanism of flavonoid inhibition of cytochrome P-450-mediated reactions were examined in rat liver microsomes, using the naturally occurring flavonoid, quercetin (3,3',4',5,7-pentahydroxyflavone). Quercetin inhibited the O-deethylation of ethoxyresorufin in beta-naphthoflavone-induced microsomes by 15-80% at concentrations of 10-250 nM. The pattern of inhibition was dependent on quercetin concentration. Quercetin also inhibited p-nitroanisole demethylation and benzo(a)-pyrene hydroxylation, but did not change the proportions of the individual benzo(a)pyrene metabolites in comparison to controls. Specific steps in the P-450 reaction pathway were tested for sensitivity to quercetin inhibition. The Km values of the P-450 substrates tested were increased in the presence of quercetin; competition for and/or alteration of the substrate binding site contributes to the mechanism of inhibition. In experiments under anaerobic, carbon monoxide-saturated conditions, quercetin did not inhibit cytochrome P-450 reduction by NADPH-cytochrome P-450 reductase. The cumene hydroperoxide-supported O-deethylation of ethoxyresorufin was inhibited by quercetin (15-60% inhibition at concentrations of 50-300 nM), suggesting that quercetin may interfere with the formation or breakdown of the oxygenated heme complex. Stoichiometry experiments established that quercetin is a potent uncoupler of P-450 reactions, elevating the rates of H2O2 formation almost twofold. Structure/activity studies indicated that certain other naturally occurring flavonoids were at least as potent inhibitors of ethoxyresorufin deethylation as quercetin. These findings are of interest in light of the significant dietary exposure of the human population to the flavonoids.  相似文献   

13.
Streptomyces and other bacterial actinomycete species produce many important natural products, including the majority of known antibiotics, and cytochrome P450 (P450) enzymes catalyze important biosynthetic steps. Relatively few electron transport pathways to P450s have been characterized in bacteria, particularly streptomycete species. One of the 18 P450s in Streptomyces coelicolor A3(2), P450 105D5, was found to bind fatty acids tightly and form hydroxylated products when electrons were delivered from heterologous systems. The six ferredoxin (Fdx) and four flavoprotein Fdx reductase (FDR) proteins coded by genes in S. coelicolor were expressed in Escherichia coli, purified, and used to characterize the electron transfer pathway. Of the many possibilities, the primary pathway was NADH --> FDR1 --> Fdx4 --> P450 105D5. The genes coding for FDR1, Fdx4, and P450 105D5 are located close together in the S. coelicolor genome. Several fatty acids examined were substrates, including those found in S. coelicolor extracts, and all yielded several products. Mass spectra of the products of lauric acid imply the 8-, 9-, 10-, and 11-hydroxy derivatives. Hydroxylated fatty acids were also detected in vivo in S. coelicolor. Rates of electron transfer between the proteins were measured; all steps were faster than overall hydroxylation and consistent with rates of NADH oxidation. Substrate binding, product release, and oxygen binding were relatively fast in the catalytic cycle; high kinetic deuterium isotope effects for all four lauric acid hydroxylations indicated that the rate of C-H bond breaking is rate-limiting in every case. Thus, an electron transfer pathway to a functional Streptomyces P450 has been established.  相似文献   

14.
For the characterization of the substrate binding site optical and EPR measurements with spin labelled substrates on solubilized and pure cytochrome P-450 were performed. Analogously to the unlabelled derivatives spin labelled n-alkylamines and isocyanides with different chain lengths are type II substrates. The Ks-values evaluated from optical (P-450 = 1.98 . 10(-6) M) and ESR (P-450 = 1.98 . 10(-4) M) measurements are very similar indicating no concentration dependences. Contrary to the unlabelled n-alkylamines the spin labelled compounds show an affinity almost independent of the chain lengths. The SL-substrates with a short distance between the functional group and the NO-group bound to P-450 induce pronounced changes of the ligand field of the heme iron and a large broadening of the signal of the immobilized nitroxide indicating intensive interactions between the unpaired electron of the nitroxide group and the paramagnetic heme iron. Elongation of the alkyl chains results in spectra of the Fe3+ complexes with only slight modification and a remained unbroadened signal of the immobilized nitroxide. The binding of the substrate through their functional groups together with a 1:1 stoichiometry of the P-450 SL-IC-complex give evidence for the same binding site in the near vicinity of the heme iron.  相似文献   

