首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 The Ph1 (pairing homoeologous) gene is the major factor that determines the diploid-like chromosome behavior of polyploid wheat. This gene, which is located on the long arm of chromosome 5B (5BL), suppresses homoeologous pairing at meiosis while allowing exclusive homologous pairing. In an effort to tag the specific chromosomal region where this gene is located, we have previously microdissected chromosome arm 5BL from bread wheat and produced a plasmid library by random PCR amplification and cloning. In this work we isolated from this library a 5BL-specific probe, WPG90, and mapped it within the interstitial deleted chromosome fragments carrying Ph1 in common and durum wheat. A PCR assay of Ph1 based on WPG90 was developed that allows an easy identification of homozygous genotypes deficient for this gene. Received: 19 June 1996 / Accepted: 18 October 1996  相似文献   

2.
FISH physical mapping with barley BAC clones   总被引:7,自引:0,他引:7  
Fluorescence in situ hybridization (FISH) is a useful technique for physical mapping of genes, markers, and other single- or low-copy sequences. Since clones containing less than 10 kb of single-copy DNA do not reliably produce detectable signals with current FISH techniques in plants, a bacterial artificial chromosome (BAC) partial library of barley was constructed and a FISH protocol for detecting unique sequences in barley BAC clones was developed. The library has a 95 kb average barley insert, representing about 20% of a barley genome. Two BAC clones containing hordein gene sequences were identified and partially characterized. FISH using these two BAC clones as probes showed specific hybridization signals near the end of the short arm of one pair of chromosomes. Restriction digests of these two BAC clones were compared with restriction patterns of genomic DNA; all fragments contained in the BAC clones corresponded to bands present in the genomic DNA, and the two BAC clones were not identical. The barley inserts contained in these two BAC clones were faithful copies of the genomic DNA. FISH with four BAC clones with inserts varying from 20 to 150 kb, showed distinct signals on paired chromatids. Physical mapping of single- or low-copy sequences in BAC clones by FISH will help to correlate the genetic and physical maps. FISH with BAC clones also provide an additional approach for saturating regions of interest with markers and for constructing contigs spanning those regions.  相似文献   

3.
Zhang P  Li W  Fellers J  Friebe B  Gill BS 《Chromosoma》2004,112(6):288-299
Fluorescence in situ hybridization (FISH) has been widely used in the physical mapping of genes and chromosome landmarks in plants and animals. Bacterial artificial chromosomes (BACs) contain large inserts making them amenable for FISH mapping. We used BAC-FISH to study genome organization and evolution in hexaploid wheat and its relatives. We selected 56 restriction fragment length polymorphism (RFLP) locus-specific BAC clones from libraries of Aegilops tauschii (the D-genome donor of hexaploid wheat) and A-genome diploid Triticum monococcum. Different types of repetitive sequences were identified using BAC-FISH. Two BAC clones gave FISH patterns similar to the repetitive DNA family pSc119; one BAC clone gave a FISH pattern similar to the repetitive DNA family pAs1. In addition, we identified several novel classes of repetitive sequences: one BAC clone hybridized to the centromeric regions of wheat and other cereal species, except rice; one BAC clone hybridized to all subtelomeric chromosome regions in wheat, rye, barley and oat; one BAC clone contained a localized tandem repeat and hybridized to five D-genome chromosome pairs in wheat; and four BAC clones hybridized only to a proximal region in the long arm of chromosome 4A of hexaploid wheat. These repeats are valuable markers for defined chromosome regions and can also be used for chromosome identification. Sequencing results revealed that all these repeats are transposable elements (TEs), indicating the important role of TEs, especially retrotransposons, in genome evolution of wheat.Communicated by P.B. Moens  相似文献   

