首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sugai S  Ohno N 《Biophysical chemistry》1980,11(3-4):387-395
The conformational transitions of the alternating maleic acid copolymers with styrene (MA-St)n, and alpha-methyl styrene (MA-MSt)(n) in aqueous solutions were studied by means of various methods. The following results were obtained: 1) The conformational transitions of (MA-St)n from the compact to extended coil form are observed in various salt solutions, as in aqueous NaCl, and the compact form is stabilized by Rb+ and Cs+, but destabilized by Li+. The coions, Br-, I-, ClO4- and SCN- affect scarcely the stability of the compact form. 2) The temperature coefficient of viscosity d In [eta]/dT of (MA-St)n in 0.09 M NaCl was positive for the compact form, but negative for the coil form, and it reflects the transition. 3) The difference between specific heats for the compact and coil forms of (MA-St)n in 0.03 M NaCl is determined to be about 15% of the corresponding heat of transfer of benzene to aqueous medium. 4) A remarkable dilution of the bound monomeric acridine orange to the compact form (MA-St)n is observed and the dimerization free energy of the dye in the compact form is about -2.1 kcal mole at 25 degrees C. 5) Potentiometric, dilatometric and viscometric titrations of (MA-MSt)n in aqueous NaCl at 25 degrees C show a similar conformational transition to that of (MA-St)n. Also, the difference in the molar extinction coefficient at 261 nm indicates the transition. The compact form of (MA-MSt)n is more unstable than that of (MA-St)n. From the results, the compact conformations and the transition mechanism of both the polyacids were discussed in comparison with the results for the maleic acid copolymers with n-alkyl vinyl ethers.  相似文献   

2.
Solution properties of fractionated ovine submaxillary mucin (OSM) and asialo OSM (aOSM) in aqueous guanidine hydrochloride have been investigated using light scattering and rheological methods. For the first time we present viscometric evidence in both dilute and concentrated solution that the molecular structure of OSM is that of a wormlike chain. The intrinsic viscosity shows molecular weight dependence consistent with the linear extended chain conformation observed by light scattering measurements. The viscoelastic behavior of the OSM fractions in aqueous guanidine hydrochloride was further examined above the overlap concentration as a function of molecular weight and temperature. Under these solvent conditions in which the role of nonbonding intermolecular interactions is minimized, OSM shows predominantly fluid like behavior. However, high molecular weight OSM shows evidence of the existence of an entanglement network at high concentration. The frequency-dependent shear storage and loss moduli at all concentrations and molecular weights can be scaled to yield a master curve by incorporating typical viscoelastic shift parameters. The entanglement molecular weight and concentration are consistent with literature data for extended, semiflexible wormlike chains. The behavior of aOSM is similar to that of intact OSM at comparable degrees of coil overlap, indicating that the terminal sialic acid residue on the carbohydrate side chain has no effect on the rheology of concentrated OSM solutions beyond that due to an increase in the hydrodynamic volume.  相似文献   

3.
With raising temperature in the domain of 20 to 60 degrees C, the intrinsic viscosity [eta] for pullulan-tricarbanilate PTC and amylose-tricarbanilate ATC in solutions was found to decrease, indicating that they exhibited thermal-induced conformational transition from expanded form to compact form. The persistence length P(l) of the chains, evaluated with small-angle X-ray scattering, has also decreased as the temperature is raised and, moreover, it significantly depended on the solvents employed, where as P(l) of pullulan, having no carbanilate groups, has exhibited neither temperature- nor solvent-dependence. The temperature dependence of [eta] for PTC and ATC was well elucidated in terms of the temperature-dependent P(l) with the wormlike chain model. From these results, it is suggested that intramolecular hydrogen bonds would be formed between carbanilate groups neighboring along the backbone chain, but they are gradually and cooperatively collapsed as the temperature is raised, inducing the conformational transition.  相似文献   

