首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A water-soluble aldose sugar dehydrogenase (Asd) has been purified for the first time from Escherichia coli. The enzyme is able to act upon a broad range of aldose sugars, encompassing hexoses, pentoses, disaccharides, and trisaccharides, and is able to oxidize glucose to gluconolactone with subsequent hydrolysis to gluconic acid. The enzyme shows the ability to bind pyrroloquinoline quinone (PQQ) in the presence of Ca2+ in a manner that is proportional to its catalytic activity. The x-ray structure has been determined in the apo-form and as the PQQ-bound active holoenzyme. The beta-propeller fold of this protein is conserved between E. coli Asd and Acinetobacter calcoaceticus soluble glucose dehydrogenase (sGdh), with major structural differences lying in loop and surface-exposed regions. Many of the residues involved in binding the cofactor are conserved between the two enzymes, but significant differences exist in residues likely to contact substrates. PQQ is bound in a large cleft in the protein surface and is uniquely solvent-accessible compared with other PQQ enzymes. The exposed and charged nature of the active site and the activity profile of this enzyme indicate possible factors that underlie a low affinity for glucose but generic broad substrate specificity for aldose sugars. These structural and catalytic properties of the enzymes have led us to propose that E. coli Asd provides a prototype structure for a new subgroup of PQQ-dependent soluble dehydrogenases that is distinct from the A. calcoaceticus sGdh subgroup.  相似文献   

2.
Iyidogan P  Lutz S 《Biochemistry》2008,47(16):4711-4720
Human deoxycytidine kinase (dCK) is responsible for the phosphorylation of a number of clinically important nucleoside analogue prodrugs in addition to its natural substrates, 2'-deoxycytidine, 2'-deoxyguanosine, and 2'-deoxyadenosine. To improve the low catalytic activity and tailor the substrate specificity of dCK, we have constructed libraries of mutant enzymes and tested them for thymidine kinase (tk) activity. Random mutagenesis was employed to probe for amino acid positions with an impact on substrate specificity throughout the entire enzyme structure, identifying positions Arg104 and Asp133 in the active site as key residues for substrate specificity. Kinetic analysis indicates that Arg104Gln/Asp133Gly creates a "generalist" kinase with broader specificity and elevated turnover for natural and prodrug substrates. In contrast, the substitutions of Arg104Met/Asp133Thr, obtained via site-saturation mutagenesis, yielded a mutant with reversed substrate specificity, elevating the specific constant for thymidine phosphorylation by over 1000-fold while eliminating activity for dC, dA, and dG under physiological conditions. The results illuminate the key contributions of these two amino acid positions to enzyme function by demonstrating their ability to moderate substrate specificity.  相似文献   

3.
Sequence homology analysis reveals that arginine-95 is fully conserved in 29 creatine kinases sequenced to date, but fully conserved as a tyrosine residue in 16 arginine kinases. Site-directed mutants of rabbit muscle creatine kinase (rmCK) were prepared in which R95 was replaced by a tyrosine (R95Y), alanine (R95A), or lysine (R95K). Kinetic analysis of phosphocreatine formation for each purified mutant showed that recombinant native rmCK and all R95 mutants follow a random-order, rapid-equilibrium mechanism. However, we observed no evidence for synergism of substrate binding by the recombinant native enzyme, as reported previously [Maggio et al., (1977) J. Biol. Chem. 252, 1202-1207] for creatine kinase isolated directly from rabbit muscle. The catalytic efficiencies of R95Y and R95A are reduced approximately 3000- and 2000-fold, respectively, compared to native enzyme, but that of R95K is reduced only 30-fold. The major contribution to the reduction of the catalytic efficiency of R95K is a 5-fold reduction in the affinity for creatine. This suggests that while a basic residue is required at position 95 for optimal activity, R95 is not absolutely essential for binding or catalysis in CK. R95Y has a significantly lower affinity for creatine than the native enzyme, but it also displays a somewhat lower affinity for MgATP and 100-fold reduction in k(cat). Interestingly, R95A appears to bind either creatine or MgATP first with affinities similar to those for the native enzyme, but it has a 10-fold lower affinity for the second substrate, suggesting that replacement of R95 by an alanine disrupts the active site organization and reduces the efficiency of formation of the catalytically competent ternary complex.  相似文献   