4.
A low-copy, non-coding chromosome-specific DNA sequence, isolated from common wheat, was physically mapped to the distal 19% region of the long arm of chromosome 3B (3BL) of common wheat. This sequence, designated WPG118, was then characterized by Southern hybridization, PCR amplification and sequence comparison using a large collection of polyploid wheats and diploid Triticum and Aegilops species. The data show that the sequence exists in all polyploid wheats containing the B genome and absent from those containing the G genome. At the diploid level, it exists only in Ae. searsii, a diploid species of section Sitopsis, and not in other diploids including Ae. speltoides, the closest extant relative to the donor of the B genome of polyploid wheat. This finding may support the hypothesis that the B-genome of polyploid wheat is of a polyphyletic origin, i.e. it is a recombined genome derived from two or more diploid Aegilops species.  相似文献   

5.
Chromosome-specific DNA markers provide a powerful approach for studying complex problems in human genetics and offer an opportunity to begin understanding the human genome at the molecular level. The approach described here for isolating and characterizing DNA markers specific to human chromosome 15 involved construction of a partial chromosome-15 phage library from a human/Chinese hamster cell hybrid with a single human chromosome 15. Restriction fragments that identified unique- and low-copy loci on chromosome 15 were isolated from the phage inserts. These fragments were regionally mapped to the chromosome by three methods, including Southern analysis with a mapping panel of cell hybrids, in situ hybridization to metaphase chromosomes, and quantitative hybridization or dosage analysis. A total of 42 restriction fragments of unique- and low-copy sequences were identified in 14 phage. The majority of the fragments that have been characterized so far exhibited the hybridization pattern of a unique locus on chromosome 15. Regional mapping assigned these markers to specific locations on chromosome 15, including q24-25, q21-23, q13-14, q11-12, and q11. RFLP analysis revealed that several markers displayed polymorphisms at frequencies useful for genetic linkage analysis. The markers mapped to the proximal long arm of chromosome 15 are particularly valuable for the molecular analysis of Prader-Willi syndrome, which maps to this region. Polymorphic markers in this region may also be useful for definitively establishing linkage with one form of dyslexia. DNA probes in this chromosomal region should facilitate molecular structural analysis for elucidation of the nature of instability in this region, which is frequently associated with chromosomal aberrations.  相似文献   

6.
The genetic map of chromosome 5B has been constructed by using microsatellite (SSR) analysis of 381 plants from the F2 population produced by cross of the Chinese Spring (CS) and Renan cultivars. Initially, 180 SSR markers for the common wheat 5B chromosome have been used for analysis of these cultivars. The 32 markers able to detect polymorphism between these cultivars have been located on the genetic map of chromosome 5B. Cytogenetic mapping has involved a set of CS 5B chromosome deletion lines. Totally, 51 SSR markers have been located in ten regions (deletion bins) of this chromosome by SSR analysis of these deletion lines. Five genes—TaCBFIIIc-B10, Vrn-B1, Chi-B1, Skr, and Ph1—have been integrated into the cytogenetic map of chromosome 5B using the markers either specific of or tightly linked to the genes in question. Comparison of the genetic and cytogenetic maps suggests that recombination is suppressed in the pericentromeric region of chromosome 5B, especially in the short arm segment. The 18 markers localized to deletion bins 5BL16-0.79-1.00 and 5BL18-0.66-0.79 have been used to analyze common wheat introgression lines L842, L5366-180, L73/00i, and L21-4, carrying fragments of alien genomes in the terminal region of 5B long arm. L5366-180 and L842 lines carry a fragment of the Triticum timopheevii 5GL chromosome, while L73/00i and L21-4 lines, a fragment of the Aegilops speltoides 5SL chromosome. As has been shown, the translocated fragments in these four lines are of different lengths, allowing bin 5BL18-0.66-0.79 to be divided into three shorter regions. The utility of wheat introgression lines carrying alien translocations for increasing the resolution of cytogenetic mapping is discussed.  相似文献   