4.
Nine samples of gellan gum in the sodium form, ranging in weight-average molar mass from 3.47 x 10(4) to 1.15 x 10(5) at 40 degrees C, were investigated by static and dynamic light scattering and viscometry in 25 mM aqueous NaCl both at 40 and at 25 degrees C. The ratios of the molar mass at 25 degrees C (in the ordered state) to that at 40 degrees C (in the disordered state) were in the range of 1.99 to 2.07, supporting the scheme of the conformational transition of gellan gum between a disassociated single chain and an associated chain composed of two molecules. Focusing on the effects of polydispersity, the intrinsic viscosities, radii of gyration, and hydrodynamic radii were analyzed on the basis of unperturbed wormlike chain models. The persistence lengths were evaluated as 9.4 nm at 40 degrees C and 98 nm at 25 degrees C.  相似文献   

5.
Li W  Cui SW  Wang Q 《Biomacromolecules》2006,7(2):446-452
The solution properties of wheat beta-glucan were investigated by light scattering and viscometric methods. The hydrodynamic radius (R(h)), weight average molecular weight (M(w)), radius of gyration (R(g)), and the second virial coefficient (A(2)) of wheat beta-glucan were determined by both dynamic and static light scattering methods, whereas the critical concentrations (c) of the solution were derived from [eta] via viscometric method. The structure sensitive parameters, rho (1.52-1.62), the conformation parameter nu (0.62), and the Mark-Houwink-Sakurada exponents alpha (0.78) confirmed the random coil conformation of wheat beta-glucan in 0.5 M NaOH solution. The characteristic ratio (4.97) was obtained by the random flight model, and the statistical segment length (8.83 nm) was derived from the wormlike cylinder model. It was found that the wormlike cylinder model could explain the chain stiffness better than the random flight model, which suggested an extended random coil conformation of wheat beta-glucan in 0.5 M NaOH solution. The study also revealed that the structure feature of wheat beta-glucan; that is, the higher trisaccharide-to-tetrasaccharide ratio contributed to the stiffer chain conformation compared with other cereal beta-glucans.  相似文献   

6.
The particle scattering factor in light scattering is determined for poly(tert-butyl crotonate) in n-butyl chloride and also for partially neutralized poly (acrylic acid) in aqueous solution in the presence of added neutral salt (NaBr). The former is a wormlike chain which is extended due to stiffness of the polymer chain, while the latter is extended due to the electrostatic repulsive force which is a kind of excluded volume effect. A clear difference is found between P(theta) of both polymers.  相似文献   

7.
The helix–coil transition for poly(β-benzyl-L -aspartate) [poly(Asp[OBzl])] in solvent mixtures of trifluoroacetic acid/deuterated chloroform (F3AcOH/CDCl3) was studied by means of proton and carbon-13 nmr. Conformational fixation of the side chain occurs before the coil–helix transition of the backbone, when neighboring phenyl rings face each other. Another type of conformational fixation occurs in the side chain after the coil–helix transition of the backbone. These conformational changes of the side chain are due to the changes of the strength of the interaction between the side-chain ester group and the F3AcOH molecule. In the absence of F3AcOH (coil-forming solvent), the polymer has a rather rigid structure in which the side chain may wrap around the backbone. These conformational changes of the polymer are closely related to the changes of the interaction between the polymer and F3AcOH molecules.  相似文献   

8.
We present dynamic light scattering (DLS) and hydrophobic dye-binding data in an effort to elucidate a molecular mechanism for the ability of gastric mucin to form a gel at low pH, which is crucial to the barrier function of gastric mucus. DLS measurements of dilute mucin solutions were not indicative of intermolecular association, yet there was a steady fall in the measured diffusion coefficient with decreasing pH, suggesting an apparent increase in size. Taken together with the observed rise in depolarized scattering ratio with decreasing pH, these results suggest that gastric mucin undergoes a conformational change from a random coil at pH >/= 4 to an anisotropic, extended conformation at pH < 4. The increased binding of mucin to hydrophobic fluorescent with decreasing pH indicates that the change to an extended conformation is accompanied by exposure of hydrophobic binding sites. In concentrated mucin solutions, the structure factor S(q, t) derived from DLS measurements changed from a stretched exponential decay at pH 7 to a power-law decay at pH 2, which is characteristic of a sol-gel transition. We propose that the conformational change facilitates cross-links among mucin macromolecules through hydrophobic interactions at low pH, which in turn leads to a sol-gel transition when the mucin solution is sufficiently concentrated.  相似文献   

