首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The extents to which decreased muscle size or activation are responsible for the decrease in strength commonly observed with aging remain unclear. Our purpose was to compare muscle isometric strength [maximum voluntary contraction (MVC)], cross-sectional area (CSA), specific strength (MVC/CSA), and voluntary activation in the ankle dorsiflexor muscles of 24 young (32 +/- 1 yr) and 24 elderly (72 +/- 1 yr) healthy men and women of similar physical activity level. Three measures of voluntary muscle activation were used: the central activation ratio [MVC/(MVC + superimposed force)], the maximal rate of voluntary isometric force development, and foot tap speed. Men had higher MVC and CSA than did women. Young men had higher MVC compared with elderly men [262 +/- 19 (SE) vs. 197 +/- 22 N, respectively], whereas MVC was similar in young and elderly women (136 +/- 15 vs. 149 +/- 16 N, respectively). CSA was greater in young compared with elderly subjects. There was no age-related impairment of specific strength, central activation ratio, or the rate of voluntary force development. Foot tap speed was reduced in elderly (34 +/- 1 taps/10 s) compared with young subjects (47 +/- 1 taps/10 s). These results suggest that isometric specific strength and the ability to fully and rapidly activate the dorsiflexor muscles during a single isometric contraction were unimpaired by aging. However, there was an age-related deficit in the ability to perform rapid repetitive dynamic contractions.  相似文献   

2.
Contractile changes in opposing muscles of the human ankle joint with aging   总被引:8,自引:0,他引:8  
The effects of aging on maximal voluntary strength and on the isometric twitch were determined in the ankle dorsiflexor and plantarflexor muscles of 111 healthy men and women aged 20-100 yr. Men were found to be stronger than women at all ages. In both sexes, the average values for maximum voluntary strength of the dorsiflexors and plantarflexors began to decline in the 6th decade. Although the absolute loss of strength was greater for the plantarflexor muscles, the relative losses were similar in the two muscle groups. During maximum voluntary effort, stimulation of motor nerves produced no additional torque in the majority of elderly men and women, indicating that these subjects remained able to utilize their descending motor pathways for optimal muscle activation. Comparisons of muscle compound action potentials, twitch torques, and muscle cross-sectional areas suggested that a decrease in excitable muscle mass was entirely responsible for the lower strength of the elderly. An additional effect of aging was the gradual prolongation of twitch contraction and half-relaxation times throughout the adult life-span.  相似文献   

3.
The purpose of this study was to compare fatigue-related measures of central and peripheral mechanisms between young and elderly subjects for a task performed with elbow flexor muscles. Ten young and nine elderly subjects performed a sustained submaximal fatigue task at 35% of their maximum voluntary contraction torque. Measures of neuromuscular function, reflecting changes in neuromuscular propagation, voluntary activation, excitation-contraction-relaxation processes, and metabolite buildup, were taken before, during, and after the fatigue task. The main results were the absence of neuromuscular propagation failure in either young or elderly subjects, the presence of central fatigue at the end of the fatigue task in 7 of 9 elderly but only 3 of 10 young subjects, and lesser changes in twitch torque contraction-relaxation variables and electromyographic median frequency in elderly compared with young subjects. The lesser fatigue-related changes in twitch contraction speed and median frequency in elderly compared with young subjects could reflect the increase in type I-to-type II fiber area reported with old age. The presence of significant central fatigue can apparently minimize some of the potential differences present in peripheral fatigue sites.  相似文献   