15.
Mutations of the active site residues F87 and Y96 greatly enhanced the activity of cytochrome P450(cam) (CYP101) from Pseudomonas putida for the oxidation of the polycyclic aromatic hydrocarbons phenanthrene, fluoranthene, pyrene and benzo[a]pyrene. Wild-type P450(cam) had low (<0.01 min(-1)) activity with these substrates. Phenanthrene was oxidized to 1-, 2-, 3- and 4-phenanthrol, while fluoranthene gave mainly 3-fluoranthol. Pyrene was oxidized to 1-pyrenol and then to 1,6- and 1,8-pyrenequinone, with small amounts of 2-pyrenol also formed with the Y96A mutant. Benzo[a]pyrene gave 3-hydroxybenzo[a]pyrene as the major product. The NADH oxidation rate of the mutants with phenanthrene was as high as 374 min(-1), which was 31% of the camphor oxidation rate by wild-type P450(cam), and with fluoranthene the fastest rate was 144 min(-1). The oxidation of phenanthrene and fluoranthene were highly uncoupled, with highest couplings of 1.3 and 3.1%, respectively. The highest coupling efficiency for pyrene oxidation was a reasonable 23%, but the NADH turnover rate was slow. The product distributions varied significantly between mutants, suggesting that substrate binding orientations can be manipulated by protein engineering, and that genetic variants of P450(cam) may be useful for studying the oxidation of polycyclic aromatic hydrocarbons by P450 enzymes.  相似文献   

16.
Cytochrome P450foxy (P450foxy, CYP505) is a fused protein of cytochrome P450 (P450) and its reductase isolated from the fungus Fusarium oxysporum, which catalyzes the subterminal (omega-1 approximately omega-3) hydroxylation of fatty acids. Here, we produced, purified and characterized a fused recombinant protein (rP450foxy) using the Escherichia coli expression system. Purified rP450foxy was catalytically and spectrally indistinguishable from the native protein, but most of the rP450foxy was recovered in the soluble fraction of E. coli cells unlike the membrane-bound native protein. The results are consistent with our notion that the native protein is targeted to the membrane by a post-translational modification mechanism. We also discovered that P450foxy could use shorter saturated fatty acid chains (C9 and C10) as a substrate. The regiospecificity (omega-1 approximately omega-3) of hydroxylation due to the enzymatic reaction for the short substrates (decanoate, C10; undecanoate, C11) was the same as that for longer substrates. Steady state kinetic studies showed that the kcat values for all substrates tested (C9-C16) were of the same magnitude (1200-1800 min-1), whereas the catalytic efficiency (kcat/Km) was higher for longer fatty acids. Substrate inhibition was observed with fatty acid substrates longer than C13, and the degree of inhibition increased with increasing chain length. This substrate inhibition was not apparent with P450BM3, a bacterial counterpart of P450foxy, which was the first obvious difference in their catalytic properties to be identified. Kinetic data were consistent with the inhibition due to binding of the second substrate. We discuss the inhibition mechanism based on differences between P450foxy and P450BM3 in key amino acid residues for substrate binding.  相似文献   

