首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cloning and expression of a beta tubulin gene of Physarum polycephalum   总被引:1,自引:0,他引:1  
A beta tubulin gene of Physarum polycephalum has been isolated from a genomic library in the phage EMBL4. Southern-blot hybridization to genomic DNA indicates that the cloned DNA is derived from the betB1 locus of the beta tubulin gene family. A tubulin-specific subfragment of the phage DNA was used as a hybridization probe to construct a restriction map of the betB1 locus. The probe consisted of the almost complete coding region of the 5' half of the tubulin gene, interrupted by one intron. The derived amino acid sequence of this subclone deviates from the protein sequence for Physarum amoebal beta tubulin (amino acids 4-207) in two of 207 amino acids. We used both recA and recBC sbcB bacterial host strains, which have been recommended for cloning of instability-conferring sequences of the Physarum genome, but were unable to subclone the 3' part of the gene from the phage DNA. Primer-extension analysis indicates that the betB gene is expressed in the vegetatively proliferating amoebal and plasmodial stages of the life cycle as well as in differentiating (sporulating) plasmodia.  相似文献   

2.
3.
4.
In the myxomycete Physarum polycephalum, tubulin synthesis is subject to mitotic cycle control. Virtually all tubulin synthesis is limited to a 2-h period immediately preceding mitosis, and the peak of tubulin protein synthesis is accompanied by a parallel increase in the level of tubulin mRNA. The mechanism by which the accumulation of tubulin mRNA is turned on and off is not clear. To probe the relationship between tubulin regulation and cell cycle controls, we have used heat shocks to delay mitosis and have followed the pattern of tubulin synthesis during these delays. Two peaks of tubulin synthesis are observed after a heat shock. One occurs at a time when synthesis would have occurred without a heat shock, and a second peak immediately precedes the eventual delayed mitosis. These results are clearly due to altered cell cycle regulation. No mitotic activity is detected in delayed plasmodia at the time of the control mitosis, and tubulin behavior is shown to be clearly distinct from that of heat shock proteins. We believe that the tubulin family of proteins is subject to regulation by a thermolabile mitotic control mechanism but that once the cell has been committed to a round of tubulin synthesis the "tubulin clock" runs independently of the heat sensitive system. In delayed plasmodia, the second peak of synthesis may be turned on by a repeat of the commitment event.  相似文献   

5.
6.
7.
A recombinant DNA library was screened for histone H4 genes using a sea urchin probe. One recombinant was analysed by restriction enzyme mapping and Southern blotting. The complete DNA sequence of the H4 histone locus was determined. An 86 base pair interrupting sequence was found within the histone H4 coding sequence. The inserted DNA fragment has some characteristics of a transposable element.  相似文献   

8.
9.
H1 histone kinases from nuclei of Physarum polycephalum   总被引:1,自引:0,他引:1  
  相似文献   

10.
In Physarum polycephalum several degrees of organisation of deoxyribonucleoprotein fibres were found. The complexes of histones and the DNA duplex seem to "be packed" at first into a 100 A fibre and then into a 200 A fibre of DNP. In Ph. polycephalum the electrophoretic mobilities of histone fractions 4 and 6 are comparable to that of fractions f3/f2b and f2a1 of calf thymus, resp. Histone fractions 3 and 5 move a bit faster than fractions f1 and f2a2, resp. Thus, the myxomycete P. polycephalum is similar to higher eukaryotes as concerns the ultrastructure of chromatin and electrophoretic properties of histones.  相似文献   

11.
12.
Regulation of alpha- and beta-tubulin isotype synthesis during the cell cycle has been studied in the myxomycete Physarum polycephalum, by subjecting synchronous plasmodia to temperature shifts and pharmacological perturbations. Temperature shifts interfered with the regulation of tubulin synthesis. Inhibition of DNA synthesis prevents tubulin degradation after completion of the cell cycle (Ducommun and Wright, Eur. J. Cell Biol., 50:48-55, 1989) but did not perturb the initiation of tubulin synthesis. The constant increase of tubulin synthesis in the presence of tubulin-sequestering drugs and the decrease of tubulin synthesis during a treatment with aphidicolin in late G2 phase suggest the existence of an autoregulatory mechanism of tubulin synthesis. Moreover, the microtubule poison methyl benzimidazole carbamate dissociated synthesis of the alpha 1-tubulin isotype from the generally strictly coordinated synthesis of all tubulin isotypes during the transient interruption of mitosis. These observations show that a microtubular poison can perturb regulation of the synthesis of specific isotubulins.  相似文献   

13.
14.
Two stages of colony growth were observed during microscopic studies of Physarum polycephalum amoebae. During the first stage, “spreading growth,” the colony is composed of dispersed single cells. During the second stage, “aggregate growth,” most of the active cells in a colony are aggregated in a ring at the colony boundary. Measurements of cell movement as a function of bacterial concentration indicate that, during both spreading and aggregate growth, cell movements are not affected by changes in bacterial concentration but that the transition from spreading to aggregate growth occurs earlier on plates with lower bacterial concentrations. These results indicate that autonomous characteristics of the amoebae are more important for the determination of colony form than local variations in the concentrations of nutrients.The genetic determination of colony form is demonstrated by the existence of mutants that display specific alterations in colony morphology. Because the aggregate rings of these mutants move at an increased rate, mutant clones appear as variant sectors of wild-type colonies. The increased rate of mutant ring movement suggests that this selection method may be a useful technique for isolating mutant myxamoebae with defects in movement and behavior.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号