9.
Y Suzuki  Y Inoue  R Chùjò 《Biopolymers》1975,14(6):1223-1230
The helix–coil conformational transition undergone by poly(γ-benzyl-L -glutamate) in solutions of trifluoroacetic acid and deuterated chloroform was studied by proton and carbon-13 nmr. The results indicate that in the case of the solvent-induced helix–coil transition, the side chain assumes a helical conformation before the backbone. In the thermally induced helix–coil transition, the results indicate the existence of an intermediate state, which is between the α-helix and random coil and is free from intramolecular hydrogen bonding.  相似文献   

10.
DNA conformational behavior in the presence of non-stoichiometric mixtures of two oppositely charged surfactants, cetyltrimethylammonium bromide and sodium octyl sulfate, was directly visualized in an aqueous solution with the use of a fluorescence microscopy technique. It was found that in the presence of cationic-rich catanionic mixtures, DNA molecules exhibit a conformational transition from elongated coil to compact globule states. Moreover, if the catanionic mixtures form positively charged vesicles, DNA is adsorbed onto the surface of the vesicles in a collapsed globular form. When anionic-rich catanionic mixtures are present in the solution, no change in the DNA conformational behavior was detected. Cryogenic transmission electron microscopy, as well as measurements of translational diffusion coefficients of individual DNA chains, supported our optical microscopy observations.  相似文献   

11.
The conformational properties of CP-10(42-55), a peptide corresponding to the hinge region of CP-10, were investigated using circular dichroism spectroscopy and reverse-phase high-performance liquid chromatography (RP-HPLC). The circular dichroism studies indicated that CP-10(42-55) formed considerable secondary structure in the presence of hydrophobic solution environments including 50% acetonitrile, 50% trifluoroethanol and 200 mM sodium dodecyl sulfate, which comprised a mixture of alpha-helix and beta-sheet. The effect of temperature on the conformation of CP-10(42-55) was investigated between 5 and 40 degrees C, with very small changes in the spectra being observed. RP-HPLC was then used to investigate the effect of temperature on the conformation of CP-10(42-55) in the presence of a hydrophobic surface. Using a C18-adsorbent, CP-10(42-55) exhibited a conformational transition at 25 degrees C, which was associated with an increase in the chromatographic contact area and the binding affinity of the peptide for the stationary phase. In addition, near-planar bandbroadening behaviour indicated that conformational species interconverted with rapid rate constants compared with the chromatographic time scale. These results indicated that the conformational change at 25 degrees C in the RP-HPLC system most likely corresponds to the unfolding of an alpha-helical and/or beta-sheet structure to an extended coil structure. Therefore, the strong chemotactic properties of this peptide may be attributed to its ability to form considerable secondary structure in the presence of a hydrophobic environment.  相似文献   

12.
Sodium counterion association with partially neutralized poly(D -glutamic acid) or poly(DL -glutamic acid) was measured by use of Wall's transference method with radioactive sodium. In the region where both polyacids are in completely random coil form, fractions of association were considerably less than that with poly(acrylic acid) in the same region of degree of neutralization. Even in the region where poly (D -glutamic acid) is in the helical form, the fraction of association was less than that with poly(acrylic acid) in the same region. No pronounced characteristics attributable to counterion association corresponding to the helix–coil transition could be found. The association phenomena were discussed on the basis of a rodlike model of polyelectrolyte.  相似文献   