7.
Summary A library of wheat genomic DNA HpaII tiny fragments (HTF), sized below 500 bp, has been constructed. Of the clones in the library 80% belong to the single/low-copy category, while 12% of the clones are nuclear repetitive sequences and 8% originate from the chloroplast and mitochondrial DNA. This result shows a substantial enrichment in the single/low-copy sequences of the wheat genome, which contains at least 80% repetitive sequences. Twenty-nine random single/lowcopy clones were analysed further for wheat chromosome location, cross-hybridisation to barley DNA and their association with rare-cutting, C-methylation-sensitive restriction sites. The results show that the HTF clones are associated more frequently than expected with NotI, MluI, NruI and PstI sites in wheat and barley genomic DNA. The 12% repetitive fraction of the clones contain both moderately and highly repetitive sequences, but no tandemly repeated sequences. The level of enrichment for single/low-copy sequences indicates that libraries of this type are a valuable source of probes for RFLP mapping. In addition, the close association of the HTF clones with rare-cutting restriction enzyme sites ensures that HTF clones will have a useful role in the construction of long-range physical maps in wheat.  相似文献   

8.
Common wheat (Triticum aestivum L., 2n = 6x = 42) is a polyploid species possessing one of the largest genomes among the cultivated crops (1C is approximately 17 000 Mb). The presence of three homoeologous genomes (A, B and D), and the prevalence of repetitive DNA make sequencing the wheat genome a daunting task. We have developed a novel 'chromosome arm-based' strategy for wheat genome sequencing to simplify this task; this relies on sub-genomic libraries of large DNA inserts. In this paper, we used a di-telosomic line of wheat to isolate six million copies of the short arm of chromosome 1B (1BS) by flow sorting. Chromosomal DNA was partially digested with HindIII and used to construct an arm-specific BAC library. The library consists of 65 280 clones with an average insert size of 82 kb. Almost half of the library (45%) has inserts larger than 100 kb, while 18% of the inserts range in size between 75 and 100 kb, and 37% are shorter than 75 kb. We estimated the chromosome arm coverage to be 14.5-fold, giving a 99.9% probability of identifying a clone corresponding to any sequence on the short arm of 1B. Each chromosome arm in wheat can be flow sorted from an appropriate cytogenetic stock, and we envisage that the availability of chromosome arm-specific BAC resources in wheat will greatly facilitate the development of ready-to-sequence physical maps and map-based gene cloning.  相似文献   

9.
A targeted mapping strategy using representational difference analysis (RDA) was employed to isolate new restriction fragment length polymorphism probes for the long arm of chromosome 6 in rye (6RL), which carries a gene for resistance to Hessian fly larvae. Fragments from the 6RL arm were specifically isolated using a 'Chinese Spring' (CS) wheat - rye ditelosomic addition line (CSDT6RL) as tester, and CS and (or) CS4R as the driver for the genomic subtraction. Three RDA experiments were performed using BamHI amplicons, two of which were successful in producing low-copy clones. All low-copy clones were confirmed to have originated from 6RL, indicating substantial enrichment for target sequences. Two mapping populations, both of which are derived from a cross between two similar wheat-rye translocation lines, were used to map five RDA probes as well as five wheat probes. One of the populations was prescreened for recombinants by C-banding analysis. Fifteen loci, including seven new RDA markers, were placed on a map of the distal half of 6RL. The Hessian fly resistance gene was localized by mapping and C-banding analysis to approximately the terminal 1% of the arm. The utility of RDA as a method of targeted mapping in cereals and prospects for map-based cloning of the resistance gene are discussed.  相似文献   

10.
The gene Lr46 has provided slow-rusting resistance to leaf rust caused by Puccinia triticina in wheat (Triticum aestivum), which has remained durable for almost 30 years. Using linked markers and wheat deletion stocks, we located Lr46 in the deletion bin 1BL (0.84–0.89) comprising 5% of the 1BL arm. The distal part of chromosome 1BL of wheat is syntenic to chromosome 5L of rice. Wheat expressed sequence tags (ESTs) mapping in the terminal 15% of chromosome 1BL with significant homology to sequences from the terminal region of chromosome 5L of rice were chosen for sequence-tagged site (STS) primer design and were mapped physically and genetically. In addition, sequences from two rice bacterial artificial chromosome clones covering the targeted syntenic region were used to identify additional linked wheat ESTs. Fourteen new markers potentially linked to Lr46 were developed; eight were mapped in a segregating population. Markers flanking (2.2 cM proximal and 2.2 cM distal) and cosegregating with Lr46 were identified. The physical location of Lr46 was narrowed to a submicroscopic region between the breakpoints of deletion lines 1BL-13 [fraction length (FL)=0.89–1] and 1BL-10 (FL=0.89–3). We are now developing a high-resolution mapping population for the positional cloning of Lr46.  相似文献   