4.
5.
The creatine kinase/phosphocreatine system plays a key role in cell energy buffering and transport, particularly in cells with high or fluctuating energy requirements, like neurons, i.e. it participates in the energetic metabolism of the brain. Creatine depletion causes several nervous system diseases, alleviated by phosphagen supplementation. Often, the supplementation contains both creatine and creatine ethyl ester, known to improve the effect of creatine through an unknown mechanism. In this work we showed that purified creatine kinase is able to phosphorilate the creatine ethyl ester. The K(m) and V(max) values, as well as temperature and pH optima were determined. Conversion of the creatine ethyl ester into its phosphorylated derivative, sheds light on the role of the creatine ethyl ester as an energy source in supplementation for selected individuals.  相似文献   

6.
The KsgA methyltransferase is universally conserved and plays a key role in regulating ribosome biogenesis. KsgA has a complex reaction mechanism, transferring a total of four methyl groups onto two separate adenosine residues, A1518 and A1519, in the small subunit rRNA. This means that the active site pocket must accept both adenosine and N(6)-methyladenosine as substrates to catalyze formation of the final product N(6),N(6)-dimethyladenosine. KsgA is related to DNA adenosine methyltransferases, which transfer only a single methyl group to their target adenosine residue. We demonstrate that part of the discrimination between mono- and dimethyltransferase activity lies in a single residue in the active site, L114; this residue is part of a conserved motif, known as motif IV, which is common to a large group of S-adenosyl-L-methionine-dependent methyltransferases. Mutation of the leucine to a proline mimics the sequence found in DNA methyltransferases. The L114P mutant of KsgA shows diminished overall activity, and its ability to methylate the N(6)-methyladenosine intermediate to produce N(6),N(6)-dimethyladenosine is impaired; this is in contrast to a second active site mutation, N113A, which diminishes activity to a level comparable to L114P without affecting the methylation of N(6)-methyladenosine. We discuss the implications of this work for understanding the mechanism of KsgA's multiple catalytic steps.  相似文献   

7.
Wang PF  Flynn AJ  Naor MM  Jensen JH  Cui G  Merz KM  Kenyon GL  McLeish MJ 《Biochemistry》2006,45(38):11464-11472
All known guanidino kinases contain a conserved cysteine residue that interacts with the non-nucleophilic eta1-nitrogen of the guanidino substrate. Site-directed mutagenesis studies have shown that this cysteine is important, but not essential for activity. In human muscle creatine kinase (HMCK) this residue, Cys283, forms part of a conserved cysteine-proline-serine (CPS) motif and has a pKa about 3 pH units below that of a regular cysteine residue. Here we employ a computational approach to predict the contribution of residues in this motif to the unusually low cysteine pKa. We calculate that hydrogen bonds to the hydroxyl and to the backbone amide of Ser285 would both contribute approximately 1 pH unit, while the presence of Pro284 in the motif lowers the pKa of Cys283 by a further 1.2 pH units. Using UV difference spectroscopy the pKa of the active site cysteine in WT HMCK and in the P284A, S285A, and C283S/S285C mutants was determined experimentally. The pKa values, although consistently about 0.5 pH unit lower, were in broad agreement with those predicted. The effect of each of these mutations on the pH-rate profile was also examined. The results show conclusively that, contrary to a previous report (Wang et al. (2001) Biochemistry 40, 11698-11705), Cys283 is not responsible for the pKa of 5.4 observed in the WT V/K(creatine) pH profile. Finally we use molecular dynamics simulations to demonstrate that, in order to maintain the linear alignment necessary for associative inline transfer of a phosphoryl group, Cys283 needs to be ionized.  相似文献   