4.
A sample of 20 older adults (76 +/- 6 years) participated in a two-session training intervention with the goal of eliciting rapid and functionally meaningful strength gains in the ankle plantarflexors. Tests were conducted on a Monday-Wednesday-Friday schedule with two training sessions after tests one and two. During each test, subjects performed five maximal explosive force production contractions (MVCs) from which maximal voluntary torque (MVT) and peak rates of torque development (RTDs) were obtained. To augment the quick strength gains typically observed in response to serial strength measurements, these MVCs were supplemented with exercises consisting of high-velocity, low-force movements at the ankle joint. These exercises were chosen to elicit high rates of neural stimulation without high resistance. Maximal voluntary torque increased by 15% from 53.9 +/- 36 to 62.2 +/- 36.2 N x m (p = 0.02). There was a parallel trend toward increases in RTD based on RTD measures computed over various timescales (0.11 < p < 0.21). The nonsignificant increase in RTD was from 223.9 +/- 153.6 to 248.4 +/- 147.8 N x m x s(-1). This preliminary study has determined that rapid strength gains of functional magnitude are possible in the plantarflexors of the elderly. Subsequent work is necessary to test the translation of such gains to function in the frail elderly and to determine the specific contributions of the selected low-resistance exercises to overall gains.  相似文献   

5.
Substantial evidence exists for the age-related decline in maximal strength and strength development. Despite the importance of knee extensor strength for physical function and mobility in the elderly, studies focusing on the underlying neuromuscular mechanisms of the quadriceps muscle weakness are limited.The aim of this study was to investigate the contributions of age-related neural and muscular changes in the quadriceps muscle to decreases in isometric maximal voluntary torque (iMVT) and explosive voluntary strength. The interpolated twitch technique and normalized surface electromyography (EMG) signal during iMVT were analyzed to assess changes in neural drive to the muscles of 15 young and 15 elderly volunteers. The maximal rate of torque development as well as rate of torque development, impulse and neuromuscular activation in the early phase of contraction were determined. Spinal excitability was estimated using the H reflex technique. Changes at the muscle level were evaluated by analyzing the contractile properties and lean mass.The age-related decrease in iMVT was accompanied by a decline in voluntary activation and normalized surface EMG amplitude. Mechanical parameters of explosive voluntary strength were reduced while the corresponding muscle activation remained primarily unchanged. The spinal excitability of the vastus medialis was not different while M wave latency was longer. Contractile properties and lean mass were reduced.In conclusion, the age-related decline in iMVT of the quadriceps muscle might be due to a reduced neural drive and changes in skeletal muscle properties. The decrease in explosive voluntary strength seemed to be more affected by muscular than by neural changes.  相似文献   

6.
To elucidate the characteristics of ventilatory and circulatory responses at the onset of brief and light exercise in the elderly, 13 healthy, elderly men, aged 66.8 yr (mean), exerted bilateral leg extension-flexion movements for only 20 s with a weight around each ankle, with each weight being approximately 2.5% of their body mass. Similar movements were passively performed on the subjects by the experimenters. These results were compared with those of 13 healthy, young men (22.9 yr). Minute ventilation increased at the onset of voluntary exercise and passive movements in both groups but showed a slower increase in the elderly. Heart rate also increased in both groups but showed less change in the elderly. Mean blood pressure temporarily decreased in both groups but less in the elderly. The magnitude of relative change (gain) of heart rate in the elderly was significantly smaller than that in the young, whereas the increasing rate to reach one-half of the gain (response time) of ventilation in the elderly was significantly slower than that in the young. Similar tendencies were observed in the passive movements. It is concluded that the elderly show slower ventilatory response and attenuated circulatory response at the onset of dynamic voluntary exercise and passive movements.  相似文献   

7.
Urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG), as a measure of oxidative stress, was measured before and after 12 weeks of progressive resistance strength training in 8 healthy elderly (65–80 yr) and eight healthy young (22–30 yr) men and women, and in eight adults (25–65 yr) with rheumatoid arthritis (RA).Training subjects exercised at 80% of their one-repetition maximum and performed eight repetitions per set, three sets per session, on a twice-weekly basis. 8-OHdG was measured at baseline and follow-up (at least 24 hr after the last exercise session) in the RA and elderly subject groups, and at baseline only in young subjects.Baseline 8-OHdG levels were greater among subjects with RA compared to both healthy young (P < 0.001) and elderly (P < 0.05) subjects. There were no changes in 8-OHdG levels in either RA or elderly subjects as a result of the strength training intervention.These results suggest that subjects with RA have higher levels of oxidative stress than young and elderly healthy individuals. Furthermore, there is no change in oxidative stress, measured by urinary 8-OHdG, in elderly healthy individuals or in subjects with RA after a 12-week strength training intervention.  相似文献   