11.
Development of a chromosomal arm map for wheat based on RFLP markers   总被引:16,自引:0,他引:16  
Summary A chromosomal arm map has been developed for common wheat (Triticum aestivum L. em. Thell.) using aneuploid stocks to locate more than 800 restriction fragments corresponding to 210 low-copy DNA clones from barley cDNA, oat cDNA, and wheat genomic libraries. The number of restriction fragments per chromosome arm correlates moderately well with relative DNA content and length of somatic chromosomes. The chromosomal arm locations of loci detected with 6 different clones support an earlier hypothesis for the occurrence of a two-step translocation (4AL to 5AL, 5AL to 7BS, and 7BS to 4AL) in the ancestral wheat genomes. In addition, 1 clone revealed the presence of a 5AL segment translocated to 4AL. Anomalies in aneuploid stocks were also observed and can be explained by intrahomoeologous recombination and polymorphisms among the stocks. We view the development of this chromosomal arm map as a complement to, rather than as a substitute for, a conventional RFLP linkage map in wheat.Paper No. 802 of the Cornell Plant Breeding Series  相似文献   

12.
Comparative genetic maps among the Triticeae or Gramineae provide the possibility for combining the genetics, mapping information and molecular-marker resources between different species. Dense genetic linkage maps of wheat and barley, which have a common array of molecular markers, along with deletion-based chromosome maps of Triticum aestivum L. will facilitate the construction of an integrated molecular marker-based map for the Triticeae. A set of 21 cDNA and genomic DNA clones, which had previously been used to map barley chromosome 1 (7H), were used to physically map wheat chromosomes 7A, 7B and 7D. A comparative map was constructed to estimate the degree of linkage conservation and synteny of chromosome segments between the group 7 chromosomes of the two species. The results reveal extensive homoeologies between these chromosomes, and the first evidence for an interstitial inversion on the short arm of a barley chromosome compared to the wheat homoeologue has been obtained. In a cytogenetically-based physical map of group 7 chromosomes that contain restriction-fragment-length polymorphic DNA (RFLP) and random amplified polymorphic DNA (RAPD) markers, the marker density in the most distal third of the chromosome arms was two-times higher than in the proximal region. The recombination rate in the distal third of each arm appears to be 8–15 times greater than in the proximal third of each arm where recombination of wheat chromosomes is suppressed.  相似文献   

13.
A new collection of 129 Arabidopsis thaliana RFLP markers has been established based upon DNA fragments cloned in the pUC119 plasmid vector and insert end sequences of P1 clones. Dominant/null alleles affecting low-copy number sequences account for nine of the mapped polymorphisms, suggesting that deletions are not rare in A. thaliana . Recombinant inbred (RI) lines were used for mapping these marker loci. RI line-based mapping allows integration of this set of markers with markers previously reported as well as with any markers mapped in the future using this replenishable mapping resource. These markers are useful for map-based gene isolation and genome physical mapping in A. thaliana as well as studies of chromosome colinearity (synteny) with related species.  相似文献   