8.
Uda K  Iwai A  Suzuki T 《FEBS letters》2005,579(30):6756-6762
Hypotaurocyamine kinase (HTK) is a member of the highly conserved family of phosphagen kinases that includes creatine kinase (CK) and arginine kinase (AK). HTK is found only in sipunculid worms, and it shows activities for both the substrates hypotaurocyamine and taurocyamine. Determining how HTK evolved in sipunculids is particularly insightful because all sipunculid-allied animals have AK and only some sipunculids have HTK. We determined the cDNA sequence of HTK from the sipunculid worm Siphonosoma cumanense for the first time, cloned it in pMAL plasmid and expressed it in E. coli as a fusion protein with maltose-binding protein. The cDNAderived amino acid sequence of Siphonosoma HTK showed high amino acid identity with molluscan AKs. Nevertheless, the recombinant enzyme of Siphonosoma HTK showed no activity for the substrate arginine, but showed activity for taurocyamine. Comparison of the amino acid sequences of HTK and AK indicated that the amino acid residues necessary for the binding of the substrate arginine in AK have been completely lost in Siphonosoma HTK sequence. The phylogenetic analysis indicated that the HTK amino acid sequence was placed just outside the molluscan AK cluster, which formed a sister group with the arthropod and nematode AKs. These results suggest that Siphonosoma HTK evolved from a gene for molluscan AK. Moreover, to confirm this assertion, we determined by PCR that the gene for Siphonosoma HTK has a 5-exon/4-intron structure, which is homologous with that of the molluscan AK genes. Further, the positions of splice junctions were conserved exactly between the two genes. Thus, we conclude that Siphonosoma HTK has evolved from a primordial gene for molluscan AK.  相似文献   

9.
Resonance Raman spectra were obtained for the acylenzyme 4-dimethylamino-3-nitro(alpha-benzamido)cinnamoyl-papain prepared using the chromophoric substrate methyl 4-dimethylamino-3-nitro(alpha-benzamido)cinnamate. These spectra contained vibrational spectral data of the acyl residue while covalently attached to the active site and could be used to follow directly acylation and deacylation kinetics. Spectra were obtained at pH values ranging from those where the acyl-enzyme is relatively stable (pH 3.0, tau 1/2 congruent to 800 s) to those where it is relatively unstable (pH 9.2, tau 1/2 congruent to 223 s). Throughout this range acyl-enzyme spectra differed completely from that of the free substrate or the product (4-dimethylamino-3-nitro(alpha-benzamido)cinnamic acid) indicating that a structural change occurred on combination with the active site. The spectra are consistent with rearrangement of the alpha-benzamido group in the bound substrate, -NH--C(==O)Ph becoming --N==C(--OX)Ph, where the bonding to oxygen is unknown. Superimposed on these large differences, small changes in acyl-enzyme spectra also occurred as pH was raised to decrease the half-life. All of the above spectral perturbations are consistent with a structural change in the acyl-enzyme which precedes the rate-determining step in deacylation. Thus, deacylation proceeds from an acyl residue structure differing from that of the substrate in solution. Upon acid denaturation the spectrum characteristic of the intermediate reverts to one closely resembling the substrate, demonstrating that a functioning active site is necessary to produce the observed differences. Spectra in D2O of native acyl-enzyme were identical with those in H2O, indicating that the observed differences in rate constant were not due to solvent-induced structural changes. Activated papain purified by crystallization or by affinity chromatography formed the acyl-enzyme. However, the kinetics of formation and deacylation differed between these materials, as did the spectral properties. Small differences in active-site structure are considered to be responsible for this effect, and it is suggested that such spectral perturbations may be useful in directly relating small differences in structure of the substrate in the active site with corresponding differences in kinetics.  相似文献   

10.
The creatine kinase/phosphocreatine system plays a key role in cell energy buffering and transport, particularly in cells with high or fluctuating energy requirements, like neurons, i.e. it participates in the energetic metabolism of the brain. Creatine depletion causes several nervous system diseases, alleviated by phosphagen supplementation. Often, the supplementation contains both creatine and creatine ethyl ester, known to improve the effect of creatine through an unknown mechanism. In this work we showed that purified creatine kinase is able to phosphorilate the creatine ethyl ester. The K m and V max values, as well as temperature and pH optima were determined. Conversion of the creatine ethyl ester into its phosphorylated derivative, sheds light on the role of the creatine ethyl ester as an energy source in supplementation for selected individuals.  相似文献   

11.
12.
Creatine kinase (CK) catalyzes the reversible phosphorylation of the guanidine substrate, creatine, by MgATP. Although several X-ray crystal structures of various isoforms of creatine kinase have been published, the detailed catalytic mechanism remains unresolved. A crystal structure of the CK homologue, arginine kinase (AK), complexed with the transition-state analogue (arginine-nitrate-ADP), has revealed two carboxylate amino acid residues (Glu225 and Glu314) within 2.8 A of the proposed transphosphorylation site. These two residues are the putative catalytic groups that may promote nucleophilic attack by the guanidine amino group on the gamma-phosphate of ATP. From primary sequence alignments of arginine kinases and creatine kinases, we have identified two homologous creatine kinase acidic amino acid residues (Glu232 and Asp326), and these were targeted for examination of their potential roles in the CK mechanism. Using site-directed mutagenesis, we have made several substitutions at these two positions. The results indicate that of these two residues the Glu232 is the likely catalytic residue while Asp326 likely performs a role in properly aligning substrates for catalysis.  相似文献   

