首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chemical composition of rainwater is altered upon its passage through tree canopies. In order to investigate how rainwater chemistry is affected by canopy-dependent processes in characteristic forest types of Northwest German sandy lowland regions – oak–birch-forests, Betula pubescens Ehrh. swamp forests, and stands of Pinus sylvestris L. – comparative studies on the chemical composition of throughfall were carried out at seven forest sites, situated in close proximity within a nature reserve. Additionally, rainwater was sampled at three heathland sites for analysis of open-field precipitation and at three sites along an oak–birch-forest edge. Throughfall concentrations of most of the parameters analysed were significantly higher than open-field concentrations, especially with regard to electric conductivity, NH4-N, K+, and KMnO4-index. Ion concentrations in throughfall were the lowest in a 10-year-old stand of Betula pendula Roth. and Pinus sylvestris and in a Betula pubescens swamp forest and were highest beneath a stand of Pinus sylvestris. Except for Na+, Cl, and NO3, ion concentrations in both throughfall and open-field precipitation increased during the growing season (May–October). In throughfall, Ca2+, Mg2+, K+, and Mn2+ were strongly correlated. Enrichment ratios between throughfall and open-field deposition varied among sites and elements and were the highest for K‰+, Mg2‰+, and Mn2‰+. Estimates of canopy leaching indicated high leaching rates of K‰+ and Mn2‰+ and moderate leaching of Mg2‰+. The contribution of foliar leaching to throughfall deposition was higher at the deciduous than at the coniferous stands.  相似文献   

2.
Regional topography and climate variation yield differences in ecosystem attributes that make spatially scaled estimates of forest productivity challenging. Foliar nitrogen is a primary indicator of forest ecosystem productivity and is used in regional estimates of terrestrial productivity, but this characteristic has not been well described in the Central Appalachian region. Here we describe foliar and soil N variation among species and elevations at two spatial scales in the Central Appalachian region: (1) across the Elklick watershed in the Fernow Experimental Forest and (2) across the state of West Virginia. We found higher foliar N concentrations at both scales than those previously reported for other temperate forest regions. Canopy and soil nitrogen concentrations were also much greater in the Fernow than generally observed across West Virginia. Soil N concentrations in the Fernow were two times greater than those observed across West Virginia. Species-related differences were observed at both spatial scales, but were not always consistent. Canopy N ranges are generally consistent across elevations throughout the state of West Virginia, but should be scaled according to species-related elevation effects for studies that estimate productivity differences in response to harvest or changing species composition. The incongruence of foliar and soil N concentrations at the Fernow Experimental Forest are not explained by elevation or species composition, but are likely a consequence of greater historical N and H+ deposition relative to the surrounding West Virginia region.  相似文献   

3.
Stemflow nutrient inputs to soil in a successional hardwood forest   总被引:10,自引:0,他引:10  
Stemflow and throughfall from a regenerating (8-year-old) southern Appalachian hardwood forest were collected to examine the relative importance of tree bole nutrient leaching in response to acid deposition. Samples from nine (2 m2) stemflow collection plots were analyzed for four dormant season and 11 growing season rainstorm events. Results showed that, relative to throughfall fluxes, stemflow accounted, on average, for approximately 8.5% of total water reaching the forest floor during both dormant and growing season storms. Relative to foliar leaching, K-, SO4-, and PO4 ions appear to be the most easily leached ions from young tree stems. Proportional nitrate and base cation stemflow fluxes increased significantly (p<0.05) with growing-season storm-event duration, suggesting that the stemsurface nutrient pool is depleted by precipitation more slowly than the foliar pool. On average, proportional stemflow fluxes of SO4 (12%) and K (14%) were consistently higher than reported maximum values for more mature forest stands, which indicates that small-scale stemflow inputs of ions such as these to the forest floor may be important in early successional ecosystems.  相似文献   