14.
Previously, we reported on the development of procedures for chromosome analysis and sorting using flow cytometry (flow cytogenetics) in bread wheat. That study indicated the possibility of sorting large quantities of intact chromosomes, and their suitability for analysis at the molecular level. However, due to the lack of sufficient differences in size between individual chromosomes, only chromosome 3B could be sorted into a high-purity fraction. The present study aimed to identify wheat stocks that could be used to sort other chromosomes. An analysis of 58 varieties and landraces demonstrated a remarkable reproducibility and sensitivity of flow cytometry for the detection of numerical and structural chromosome changes. Changes in flow karyotype, diagnostic for the presence of the 1BL·1RS translocation, have been found and lines from which translocation chromosomes 5BL·7BL and 4AL·4AS-5BL could be sorted have been identified. Furthermore, wheat lines have been identified which can be used for sorting chromosomes 4B, 4D, 5D and 6D. The ability to sort any single arm of the hexaploid wheat karyotype, either in the form of a ditelosome or a isochromosome, has also been demonstrated. Thus, although originally considered recalcitrant, wheat seems to be suitable for the development of flow cytogenetics and the technology can be applied to the physical mapping of DNA sequences, the targeted isolation of molecular makers and the construction of chromosome- and arm-specific DNA libraries. These approaches should facilitate the analysis of the complex genome of hexaploid bread wheat.  相似文献   

15.
Interspecific or intergeneric hybridization, followed by chromosome doubling, can lead to the formation of new allopolyploid species. Recent studies indicate that allopolyploid formation is associated with genetic and epigenetic changes, although little is known about the type of changes that occur, how rapidly they occur, and the type of sequences involved. To address these matters, we have surveyed F1 hybrids between diploid species from the wheat (Aegilops and Triticum) group and their derived allotetraploids by screening a large number of loci using amplified fragment length polymorphism and DNA gel blot analysis and by assaying the extent of cytosine methylation. We found that sequence elimination is one of the major and immediate responses of the wheat genome to wide hybridization or allopolyploidy, that it affects a large fraction of the genome, and that it is reproducible. In one cross between AE: sharonensis x AE: umbellulata, 14% of the loci from AE: sharonensis were eliminated compared with only 0.5% from AE: umbellulata, with most changes occurring in the F1 hybrid. In contrast, crosses between AE: longissima x T. urartu showed that sequence elimination was more frequent after chromosome doubling. Alterations in cytosine methylation occurred in approximately 13% of the loci, either in the F1 hybrid or in the allopolyploid. For eight of nine bands that were isolated, the sequences that underwent elimination corresponded to low-copy DNA, whereas alterations in methylation patterns affected both repetitive DNA sequences, such as retrotransposons, and low-copy DNA in approximately equal proportions.  相似文献   

16.
Two populations of single chromosome recombinant lines were used to map genes controlling flowering time on chromosome 5B of wheat, and one of the populations was also used to map a new frost resistance gene. Genetic maps were developed, mainly using microsatellite markers, and QTL analysis was applied to phenotypic data on the performance of each population collected from growth-room tests of flowering time and frost tolerance. Using a recombinant substitution-line mapping population derived from a cross between the substitution-line 'Chinese Spring' ('Cheyenne' 5B) and 'Chinese Spring' (CS), the gene Vrn-B1, affecting vernalization response, an earliness per se locus, Eps-5BL1, and a gene, Fr-B1, affecting frost resistance, were mapped. Using a 'Hobbit Sib' ('Chinese Spring' 5BL) x 'Hobbit Sib' recombinant substitution line mapping population, an earliness per se locus, Eps-5BL2 was mapped. The Vrn-B1 locus was mapped on the distal portion of the long arm of chromosome 5B, to a region syntenous with the segments of chromosomes 5A and 5D containing Vrn-A1 and Vrn-D1 loci, respectively. The two Eps-5BL loci were mapped close to the centromere with a 16-cM distance from each other, one in agreement with the position of a homoeologous locus previously mapped on chromosome 5H of barley, and suggested by the response of 'Chinese Spring' deletion lines. The Fr-B1 gene was mapped on the long arm of chromosome 5B, 40 cM from the centromeric marker. Previous comparative mapping data with rice chromosome 9 would suggest that this gene could be orthologous to the other Fr genes mapped previously by us on chromosomes 5A or 5D of wheat, although in a more proximal position. This study completes the mapping of these homoeoallelic series of vernalization requirement genes and frost resistance genes on the chromosomes of the homoeologous group 5 in wheat.  相似文献   

