首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Indian muntjac (Muntiacus muntjak vaginalis) has an extreme mammalian karyotype, with only six and seven chromosomes in the female and male, respectively. Chinese muntjac (Muntiacus reevesi) has a more typical mammalian karyotype, with 46 chromosomes in both sexes. Despite this disparity, the two muntjac species are morphologically similar and can even interbreed to produce viable (albeit sterile) offspring. Previous studies have suggested that a series of telocentric chromosome fusion events involving telomeric and/or satellite repeats led to the extant Indian muntjac karyotype.

Results

We used a comparative mapping and sequencing approach to characterize the sites of ancestral chromosomal fusions in the Indian muntjac genome. Specifically, we screened an Indian muntjac bacterial artificial-chromosome library with a telomere repeat-specific probe. Isolated clones found by fluorescence in situ hybridization to map to interstitial regions on Indian muntjac chromosomes were further characterized, with a subset then subjected to shotgun sequencing. Subsequently, we isolated and sequenced overlapping clones extending from the ends of some of these initial clones; we also generated orthologous sequence from isolated Chinese muntjac clones. The generated Indian muntjac sequence has been analyzed for the juxtaposition of telomeric and satellite repeats and for synteny relationships relative to other mammalian genomes, including the Chinese muntjac.

Conclusions

The generated sequence data and comparative analyses provide a detailed genomic context for seven ancestral chromosome fusion sites in the Indian muntjac genome, which further supports the telocentric fusion model for the events leading to the unusual karyotypic differences among muntjac species.  相似文献   

2.
Chi JX  Huang L  Nie W  Wang J  Su B  Yang F 《Chromosoma》2005,114(3):167-172
The Indian muntjac (Muntiacus muntjak vaginalis) has a karyotype of 2n=6 in the female and 7 in the male, the karyotypic evolution of which through extensive tandem fusions and several centric fusions has been well-documented by recent molecular cytogenetic studies. In an attempt to define the fusion orientations of conserved chromosomal segments and the molecular mechanisms underlying the tandem fusions, we have constructed a highly redundant (more than six times of whole genome coverage) bacterial artificial chromosome (BAC) library of Indian muntjac. The BAC library contains 124,800 clones with no chromosome bias and has an average insert DNA size of 120 kb. A total of 223 clones have been mapped by fluorescent in situ hybridization onto the chromosomes of both Indian muntjac and Chinese muntjac and a high-resolution comparative map has been established. Our mapping results demonstrate that all tandem fusions that occurred during the evolution of Indian muntjac karyotype from the acrocentric 2n=70 hypothetical ancestral karyotype are centromere–telomere (head–tail) fusions.  相似文献   

3.
The aim of this study was to test the validity of the hypothesis that the 2n=46 karyotype of the Chinese muntjac (Muntiacus reevesi) could have evolved through 12 tandem fusions from a 2n=70 hypothetical ancestral karyotype, which is still retained in Chinese water deer (Hydropotes inermis) and brown-brocket deer (Mazama gouazoubira). Combining fluorescence-activated chromosomal sorting and degenerate oligonucleotide-primed polymerase chain reaction, we generated chromosome-specific DNA paint probes for 13 M. gouazoubira chromosomes and most of the M. reevesi chromosomes with the exception of 18, 19 and X. These paint probes were used for fluorescence in situ hybridisation to chromosomal preparations of M. reevesi, H. inermis and M. gouazoubira. Chromosome-specific paint probes from M. reevesi chromosomes 1–5 and 11 each delineated more than one homologous pair (18 pairs in total) on the metaphases of H. inermis and M. gouazoubira. All the other probes from M. reevesi and probes from M. gouazoubira each hybridised to one pair of homologous chromosomes or regions. The C5 probe, derived from centromeric satellite sequences of M. reevesi, hybridised to the centromeric regions of all chromosomes of these three species. Most interestingly, several non-random interstitial signals, which are apparently localised to the putative fusion points, were found on chromosomes 1–5 and 11 of M. reevesi. Both the reciprocal painting patterns and localisation of the C5 probe demonstrate that M. reevesi chromosomes 1–5 and 11 could have evolved from 18 different ancestral chromosomes through 12 tandem fusions, thus providing direct molecular cytogenetic support for the tandem fusion hypothesis of karyotype evolution in M. reevesi. Received: 10 October 1996; in revised form: 18 December 1996 / Accepted: 27 December 1996  相似文献   