8.
To investigate training-induced changes in neuromuscular performance under voluntary and reflex contractions, 11 male subjects went through heavy resistance (high loads of 70-120% of one maximum repetition) and 10 male subjects through explosive type (low loads with high contraction velocities) strength training three times a week for 24 weeks. A large increase (13.9%, p less than 0.01) in voluntary unilateral maximal knee extension strength with only slight and insignificant changes in time of isometric force production were observed during heavy resistance strength training. Explosive type strength training resulted in a small insignificant increase in maximal strength but in considerable shortening (p less than 0.05) in the time of force production. A significant increase (p less than 0.05) noted in the averaged maximal integrated electromyogram (IEMG) of the knee extensors during heavy resistance strength training correlated (p less than 0.01) with the increase in maximal strength. No changes were noted during training in reflex time components, but significant decreases (p less than 0.05) occurred in the peak-to-peak amplitudes of the reflex electromyograms (EMG) in both groups. The individual changes during training in the reflex EMG/force ratio were related (p less than 0.01) to the respective changes in IEMG/force ratio in voluntary contractions. The present observations support the concept of specificity of training, and suggest that specific training-induced adaptations in the neuromuscular system may be responsible for these changes in performance.  相似文献   

9.
Plantarflexor muscle function in young and elderly women   总被引:2,自引:0,他引:2  
Contractile properties of the ankle plantarflexor muscles were compared between groups of young (means = 26 y) and elderly (means = 82 y) women. The H-reflex muscle contraction in the elderly group was characterized by a significant slowing of torque generation, as compared to the young women (means for average rate of torque development were young = 0.16 Nm ms-1 +/- 0.02 (SE), elderly = 0.09 Nm ms-1 +/- 0.02, P less than 0.05). However, the proportion of the total motor unit pool activated by the reflex was similar for the young and elderly groups at 63% and 70%, respectively. Maximal voluntary isometric torques were significantly lower (71%) in the elderly (young means = 135.3 Nm +/- 9.3, elderly means = 39.2 Nm +/- 2.9, P less than 0.01). These results are consistent with, and extend, previous reports showing decreased strength and speed of contraction in elderly muscle. Given that the average body weight was similar for the young and elderly groups, it was concluded that the aged plantarflexor muscles exhibited considerable impairment in ability to generate stabilizing torques about the ankle joint.  相似文献   

10.
Declines in muscular strength resulting from reduced neural activity may influence the reduction in aerobic capacity in older men. However, there has been little investigation into the relationship between muscular strength and economy of movement during aerobic exercise in elderly subjects. Thus, the purpose of this study was to investigate the possible relationship between strength, aerobic performance, and neuromuscular economy in older men. Twenty-eight aged men (65 ± 4 years old) were evaluated in dynamic (1 repetition maximum test), isometric strength (maximal voluntary contraction), and rate of force development. Peak oxygen uptake, maximal workload, and ventilatory threshold were determined during a ramp protocol on a cycle ergometer. Throughout the same protocol, the neuromuscular economy (electromyographic signal) of the vastus lateralis was measured. Significant correlations were found between muscular strength, cardiorespiratory fitness, and neuromuscular economy (r = 0.43-0.64, p < 0.05). Our results suggest that cardiorespiratory capacity and economy of movement are associated with muscular strength during aging.  相似文献   