17.
Summary Using in situ hybridization techniques, we have been able to identify the translocated chromosomes resulting from whole arm interchanges between homoeologous chromosomes of wheat and rye. This was possible because radioactive probes are available which recognize specific sites of highly repeated sequence DNA in either rye or wheat chromosomes. The translocated chromosomes analysed in detail were found in plants from a breeding programme designed to substitute chromosome 2R of rye into commercial wheat cultivars. The distribution of rye highly repeated DNA sequences showed modified chromosomes in which (a) most of the telomeric heterochromatin of the short arm and (b) all of the telomeric heterochromatin of the long arm, had disappeared. Subsequent analyses of these chromosomes assaying for wheat highly repeated DNA sequences showed that in type (a), the entire short arm of 2R had been replaced by the short arm of wheat chromosome 2B and in (b), the long arm of 2R had been replaced by the long arm of 2B. The use of these probes has also allowed us to show that rye heterochromatin has little effect on the pairing of the translocated wheat arm to its wheat homologue during meiosis. We have also characterized the chromosomes resulting from a 1B-1R translocation event.From these results, we suggest that the observed loss of telomeric heterochromatin from rye chromosomes in wheat is commonly due to wheat-rye chromosome translocations.  相似文献   

18.
Repetitive DNA sequences in the rice genome comprise more than half of the nuclear DNA. The isolation and characterization of these repetitive DNA sequences should lead to a better understanding of rice chromosome structure and genome organization. We report here the characterization and chromosome localization of a chromosome 5-specific repetitive DNA sequence. This repetitive DNA sequence was estimated to have at least 900 copies. DNA sequence analysis of three genomic clones which contain the repeat unit indicated that the DNA sequences have two sub-repeat units of 37 bp and 19 bp, connected by 30-to 90-bp short sequences with high similarity. RFLP mapping and physical mapping by fluorescence in situ hybridization (FISH) indicated that almost all copies of the repetitive DNA sequence are located in the centromeric heterochromatic region of the long arm of chromosome 5. The strategy for cloning such repetitive DNA sequences and their uses in rice genome research are discussed.  相似文献   

19.
A series of 175 lambda phage carrying human inserts isolated from a library that is specific for the short arm of human chromosome 5 (5p) have been regionally mapped on 5p using a deletion mapping panel of 16 human-hamster cell hybrids, each of which contains a chromosome 5 with a different deletion in the short arm. Seventy-five single copy DNA fragments were screened with 12 restriction enzymes for their ability to detect restriction fragment length polymorphisms (RFLPs). Twenty-eight of these DNA fragments, which are located in 13 distinct physical regions of 5p, were found to detect RFLPs. These DNA markers make it possible to construct a linkage map that will span the entire length of 5p and will allow the relationship between genetic and physical distance for this region of the genome to be examined at a high level of resolution.  相似文献   

20.
To improve resolution of physical mapping on Brassica chromosomes, we have chosen the pachytene stage of meiosis where incompletely condensed bivalents are much longer than their counterparts at mitotic metaphase. Mapping with 5S and 45S rDNA sequences demonstrated the advantage of pachytene chromosomes in efficient physical mapping and confirmed the presence of a novel 5S rDNA locus in Brassica oleracea, initially identified by genetic mapping using restriction fragment length polymorphism (RFLP). Fluorescence in situ hybridization (FISH) analysis visualized the presence of the third 5S rDNA locus on the long arm of chromosome C2 and confirmed the earlier reports of two 45S rDNA loci in the B. oleracea genome. FISH mapping of low-copy sequences from the Arabidopsis thaliana bacterial artificial chromosome (BAC) clones on the B. oleracea chromosomes confirmed the expectation of efficient and precise physical mapping of meiotic bivalents based on data available from A. thaliana and indicated conserved organization of these two BAC sequences on two B. oleracea chromosomes. Based on the heterologous in situ hybridization with BACs and their mapping applied to long pachytene bivalents, a new approach in comparative analysis of Brassica and A. thaliana genomes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号