4.
The chromosomes of the Indian muntjac (Muntiacus muntjak vaginalis) are unique among mammals due to their low diploid number (2N=6, 7) and large size. It has been proposed that the karyotype of this small Asiatic deer evolved from a related deer the Chinese muntjac (Muntiacus reevesi) with a diploid chromosome number of 2n= 46 consisting of small telocentric chromosomes. In this study we utilized a kinetochore-specific antiserum derived from human patients with the autoimmune disease scleroderma CREST as an immunofluorescent probe to examine kinetochores of the two muntjac species. Since CREST antiserum binds to kinetochores of mitotic chromosomes as well as prekinetochores in interphase nuclei, it was possible to identify and compare kinetochore morphology throughout the cell cycle. Our observations indicated that the kinetochores of the Indian muntjac are composed of a linear beadlike array of smaller subunits that become revealed during interphase. The kinetochores of the Chinese muntjac consisted of minute fluorescent dots located at the tips of the 46 telocentric chromosomes. During interphase, however, the kinetochores of the Chinese muntjac clustered into small aggregates reminiscent of the beadlike arrays seen in the Indian muntjac. Morphometric measurements of fluorescence indicated an equivalent amount of stained material in the two species. Our observations indicate that the kinetochores of the Indian muntjac are compound structures composed of linear arrays of smaller units the size of the individual kinetochores seen on metaphase chromosomes of the Chinese muntjac. Our study supports the notion that the kinetochores of the Indian muntjac evolved by linear fusion of unit kinetochores of the Chinese muntjac. Moreover, it is concluded that the evolution of compound kinetochores may have been facilitated by the nonrandom aggregation of interphase kinetochores in the nuclei of the ancestral species.  相似文献   

5.
近年来,分子细胞遗传学研究已基本证实了染色体的串联融合(端粒-着丝粒融合)是麂属动物核型演化的主要重排方式。尽管染色体串联融合的分子机制还不清楚,但通过染色体的非同源重组,着丝粒区域的卫星DNA被认为可能介导了染色体的融合。以前的研究发现在赤麂和小麂染色体的大部分假定的串联融合位点处存在着非随机分布的卫星DNA。然而在麂属的其他物种中,这些卫星DNA的组成以及在基因组中的分布情况尚未被研究。本研究从黑麂和费氏麂基因组中成功地克隆了4种卫星DNA(BMC5、BM700、BM1.1k和FM700),并分析了这些卫星克隆的特征以及在小麂、黑麂、贡山麂和费氏麂染色体上的定位情况。结果表明,卫星I和IIDNA(BMC5,BM700和FM700)的信号除了分布在这些麂属动物染色体的着丝粒区域外,也间隔地分布在这些物种的染色体臂上。其研究结果为黑麂、费氏麂和贡山麂的染色体核型也是从一个2n=70的共同祖先核型通过一系列的串联融合进化而来的假说提供了直接的证据。  相似文献   