11.
Training can improve muscle strength and endurance in 78- to 84-yr-old men.   总被引:1,自引:0,他引:1  
Nine men, 78-84 yr of age, participated in a dynamometer training program 2-3 times/wk, totaling 25 sessions, using voluntary maximal isometric, concentric, and eccentric right knee-extension actions (30 and 180 degrees/s). Measurements of muscle strength with a Kin-Com dynamometer and simultaneous electromyograms (EMG) were performed of both sides before and after the training period. Muscle biopsies were taken from the right vastus lateralis muscle. The total quadriceps cross-sectional area was measured with computerized tomography. Training led to an increase in maximal torque for concentric (10% at 30 degrees/s) and eccentric (13-19%) actions in the trained leg. The EMG activity increased at maximal eccentric activities. The total cross-sectional quadriceps area of the trained leg increased by 3%, but no changes were recorded in muscle fiber areas in these subjects, who already had large mean fiber areas (5.15 microns 2 x 10(3)). The fatigue index measured from 50 consecutive concentric contractions at 180 degrees/s decreased and the citrate synthase activity increased in all but one subject. The results demonstrate that increased neural activation accompanies an increase in muscle strength at least during eccentric action in already rather active elderly men and that muscle endurance may also be improved with training.  相似文献   

12.
The experiments were carried out on 11 subjects ranging in the age from 23 to 37 years. Heart rate, integrated electrical activity from 4 muscles of the forearm and the hand and mechanical activity were measured simultaneously during rhythmical work using a hand-ergometer. The strength of the dynamic contractions was 20, 40, 60, 80 and 100% of a maximal voluntary contraction. The mean values of the maximal voluntary contraction obtained on male subjects were 57.3 kp and on female subjects 33.2 kp. The results showed that during dynamic contractions mechanical activity was related to the integrated electrical activity and both integrated electrial activity of 3 muscles and heart rate were linearly related to the load. The correlation coefficients for the EMG/EMG relationships of different muscles and for the EMG/heart rate varied between 0.83 and 0.98.  相似文献   

13.
Reduced strength after passive stretch of the human plantarflexors.   总被引:5,自引:0,他引:5  
The purpose of this study was to assess strength performance after an acute bout of maximally tolerable passive stretch (PS(max)) in human subjects. Ten young adults (6 men and 4 women) underwent 30 min of cyclical PS(max) (13 stretches of 135 s each over 33 min) and a similar control period (Con) of no stretch of the ankle plantarflexors. Measures of isometric strength (maximal voluntary contraction), with twitch interpolation and electromyography, and twitch characteristics were assessed before (Pre), immediately after (Post), and at 5, 15, 30, 45, and 60 min after PS(max) or Con. Compared with Pre, maximal voluntary contraction was decreased at Post (28%) and at 5 (21%), 15 (13%), 30 (12%), 45 (10%), and 60 (9%) min after PS(max) (P < 0.05). Motor unit activation and electromyogram were significantly depressed after PS(max) but had recovered by 15 min. An additional testing trial confirmed that the torque-joint angle relation may have been temporarily altered, but at Post only. These data indicate that prolonged stretching of a single muscle decreases voluntary strength for up to 1 h after the stretch as a result of impaired activation and contractile force in the early phase of deficit and by impaired contractile force throughout the entire period of deficit.  相似文献   

14.
The purpose of this study was to determine whether the loss of muscle strength in the elderly could be explained entirely by a decline in the physiological cross-sectional area (PCSA) of muscle. Isometric force, muscle activation (twitch interpolation), and coactivation (surface electromyograph) were measured during maximal voluntary contractions (MVCs) of the elbow flexors (EFs) and extensors (EEs) in 20 young (23 +/- 3 yr) and 13 older (81 +/- 6 yr) healthy men. PCSA was determined using magnetic resonance imaging, and normalized force (NF) was calculated as the MVC/PCSA ratio. The PCSA was smaller in the old compared with the young men, more so in the EEs (28%) compared with the EFs (19%) (P < 0.001); however, the decline in MVC (approximately 30%) with age was similar in the two muscle groups. Muscle activation was not different between the groups, but coactivation was greater (5%) (P < 0.001) in the old men for both muscles. NF was less (11%) in the EFs (P < 0.01) and tended to be unchanged in the EEs of the old compared with young subjects. The relative maintenance of NF in the EEs compared with the EFs may be related to age-associated changes in the architecture of the triceps brachii muscle. In conclusion, although the decline in PCSA explained the majority of strength loss in the old men, additional factors such as greater coactivation or reduced specific tension also may have contributed to the age-related loss of isometric strength.  相似文献   