13.
X Wu  P S Blank    F D Carlson 《Biophysical journal》1992,63(1):169-179
We have investigated the hydrodynamic properties of turkey gizzard smooth muscle myosin in solution using quasi-elastic light scattering (QELS). The effects of ionic strength (0.05-0.5 M KCl) and light chain phosphorylation on the conformational transition of myosin were examined in the presence of ATP at 20 degrees C. Cumulant analysis and light scattering models were used to describe the myosin system in solution. A nonlinear least squares fitting procedure was used to determine the model that best fits the data. The conformational transition of the myosin monomer from a folded form to an extended form was clearly demonstrated in a salt concentration range of 0.15-0.3 M KCl. Light chain phosphorylation regulates the transition and promotes unfolding of the myosin. These results agree with the findings obtained using sedimentation velocity and electron microscopy (Onishi and Wakabayashi, 1982; Trybus et al., 1982; Trybus and Lowey, 1984). In addition, we present evidence for polymeric myosin coexisting with the two monomeric myosin species over a salt concentration range from 0.05 to 0.5 M KCl. The size of the polymeric myosin varied with salt concentration. This observation supports the hypothesis that, in solution, a dynamic equilibrium exists between the two conformations of myosin monomer and filaments.  相似文献   

14.
The sodium ion concentration dependent conformational changes of transfer RNA (unfractionated tRNA from baker's yeast) have been studied in unbuffered aqueous solutions by Rayleigh light scattering. Changes of the optical parameters of the molecule indicated the following conformational changes of tRNA with increasing NaCl concentration: in salt-free solution tRNA molecules have an irregular hairpin loop-like structure in which the orientation of base rings is not correlated. Upon addition of a small amount of NaCl (0.005 M) an increasing ordering of this structure is observed. In 0.1 M-NaCl the molecule has an extended structure with ordered regions (arms). Further increase of sodium ion concentration up to 2 M results in folding of the extended structure and formation of a compact and rigid conformation in which most of the bases are nearly perpendicular to the symmetry axis of the molecule.  相似文献   

15.
16.
The denatured state of a double mutant of the chemotactic protein CheY (F14N/V83T) has been analyzed in the presence of 5 M urea, using small angle X-ray scattering (SAXS) and heteronuclear magnetic resonance. SAXS studies show that the denatured protein follows a wormlike chain model. Its backbone can be described as a chain composed of rigid elements connected by flexible links. A comparison of the contour length obtained for the chain at 5 M urea with the one expected for a fully expanded chain suggests that approximately 25% of the residues are involved in residual structures. Conformational shifts of the alpha-protons, heteronuclear (15)N-[(1)H] NOEs and (15)N relaxation properties have been used to identify some regions in the protein that deviate from a random coil behavior. According to these NMR data, the protein can be divided into two subdomains, which largely coincide with the two folding subunits identified in a previous kinetic study of the folding of the protein. The first of these subdomains, spanning residues 1-70, is shown here to exhibit a restricted mobility as compared to the rest of the protein. Two regions, one in each subdomain, were identified as deviating from the random coil chemical shifts. Peptides corresponding to these sequences were characterized by NMR and their backbone (1)H chemical shifts were compared to those in the intact protein under identical denaturing conditions. For the region located in the first subdomain, this comparison shows that the observed deviation from random coil parameters is caused by interactions with the rest of the molecule. The restricted flexibility of the first subdomain and the transient collapse detected in that subunit are consistent with the conclusions obtained by applying the protein engineering method to the characterization of the folding reaction transition state.  相似文献   

17.
H Daoust  D St-Cyr 《Biopolymers》1988,27(8):1267-1281
Organic solvent-induced coil → helix conformational change of poly(sodium) L -glutamate (NaPLG) and poly(cesium L -glutamate) (CsPLG) in solution in aqueous mixed solvents have been studied at 25°C. Heats of dilution of NaPLG in the water–dioxane pair have been measured as a function of polymer concentration and solvent composition. The results indicate that the overall chain conformation in the disordered form is not too different from that in the α-helical form. Heat capacity measurements by flow microcalorimetry have also been done. The apparent monomolar heat capacity at constant pressure of the polymer, Cp, ?, decreases with dilution similarly to other strong polyelectrolytes in aqueous media. In the water–dioxane pair, Cp, ? increases with the dioxane content due to partial desolvation of ionic species resulting from increasing ionic association. In the case of the water-2-chloroethanol (CE) pair, the transition takes place at low CE content and results show a fast decrease in Cp, ? when the α-helical conformation predominates. It is believed carboxylate groups and CE molecules associate themselves into a complex formation responsible for the transition. The size of the cation plays a significant role in the thermodynamic properties of these polyelectrolytes in solution since sodium ions are more strongly bound to the chain than cesium ions.  相似文献   