6.
A total of seven, highly repeated, DNA recombinant M13 mp8 clones derived from a Hpa II digest of cultured cells of the Indian muntjac (Muntiacus muntjac vaginalis) were analyzed by restriction enzymes, in situ hybridization, and DNA sequencing. Two of the clones, B1 and B8, contain satellite DNA inserts which are 80% homologous in their DNA sequences. B1 contains 781 nucleotides and consist of tandem repetition of a 31 bp consensus sequence. This consensus sequence, TCCCTGACGCAACTCGAGAGGAATCCTGAGT, has only 3 bp changes, at positions 7, 24, and 27, from the consensus sequence of the 31 bp subrepeats of the bovine 1.715 satellite DNA. The satellite DNA inserts in B1 and B8 hybridize primarily but not specifically to chromosome X, and secondarily to other sites such as the centromeric regions of chromosomes 1 and 2. Under less stringent hybridization conditions, both of them hybridize to the interior of the neck region and all other chromosomes (including chromosomes 3 and Y). The other five DNA clones contain highly repetitive, interdispersed DNA inserts and are distributed throughout the genome except for the neck region of the compound chromosome X+3. Blot hybridization results demonstrate that the satellite DNA component is also present in Chinese muntjac DNA (Muntiacus reevesi) in spite of the very different karyotypes of the Chinese and Indian muntjacs.  相似文献   

7.
Huang L  Chi J  Wang J  Nie W  Su W  Yang F 《Genomics》2006,87(5):608-615
The black muntjac (Muntiacus crinifrons, 2n = 8[female symbol]/9[male symbol]) is a critically endangered mammalian species that is confined to a narrow region of southeastern China. Male black muntjacs have an astonishing X1X2Y1Y2Y3 sex chromosome system, unparalleled in eutherian mammals, involving approximately half of the entire genome. A high-resolution comparative map between the black muntjac (M. crinifrons) and the Chinese muntjac (M. reevesi, 2n = 46) has been constructed based on the chromosomal localization of 304 clones from a genomic BAC (bacterial artificial chromosome) library of the Indian muntjac (M. muntjak vaginalis, 2n = 6[female symbol]/7[male symbol]). In addition to validating the chromosomal homologies between M. reevesi and M. crinifrons defined previously by chromosome painting, the comparative BAC map demonstrates that all tandem fusions that have occurred in the karyotypic evolution of M. crinifrons are centromere-telomere fusions. The map also allows for a more detailed reconstruction of the chromosomal rearrangements leading to this unique and complex sex chromosome system. Furthermore, we have identified 46 BAC clones that could be used to study the molecular evolution of the unique sex chromosomes of the male black muntjacs.  相似文献   

8.
Hartmann N  Scherthan H 《Chromosoma》2004,112(5):213-220
Tandem fusion, a rare evolutionary chromosome rearrangement, has occurred extensively in muntjac karyotypic evolution, leading to an extreme fusion karyotype of 6/7 (female/male) chromosomes in the Indian muntjac. These fusion chromosomes contain numerous ancestral chromosomal break and fusion points. Here, we designed a composite polymerase chain reaction (PCR) strategy which recovered DNA fragments that contained telomere and muntjac satellite DNA sequence repeats. Nested PCR confirmed the specificity of the products. Two-color fluorescence in situ hybridization (FISH) with the repetitive sequences obtained and T2AG3 telomere probes showed co-localization of satellite and telomere sequences in Indian muntjac chromosomes. Adjacent telomere and muntjac satellite sequences were also seen by fiber FISH. These data lend support to the involvement of telomere and GC-rich satellite DNA sequences during muntjac chromosome fusions.Communicated by E.A. NiggAccession numbers: AY322158, AY322159, AY322160  相似文献   

9.
10.
Huang L  Chi J  Nie W  Wang J  Yang F 《Genetica》2006,127(1-3):25-33
A set of Chinese muntjac (Muntiacus reevesi) chromosome-specific paints has been hybridized onto the metaphases of sika deer (Cervus nippon, CNI, 2n = 66), red deer (Cervus elaphus, CEL, 2n = 62) and tufted deer (Elaphodus cephalophus, ECE, 2n = 47). Thirty-three homologous autosomal segments were detected in genomes of sika deer and red deer, while 31 autosomal homologous segments were delineated in genome of tufted deer. The Chinese muntjac chromosome X probe painted to the whole X chromosome, and the chromosome Y probe gave signals on the Y chromosome as well as distal region of the X chromosome of each species. Our results confirmed that exclusive Robertsonian translocations have contributed to the karyotypic evolution of sika deer and red deer. In addition to Robertsonian translocation, tandem fusions have played a more important role in the karyotypic evolution of tufted deer. Different types of chromosomal rearrangements have led to great differences in the genome organization between cervinae and muntiacinae species. Our analysis testified that six chromosomal fissions in the proposed 2n = 58 ancestral pecoran karyotype led to the formation of 2n = 70 ancestral cervid karyotype and the deer karyotypes is more derived compare with those of bovid species. Combining previous cytogenetic and molecular systematic studies, we analyzed the genome phylogeny for 11 cervid species.  相似文献   