15.
A new way to develop muscular strength using electromagnetic stimulation (ES) of muscles during their voluntary contractions has been described. The experiment involved 18 healthy men divided into the control group (CG) and the experimental group (EG) with equal parameters of muscular strength. In performing training exercises (the foot plantar flexion), the m. gastrocnemius of the subjects of the EG was exposed to ES (1.8 T, 5 Hz). The subjects of the CG performing the same exercises did not receive ES. The power torque of the foot plantar flexion in the EG significantly increased (24%) after 10 days of training. The power torque of the foot plantar flexion in the control subjects did not significantly change. We suppose that the increase in the muscular strength in the subjects of the EG was due to the activation of high-threshold motor units effected by ES.  相似文献   

16.
We herein examined whether immediate muscular activity (active recovery) after stretching decreased stretch-induced strength deficits in human muscles. Our within-subject study included 8 subjects who were used as their own controls. For each subject, both legs were subjected to the same warm-up and stretching treatments, and then one leg was exposed to active recovery (experimental treatment) while the other was allowed to recover passively (control). Unilateral maximal voluntary contraction (MVC) of knee extensors was measured at baseline, poststretching, and postrecovery to monitor strength evolution. Our results revealed that the MVC strength at the baseline time point for control (590.8 +/- 104.2) and treated (602.2 +/- 112.7) legs decreased poststretching by 8.0 and 8.9%, respectively, and further decreased postrecovery by 1.3 and 1.2%, respectively. Maximal voluntary contraction strength tests demonstrated very good reliability, having intraclass coefficients of correlation ranging from 0.92-0.98. Mixed analysis of variance showed that the stretching program yielded significantly increased flexibility (p < 0.01) and significantly decreased MVC (p < 0.001) in both legs. The over-time variability between legs was marginal (1%), and no significant between-leg differences were observed. Indeed, the improvement in strength restoration due to active vs. passive recovery was -0.5 +/- 15 N, which was significantly lower (p < 0.01; 1-tailed t-test) than the amount of strength inhibition (32.6 N), estimated as 60% of the overall strength deficit (54.3 +/- 29.7 N). These results confirm that significant strength is lost poststretching but fail to show greater improvement in strength following active vs. passive recovery. Collectively, the present findings indicate that, contrary to the belief of many coaches, muscular exercises during the poststretching period are unlikely to minimize stretch-induced strength deficits.  相似文献   

17.
The purpose of this study was to investigate how reciprocal Ia inhibition is changed during muscle fatigue of lower limb muscle, induced with a voluntary contraction or height frequency electrical stimulation. Reciprocal Ia inhibition from ankle flexors to extensors has been investigated in 12 healthy subjects. Hoffmann reflex (H-reflex) in the soleus muscle was used to monitor changes in the amount of reciprocal Ia inhibition from common peroneal nerve as demonstrated during voluntary dorsi or planterflexion and 50 Hz electrical stimulation induced dorsi or planterflexion. The test soleus H-reflex was kept at 20-25% of maximum directly evoked motor response (M response) and the strength of the conditioning common peroneal nerve stimulation was kept at 1.0 x motor threshold. At rest, weak la inhibition was demonstrated in 12 subjects, maximal inhibition from the common peroneal nerve was 28.8%. During voluntary dorsiflexion and 50 Hz electrical stimulation induced dorsiflexion, there absolute amounts of inhibition increased as compared to at rest, and decreased or disappeared during voluntary planterflexion and 50 Hz electrical stimulation induced planterflexion as compared to at rest. During voluntary or electrical stimulation induced agonist muscle fatigue, the inhibition of the soleus H-reflex from the common peroneal nerve was greater during voluntary dorsiflexion (maximal, 11.1%) and 50 Hz (maximal, 6.7%) electrical stimulation induced dorsiflexion than at rest. The inhibition was decreased or disappeared during voluntary planterflexion 50 Hz electrical stimulation induced planterflexion. It was concluded that the results were considered to support the hypothesis that alpha-motoneurones and la inhibitory intemeurones link to antagonist motoneurones in reciprocal inhibition. The diminished reciprocal Ia inhibition of voluntary contraction during muscle fatigue as compared to electrical stimulation, is discussed in relation to its possible contribution to ankle stability.  相似文献   