17.
The alcohol-inducible cytochrome P450 2E1 is a major human hepatic P450 which metabolizes a broad array of endogenous and exogenous compounds, including ethanol, low-molecular weight toxins, and fatty acids. Several substrates are known to stabilize this P450 and inhibit its cellular degradation. Furthermore, ethanol is a known modulator of P450 2E1 substrate metabolism. We examined the CO binding kinetics of P450 2E1 after laser flash photolysis of the heme-CO bond, to probe the effects of ethanol and other substrates on protein conformation and dynamics. Ethanol had an effect on the two kinetic parameters that describe CO binding: it decreased the rate of CO binding, suggesting a decrease in the protein's conformational flexibility, and increased the photosensitivity, which indicates a local effect in the active site region such as strengthening of the heme-CO bond. Other substrates decreased the CO binding rate to varying degrees. Of particular interest is the effect of arachidonic acid, which abolished photodissociation in the absence of ethanol but had no effect in the presence of ethanol. These results are consistent with a model of P450 2E1 whereby arachidonic acid binds along a long hydrophobic binding pocket and blocks exit of CO from the heme region.  相似文献   

18.
To elucidate molecular mechanisms for the enhanced oxygenation activity in the three mutants of cytochrome P450cam screened by 'laboratory evolution' [Nature 399 (1999) 670], we purified the mutants and characterized their functional and structural properties. The electronic absorption and resonance Raman spectra revealed that the structures of heme binding site of all purified mutants were quite similar to that of the wild-type enzyme, although the fraction of the inactivated form, called "P420," was increased. In the reaction with H(2)O(2), only trace amounts of the naphthalene hydroxylation product were detected by gas chromatography. We, therefore, conclude that the three mutants do not exhibit significant changes in the structural and functional properties from those of wild-type P450cam except for the stability of the axial ligand in the reduced form. The enhanced fluorescence in the whole-cell assay would reflect enhancement in the oxygenation activity below the detectable limit of the gas chromatography and/or contributions of other reactions catalyzed by the heme iron.  相似文献   

19.
A conserved glutamate covalently attaches the heme to the protein backbone of eukaryotic CYP4 P450 enzymes. In the related Bacillus megaterium P450 BM3, the corresponding residue is Ala264. The A264E mutant was generated and characterized by kinetic and spectroscopic methods. A264E has an altered absorption spectrum compared with the wild-type enzyme (Soret maximum at approximately 420.5 nm). Fatty acid substrates produced an inhibitor-like spectral change, with the Soret band shifting to 426 nm. Optical titrations with long-chain fatty acids indicated higher affinity for A264E over the wild-type enzyme. The heme iron midpoint reduction potential in substrate-free A264E is more positive than that in wild-type P450 BM3 and was not changed upon substrate binding. EPR, resonance Raman, and magnetic CD spectroscopies indicated that A264E remains in the low-spin state upon substrate binding, unlike wild-type P450 BM3. EPR spectroscopy showed two major species in substrate-free A264E. The first has normal Cys-aqua iron ligation. The second resembles formate-ligated P450cam. Saturation with fatty acid increased the population of the latter species, suggesting that substrate forces on the glutamate to promote a Cys-Glu ligand set, present in lower amounts in the substrate-free enzyme. A novel charge-transfer transition in the near-infrared magnetic CD spectrum provides a spectroscopic signature characteristic of the new A264E heme iron ligation state. A264E retains oxygenase activity, despite glutamate coordination of the iron, indicating that structural rearrangements occur following heme iron reduction to allow dioxygen binding. Glutamate coordination of the heme iron is confirmed by structural studies of the A264E mutant (Joyce, M. G., Girvan, H. M., Munro, A. W., and Leys, D. (2004) J. Biol. Chem. 279, 23287-23293).  相似文献   

20.
Summary Microsomal and soluble fractions of Pleurotus pulmonarius exhibited a reduced carbon monoxide difference spectrum with P450 maxima at 448nm and 450–452nm respectively. Substrate induced Type I spectra were observed on addition of benzo(a)pyrene to both fractions. Benzo(a)pyrene hydroxylation was measured using the aryl hydrocarbon hydroxylase assay and was observed to be P450 dependent as indicated by carbon monoxide inhibition together with the substrate binding characteristics. The activity of the fractions were observed to give Km of 200mM and 660mM and Vmax of 1.25 nmol/min/nmol P450 and 0.57 nmol/min/nmol P450 for the microsomal and cytosolic fractions respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号