11.
It has been suggested that the chromosome set of the Indian muntjac, Muntiacus muntjak vaginalis (female, 2n = 6; male, 2n = 7), evolved from small acrocentric chromosomes, such as those found in the complement of the Chinese muntjac, M. reevesi (2n = 46), by a series of tandem fusions and other rearrangements. The location of the highly conserved human telomeric sequence (TTAGGG)n in the metaphase chromosomes of M.m. vaginalis and its close relative, M. reevesi, was investigated by non-radioactive in situ hybridization. The (TTAGGG)n repeat was found adjacent to the centromeres in the short arm and at the telomeres in the long arm of M. reevesi acrocentric metaphase chromosomes. Tandem fusions present in the karyotype of M.m. vaginalis chromosomes were not reflected by interstitial signals of the telomere repeat, as these chromosomes displayed hybridization signals only at the ends of the chromatids. Mechanisms that might have played a role in the evolution of the reduced karyotype of the Indian muntjac are discussed.  相似文献   

12.
任鹏  龚堃  鲍毅新  黄相相  周晓  韩金巧 《生态学报》2017,37(20):6933-6944
2014年4月至2015年1月,在古田山国家级自然保护区内共收集634份粪便样本,2份肌肉样本。通过严格筛选,最终获得390份可用于PCR扩增的样本。用多态性较高的8个微卫星位点进行基因型分型,共识别出177个小麂个体。SRY基因性别鉴定显示研究样本中雄性84只,雌性93只。所使用的8个微卫星位点在177个样本中,平均等位基因数(A)为11,平均观测杂合度(Ho)在0.960—1.000之间,平均值为0.9685,平均期望杂合度(He)在0.799—0.887之间,平均值为0.8429,多态信息含量(PIC)在0.766—0.872之间,平均多态信息含量为0.8214,基因杂合度水平较高,为遗传多样性丰富的种群。采用Cervus3.0进行亲权分析,当置信度为95%和80%时,8个微卫星位点的鉴定率均达到100%。共鉴定出父-母-子24对,母-子23对,父-子19对,涉及到104只个体。根据亲缘关系分析小麂的婚配制,结果发现小麂的婚配制属于1雄多雌,但并不是目前所知的亚型,而可能是一种被称作"检查策略"的一雄多雌制。  相似文献   

13.
The extent of nuclear single-copy DNA divergence between Muntiacus reevesi and Muntiacus muntjak vaginalis (Cervidae), a species pair showing extreme karyotype differences but striking morphological similarity, is 2%, as judged from the thermal stability of interspecific DNA-DNA hybrids. A comparison of the total nuclear DNA reassociation kinetics of the two species indicates a reduction of lowly repetitive sequences in M. m. vaginalis.  相似文献   

14.
We have used human chromosome-specific painting probes forin situhybridization on Indian muntjac (Muntiacus muntjak vaginalis,2n= 6, 7) metaphase chromosomes to identify the homologous chromosome regions of the entire human chromosome set. Chromosome rearrangements that have been involved in the karyotype evolution of these two species belonging to different mammalian orders were reconstructed based on hybridization patterns. Although, compared to human chromosomes, the karyotype of the Indian muntjac seems to be highly rearranged, we could identify a limited number of highly conserved homologous chromosome regions for each of the human chromosome-specific probes. We identified 48 homologous autosomal chromosome segments, which is in the range of the numbers found in other artiodactyls and carnivores recently analyzed by chromosome painting. The results demonstrate that the reshuffling of the muntjac karyotype is mostly due to fusions of huge blocks of entire chromosomes. This is in accordance with previous chromosome painting analyses between various Muntjac species and contrasts the findings for some other mammals (e.g., gibbons, mice) that show exceptional chromosome reshuffling due to multiple reciprocal translocation events.  相似文献   