18.
To test the hypothesis that a lower mean arterial pressure (MAP) response during voluntary isometric exercise in multiple sclerosis (MS) is related to a dampened muscle metabolic signal, 9 MS and 11 control subjects performed an isometric dorsiflexor contraction at 30% maximal voluntary contraction until target failure (endurance time). We made continuous and noninvasive measurements of heart rate and MAP (Finapres) and of intramuscular pH and P(i) (phosphorus magnetic resonance spectroscopy) in a subset of 6 MS and 10 control subjects. Endurance times and change in heart rate were similar in MS and control subjects. The decrease in pH and increase in P(i) were less throughout exercise in MS compared with control subjects, as was the change in MAP response. Differences in muscle strength accounted for some of the difference in MAP response between groups. Cardiovascular responses during Valsalva and cold pressor tests were similar in MS and control subjects, suggesting that the blunted MAP response during exercise in MS was not due to a generalized dysautonomia. The dampened metabolic response in MS subjects was not explained by inadequate central muscle activation. These data suggest that the blunted pressor response to exercise in MS subjects may be largely appropriate to a blunted muscle metabolic response and differences in contracting muscle mass.  相似文献   

19.
Quantification of the biomechanical factors that underlie the inability to rise from a chair can help explain why this disability occurs and can aid in the design of chairs and of therapeutic intervention programs. Experimental data collected earlier from 17 young adult and two groups of elderly subjects, 23 healthy and 11 impaired, rising from a standard chair under controlled conditions were analyzed using a planar biomechanical model. The joint torque strength requirements and the location of the floor reaction force at liftoff from the seat in the different groups and under several conditions were calculated. Analyses were also made of how body configurations and the use of hand force affect these joint torques and reaction locations.

In all three groups, the required torques at liftoff were modest compared to literature data on voluntary strengths. Among the three groups rising with the use of hands, at the time of liftoff from the seat, the impaired old subjects, on an average, placed the reaction force the most anterior, the healthy old subjects placed it intermediately and the young subjects placed it the least anterior, within the foot support area. Moreover, the results suggest that, at liftoff, all subjects placed more importance on locating the floor reaction force to achieve acceptable postural stability than on diminishing the magnitudes of the needed joint muscle strengths.  相似文献   


20.
We investigated the capacity for torque development and muscle activation at the onset of fast voluntary isometric knee extensions at 30, 60, and 90 degrees knee angle. Experiments were performed in subjects (n = 7) who had high levels (>90%) of activation at the plateau of maximal voluntary contractions. During maximal electrical nerve stimulation (8 pulses at 300 Hz), the maximal rate of torque development (MRTD) and torque time integral over the first 40 ms (TTI40) changed in proportion with torque at the different knee angles (highest values at 60 degrees ). At each knee angle, voluntary MRTD and stimulated MRTD were similar (P < 0.05), but time to voluntary MRTD was significantly longer. Voluntary TTI40 was independent (P > 0.05) of knee angle and on average (all subjects and angles) only 40% of stimulated TTI40. However, among subjects, the averaged (across knee angles) values ranged from 10.3 +/- 3.1 to 83.3 +/- 3.2% and were positively related (r2 = 0.75, P < 0.05) to the knee-extensor surface EMG at the start of torque development. It was concluded that, although all subjects had high levels of voluntary activation at the plateau of maximal voluntary contraction, among subjects and independent of knee angle, the capacity for fast muscle activation varied substantially. Moreover, in all subjects, torque developed considerably faster during maximal electrical stimulation than during maximal voluntary effort. At different knee angles, stimulated MRTD and TTI40 changed in proportion with stimulated torque, but voluntary MRTD and TTI40 changed less than maximal voluntary torque.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号