18.
Poly[d(A-T)-Cs+] conformations studied by IR spectroscopy   总被引:1,自引:0,他引:1  
Infrared absorption and ir linear dichroism measurements have been performed on poly[d(A-T)-Cs+] films at various relative humidities. At high relative humidity, samples are in a B form; at low relative humidity, in a C form. The B → C conformational transition is shown to be a noncooperative one corresponding to a gradual evolution of the backbone geometry of the polynucleotide within the B family. the C-form-type spectrum is characteristic of an alternated phosphodiester chain with a dinucleotidic repeat unit.  相似文献   

19.
This paper concerns the study of the conformational transition of a new exopolysaccharide (YAS34) using experimental techniques such as optical rotation, conductimetric and microcalorimetric measurements as a function of temperature. The behaviors of this polysaccharide in the acid or sodium salt form are compared; a deacetylated sample is also prepared to demonstrate the role of substituents. For the native structure (never heated), a conformational transition is observed but the deacetylated polysaccharide exhibits no ordered conformation. Multidetection size exclusion chromatography (SEC) analyses and conductimetric experiments allowed to determine the nature of each conformation and the molecular dimensions. From these results, it is suggested that the native conformation is a double helix which by heating over T(m) (temperature corresponding to half conformational transition) dissociates into disordered single chains. In the acid and sodium salt forms, by cooling below T(m), an ordered conformation is restored. This conformation seems to be an intramolecular double helix 'hairpin-like turn' (called renatured conformation). Nevertheless an irreversible denaturation is obtained progressively in the sodium salt form when the time of heating over T(m) increases. The conformation of the deacetylated polysaccharide corresponds to that of a single flexible chain (disordered conformation). The conformational transition for the native conformation was studied also in relation to the polyelectrolytic character of the polysaccharide: stability as a function of salt nature and salt and polymer concentrations was investigated for the polymer initially in the sodium and acid forms.  相似文献   

20.
The disulfide-reduced form of bovine ribonuclease A, with the Cys thiols irreversibly blocked, was characterized by small-angle x-ray scattering. To help resolve the conflicting results and interpretations from previous studies of this model unfolded protein, we measured scattering profiles using a range of solution conditions and compared them with the profiles predicted by a computational model for a random-coil polypeptide. Analysis of the simulated and experimental profiles reveals that scattering intensities at intermediate angles, corresponding to interatomic distances in the range of 5-20 Å, are particularly sensitive to changes in solvation and can be used to assess the internal scaling behavior of the polypeptide chain, expressed as a mass fractal dimension, Dm. This region of the scattering curve is also much less sensitive to experimental artifacts than is the very small angle regime (the Guinier region) that has been more typically used to characterize unfolded proteins. The experimental small-angle x-ray scattering profiles closely matched those predicted by the computational model assuming relatively small solvation energies. The scaling behavior of the polypeptide approaches that of a well-solvated polymer under conditions where it has a large net charge and at high urea concentrations. At lower urea concentrations and neutral pH, the behavior of the chain approaches that expected for θ-conditions, where the effects of slightly unfavorable interactions with solvent balance those of excluded volume, leading to scaling behavior comparable to that of an idealized random walk chain. Though detectable, the shift toward more compact conformations at lower urea concentrations does not correspond to a transition to a globule state and is associated with little or no reduction in conformational entropy. This type of collapse, therefore, is unlikely to greatly reduce the conformational search for the native state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号