15.
Zhao ZG  Hu TT  Ge XH  Du XZ  Ding L  Li ZY 《Plant cell reports》2008,27(10):1611-1621
Alien chromosome addition lines have been widely used for identifying gene linkage groups, assigning species-specific characters to a particular chromosome and comparing gene synteny between related species. In plant breeding, their utilization lies in introgressing characters of agronomic value. The present investigation reports the production of intergeneric somatic hybrids Brassica napus (2= 38) + Orychophragmus violaceus (2= 24) through asymmetric fusions of mesophyll protoplasts and subsequent development of B. napus-O. violaceous chromosome addition lines. Somatic hybrids showed variations in morphology and fertility and were mixoploids (2= 51–67) with a range of 19–28 O. violaceus chromosomes identified by genomic in situ hybridization (GISH). After pollinated with B. napus parent and following embryo rescue, 20 BC1 plants were obtained from one hybrid. These exhibited typical serrated leaves of O. violaceus or B. napus-type leaves. All BC1 plants were partially male fertile but female sterile because of abnormal ovules. These were mixoploids (2= 41–54) with 9–16 chromosomes from O. violaceus. BC2 plants showed segregations for female fertility, leaf shape and still some chromosome variation (2= 39–43) with 2–5 O. violaceus chromosomes, but mainly containing the whole complement from B. napus. Among the selfed progenies of BC2 plants, monosomic addition lines (2= 39, AACC + 1O) with or without the serrated leaves of O. violaceus or female sterility were established. The complete set of additions is expected from this investigation. In addition, O. violaceus plants at diploid and tetraploid levels with some variations in morphology and chromosome numbers were regenerated from the pretreated protoplasts by iodoacetate and UV-irradiation. Z. Zhao and T. Hu make equal contributions to this work.  相似文献   

16.
An extreme case of chromosomal evolution is presented by the two muntjac species Muntiacus muntjac (Indian muntjac, 2n = 6 [females], 7 [males]) and M. reevesi (Chinese muntjac, 2n = 46). Despite disparate karyotypes, these phenotypically similar species produce viable hybrid offspring, indicating a high degree of DNA-level conservation and genetic relatedness. As a first step toward development of a comparative gene map, several Indian muntjac homologs of known human type I anchor loci were mapped. Using flow-sorted, chromosome-specific Southern hybridization techniques, homologs of the protein kinase C beta polypeptide (PRKCB1) and the DNA repair genes ERCC2 and XRCC1 have been assigned to Indian muntjac chromosome 2. The male-specific ZFY gene was presumptively mapped to Indian muntjac chromosome Y2. Ultimate generation of a comparative physical map of both Indian and Chinese muntjac chromosomes will prove invaluable in the study of mammalian karyotype evolution.  相似文献   