13.
Six fully conserved arginine residues (R129, R131, R235, R291, R319, and R340) closely grouped in the nucleotide binding site of rabbit muscle creatine kinase (rmCK) were mutated; four to alanine and all six to lysine. Kinetic analyses in the direction of phosphocreatine formation showed that all four alanine mutants led to substantial losses of activity with three (R129A, R131A, and R235A) having no detectable activity. All six lysine mutants retained variable degrees of reduced enzymatic activity. Static quenching of intrinsic tryptophan fluorescence was used to measure the binding constants for MgADP and MgATP. Nucleotide binding was at most only modestly affected by mutation of the arginine residues. Thus, the cluster of arginines seem to be primarily responsible for transition state stabilization which is further supported by the observation that none of the inactive mutants demonstrated the ability to form a transition analogue complex of MgADP.nitrate.creatine as determined by fluorescence quenching assays. As a whole, the results suggest that the most important role these residues play is to properly align the substrates for stabilization of the phosphoryl transfer reaction.  相似文献   

14.
In our study, we showed that at a relatively low concentration, H2O2 can irreversibly inactivate the human brain type of creatine kinase (HBCK) and that HBCK is inactivated in an H2O2 concentration-dependent manner. HBCK is completely inactivated when incubated with 2 mM H2O2 for 1 h (pH 8.0, 25 °C). Inactivation of HBCK is a two-stage process with a fast stage (k1 = 0.050 ± 0.002 min−1) and a slow (k2 = 0.022 ± 0.003 min−1) stage. HBCK inactivation by H2O2 was affected by pH and therefore we determined the pH profile of HBCK inactivation by H2O2. H2O2-induced inactivation could not be recovered by reducing agents such as dl-dithiothreitol, N-acetyl-l-cysteine, and l-glutathione reduced. When HBCK was treated with DTNB, an enzyme substrate that reacts specifically with active site cysteines, the enzyme became resistant to H2O2. HBCK binding to Mg2+ATP and creatine can also prevent H2O2 inactivation. Intrinsic and 1-anilinonaphthalene-8-sulfonate-binding fluorescence data showed no tertiary structure changes after H2O2 treatment. The thiol group content of H2O2-treated HBCK was reduced by 13% (approximately 1 thiol group per HBCK dimer, theoretically). For further insight, we performed a simulation of HBCK and H2O2 docking that suggested the CYS283 residue could interact with H2O2. Considering these results and the asymmetrical structure of HBCK, we propose that H2O2 specifically targets the active site cysteine of HBCK to inactivate HBCK, but that substrate-bound HBCK is resistant to H2O2. Our findings suggest the existence of a previously unknown negative form of regulation of HBCK via reactive oxygen species.  相似文献   

15.
The dimeric native state of creatine kinase (CK) was aggregated at conspicuous levels during cysteine modification at the active site with using 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) under a high enzyme concentration. Measuring the ANS-binding fluorescence revealed that the hydrophobic surface of CK was increased by cysteine modification due to the flexible active site, and this resulted in insoluble aggregation, probably via non-specific hydrophobic interactions. To determine whether the aggregates can be refolded, 3M guanidine hydrochloride (GdnHCl) was used to dissolve the aggregates into the denatured form. Refolding of the solubilized enzyme sample was then conducted, accompanied by deprivation of DTNB from the CK in the presence of DTT. As a result, CK was reactivated by up to 40% with partial recovery of the tertiary (78%) and secondary structures (77%). To further elucidate its kinetic refolding pathway, both time interval measurements and a continuous substrate reaction were performed. The results showed that the refolding behavior was similar to the manner of normal CK folding with respect to the following two-phase kinetic courses. Additionally, the rate constants for the dimerization of the unfolded CK were dependent on the enzyme concentration and this was irrespective to the DTT concentrations, suggesting the rate-limiting steps of CK reassociation. The present study will expand our insight into the flexibility of the enzyme active site, which might act as a risk factor for inducing the unfavorable aggregation and partial refolding pathway of CK, as well as inducing an intermediate-like state recovery from aggregation.  相似文献   