17.
The competitive relationship and coexistence pattern among close related species have long been one of the hot issues in ecological research. Interspecies interactions can exert important influences on the local distribution of rare species. Black muntjac Muntiacus crinifrons is an endemic species to eastern China, currently restricted to limited regions. In contrast, Chinese muntjac Muntiacus reevesi is the most common and widespread deer in southern China. Both species co‐occur in southern Anhui and western Zhejiang Province. Little is known about the interaction of these two sympatric‐related species. In this study, to investigate the site use determinants and co‐occurrence pattern of the two sympatric muntjac species, we conducted a camera trap survey across about 250 km2 in mountainous area of southern Anhui Province, China. We adopted a multistep approach to incorporate habitat preferences while modeling occupancy and detection. We found that the two species did not separate along elevation gradient (range from 400 m to 1,400 m) as described in previous studies. Results of single‐species occupancy models indicated that elevation had positive effects on the site use of both species, while slope had an opposite influence on their site use. Positive effects of elevation on the site use implied that both species try to avoid human interference at low elevations. Significant negative effect of slope on the site use of black muntjac suggested that the species prefer habitat with gentle slope and avoided steep. Co‐occurrence models and species interaction factors provided evidence that the two muntjac species had an independent occupancy (ψ BM CM = ψ BM cm, SIF = 1) and exhibited a positive species interaction in detection probability (p BM < r BM CM). Combined with the results of previous studies, we suggested that it was fine differentiation in microhabitats and food resources utilization rather spatial or temporal segregation that allowed the two species co‐occurrence. The site use determinants revealed in our study would be useful for the habitat conservation and restoration for the rare black muntjac, and the co‐occurrence pattern of the two sympatric muntjac species could provide useful information for deep understanding of the coexistence mechanism among forest‐dwelling ungulates.  相似文献   

18.
Full cytochrome b gene sequence of mtDNA was used to identify and analyze four skin samples collected from Tibet, China in this research. By searching for highly similar sequences (megablast) on NCBI, we found all four samples have the highest similarities with the published sequence: AY239042 of the black muntjac (Muntiacus crinifrons). By comparing our sequences to those available on GenBank, all four samples were identified as the black muntjac (Muntiacus crinifrons) by high sequence similarity. We therefore record two new localities for the black muntjac and it is a new distribution in Tibet and hope this study will not only promote more advanced researches on the evolution and phylogeny about this species, but also enhance the conservation work for this species and local biodiversity.  相似文献   

19.
Intertribal somatic hybrids between Brassica napus (2n = 38, AACC) and a dye and medicinal plant Isatis indigotica (2n = 14, II) were obtained by fusions of mesophyll protoplasts. From a total of 237 calli, only one symmetric hybrid (S2) and five asymmetric hybrids (As1, As4, As6, As7 and As12) were established in the field. These hybrids showed some morphological variations and had very low pollen fertility. Hybrids S2 and As1 possessed 2n = 52 (AACCII), the sum of the parental chromosomes, and As12 had 2n = 66 (possibly AACCIIII). Hybrids As4, As6 and As7 were mixoploids (2n = 48–62). Genomic in situ hybridization analysis revealed that pollen mother cells at diakinesis of As1 contained 26 bivalents comprising 19 from B. napus and 7 from I. indigotica and mainly showed the segregation 26:26 at anaphase I (AI) with 7 I. indigotica chromosomes in each polar group. Four BC1 plants from As1 after pollinated by B. napus resembled mainly B. napus in morphology but also exhibited some characteristics from I. indigotica. These plants produced some seeds on selfing or pollination by B. napus. They had 2n = 45 (AACCI) and underwent pairing among the I. indigotica chromosomes and/or between the chromosomes of two parents at diakinesis. All hybrids mainly had the AFLP banding patterns from the addition of two parents plus some alterations. B. napus contributed chloroplast genomes in majority of the hybrids but some also had from I. indigotica. Production of B. napusI. indigotica additions would be of considerable importance for genome analysis and breeding.  相似文献   

20.
Chromosome numbers were determined for 342 clones ofCarex oxyandra collected from 35 localities in Hokkaido, Honshu, Shikoku and Kyushu, Japan. Four intraspecific aneuploids, 2n=18, 20, 24 and 26, were found. In meiotic division, only bivalent chromosomes were observed in all clones at metaphases I and II, suggesting that the aneuploids are established gamodemes. In the mitotic metaphase chromosomes, trimodal variation in chromosome length was observed. The 2n=26 clones found on Mt. Hiko had two particularly small chromosomes. The cytodemes with higher number of chromosomes are distributed in more southern areas of Japan.Carex oxyandra, therefore, accompanied with chromosome fragmentations, might spread the geographical distribution to the southern parts. The morphological characters of leaves, spikes, scales, perigynia and nuts were similar among the four cytodemes, except for the small leaves on plants from Yaku Island.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号