16.
Wang PF  McLeish MJ  Kneen MM  Lee G  Kenyon GL 《Biochemistry》2001,40(39):11698-11705
All phosphagen kinases contain a conserved cysteine residue which has been shown by crystallographic studies, on both creatine kinase and arginine kinase, to be located in the active site. There are conflicting reports as to whether this cysteine is essential for catalysis. In this study we have used site-directed mutagenesis to replace Cys282 of human muscle creatine kinase with serine and methionine. In addition, we have replaced Cys282, conserved across all creatine kinases, with alanine. No activity was found with the C282M mutant. The C282S mutant showed significant, albeit greatly reduced, activity in both the forward (creatine phosphorylation) and reverse (MgADP phosphorylation) reactions. The K(m) for creatine was increased approximately 10-fold, but the K(m) for phosphocreatine was relatively unaffected. The V and V/K pH-profiles for the wild-type enzyme were similar to those reported for rabbit muscle creatine kinase, the most widely studied creatine kinase isozyme. However, the V/K(creatine) profile for the C282S mutant was missing a pK of 5.4. This suggests that Cys282 exists as the thiolate anion, and is necessary for the optimal binding of creatine. The low pK of Cys282 was also determined spectrophotometrically and found to be 5.6 +/- 0.1. The S284A mutant was found to have reduced catalytic activity, as well as a 15-fold increase in K(m) for creatine. The pK(a) of Cys282 in this mutant was found to be 6.7 +/- 0.1, indicating that H-bonding to Ser284 is an important, but not the sole, factor contributing to the unusually low pK(a) of Cys282.  相似文献   

17.
The protease domains of the evolutionarily related alpha and beta subunits of meprin metalloproteases are approximately 55% identical at the amino acid level; however, their substrate and peptide bond specificities differ markedly. The meprin beta subunit favors acidic residues proximal to the scissile bond, while the alpha subunit prefers small or aromatic amino acids flanking the scissile bond. Thus gastrin, a peptide that contains a string of five Glu residues, is an excellent substrate for meprin beta, while it is not hydrolyzed by meprin alpha. Work herein aimed to identify critical amino acids in the meprin active sites that determine the substrate specificity differences. Sequence alignments and homology models, based on the crystal structure of the crayfish astacin, showed electrostatic differences within the meprin active sites. Site-directed mutagenesis of active site residues demonstrated that replacement of a hydrophobic residue by a basic amino acid enabled the meprin alpha protease to cleave gastrin. The meprin alphaY199K mutant was most effective; the corresponding mutation of meprin betaK185Y resulted in decreased activity toward gastrin. Peptide cleavage site determinations and kinetic analyses using a variety of peptides extended evidence that meprin alphaTyr-199/betaLys-185 are substrate specificity determinants in meprin active sites. These studies shed light on the molecular basis for the substrate specificity differences of astacin metalloproteinases.  相似文献   

18.
Creatine kinase catalyzes the reversible transphosphorylation of creatine by MgATP. From the sequence homology and the molecular structure of creatine kinase isoenzymes, we have identified several highly conserved residues with a potential function in the active site: a negatively charged cluster (Glu(226), Glu(227), Asp(228)) and a serine (Ser(280)). Mutant proteins E226Q, E226L, E227Q, E227L, D228N, and S280A/S280D of human sarcomeric mitochondrial creatine kinase were generated by in vitro mutagenesis, expressed in Escherichia coli, and purified to homogeneity. Their overall structural integrity was confirmed by CD spectroscopy and gel filtration chromatography. The enzymatic activity of all proteins mutated in the negatively charged cluster was extremely low (0.002-0.4% of wild type) and showed apparent Michaelis constants (K(m)) similar to wild type, suggesting that most of the residual activity may be attributed to wild-type revertants. Mutations of Ser(280) led to higher residual activities and altered K(m) values; S280A showed an increase of K(m) for phosphocreatine (65-fold), creatine (6-fold), and ATP (6-fold); S280D showed a decrease of K(m) for creatine (6-fold). These results, together with the transition state structure of the homologous arginine kinase (Zhou, G., Somasundaram, T., Blanc, E., Parthasarathy G., Ellington, W. R., and Chapman, M. S. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 8449-8454), strongly suggest a critical role of Glu(226), Glu(227), and Asp(228) in substrate binding and catalysis and point to Glu(227) as a catalytic base.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号