4.
Logging, pervasive across the lowland tropics, affects millions of hectares of forest, yet its influence on nutrient cycling remains poorly understood. One hypothesis is that logging influences phosphorus (P) cycling, because this scarce nutrient is removed in extracted timber and eroded soil, leading to shifts in ecosystem functioning and community composition. However, testing this is challenging because P varies within landscapes as a function of geology, topography and climate. Superimposed upon these trends are compositional changes in logged forests, with species with more acquisitive traits, characterized by higher foliar P concentrations, more dominant. It is difficult to resolve these patterns using traditional field approaches alone. Here, we use airborne light detection and ranging‐guided hyperspectral imagery to map foliar nutrient (i.e. P, nitrogen [N]) concentrations, calibrated using field measured traits, over 400 km2 of northeastern Borneo, including a landscape‐level disturbance gradient spanning old‐growth to repeatedly logged forests. The maps reveal that canopy foliar P and N concentrations decrease with elevation. These relationships were not identified using traditional field measurements of leaf and soil nutrients. After controlling for topography, canopy foliar nutrient concentrations were lower in logged forest than in old‐growth areas, reflecting decreased nutrient availability. However, foliar nutrient concentrations and specific leaf area were greatest in relatively short patches in logged areas, reflecting a shift in composition to pioneer species with acquisitive traits. N:P ratio increased in logged forest, suggesting reduced soil P availability through disturbance. Through the first landscape scale assessment of how functional leaf traits change in response to logging, we find that differences from old‐growth forest become more pronounced as logged forests increase in stature over time, suggesting exacerbated phosphorus limitation as forests recover.  相似文献   

5.
北京西山地区油松林水文过程中营养元素迁移特征   总被引:6,自引:0,他引:6  
王登芝  聂立水  李吉跃 《生态学报》2006,26(7):2101-2107
对北京西山地区31a油松林降水化学进行定位监测与分析.结果表明:(1)大气降水流经油松林过程中,其营养元素(除Na^+外)的浓度出现梯度变化:树干茎流高于穿透雨高于大气降水,并且有明显的月际变化,表明从林冠、树干淋洗大量的营养元素,林冠和树干中养分元素迁移是森林生态系统养分循环重要的组成部分.(2)营养元素变化中,浓度差异变化较大的元素是NO3^--N和K^+,NO3^--N在穿透雨和树干茎流的浓度分别是大气降水的4.4倍、9.9倍,它们中的K^+浓度分别为大气降水的4.1倍和8.1倍.(3)降水经过油松林,养分淋溶总量为54.12kg hm^-2,淋溶量较多的元素是Ca和K,淋溶强度最大的元素是K^+.(4)北京西山地区大气降水输入林地的养分66.38kg hm^-2,较多的元素是Ca、N.降水经过油松林输入林地养分总量为120.50kg hm^-2,Ca元素最高,为61.22kg hm^-2,其次是N元素(NH4^+-N+N3^--N),为31.34kg hm^-2,K元素为16.49kg hm^-2,Mg元素为8.11kg hm^-2,Na元素最少,为3.34kg hm^-2.  相似文献   

6.
哀牢山亚热带常绿阔叶林内外地温分布特征   总被引:1,自引:0,他引:1  
地温是森林气候重要的环境因素之一,与植物生长密切相关,对地温的深入研究有助于揭示森林生态系统功能和评估森林环境效益。本文利用哀牢山亚热带常绿阔叶林林内和林外旷地(气象站)地温数据,分析发现:哀牢山亚热带常绿阔叶林林内外的地温均呈单峰型日变化,与林外相比,林内地温具有明显日变化的深度较浅(仅在20cm深度以上);林内平均地温具有显著日变化的深度在春季和秋季(20cm)要大于夏季和冬季(15cm);与林外相比,林内各层地温均小于同层的林外地温,并且林内地温的日变幅和年变幅也小于同深度的林外地温。总体来看,林外地温的年变幅和日变幅大于林内。  相似文献   

7.
? Premise of the study: Fog provides a critical water resource to plants around the world. In the redwood forest ecosystem of northern California, plants depend on fog absorbed through foliar uptake to stay hydrated during the rainless summer. In this study, we identified regions within the redwood ecosystem where the fern Polystichum munitum canopy most effectively absorbs fog drip that reaches the forest floor. ? Methods: We measured the foliar uptake capacity of P. munitum fronds at seven sites along 700 km of the redwood forest ecosystem. We quantified the canopy cover of P. munitum at each site and estimated how much water the fern canopy can acquire aboveground through fog interception and absorption. ? Key results: Throughout the ecosystem, nocturnal foliar uptake increased the leaf water content of P. munitum by 7.2%, and we estimated that the P. munitum canopy can absorb 5 ± 3% (mean ± SE) of intercepted fog precipitation. Strikingly, P. munitum had the highest foliar uptake capacity in the center of the ecosystem and may absorb 10% more of the fog its canopy intercepts in this region relative to other regions studied. Conversely, P. munitum had no foliar uptake capacity in the southern end of the ecosystem. ? Conclusions: This study shows the first evidence that foliar uptake varies within species at the landscape scale. Our findings suggest that the P. munitum at the southern tip of the redwood ecosystem may suffer most from low summertime water availability because it had no potential to acquire fog as an aboveground water subsidy.  相似文献   

8.
赵晓静  张胜利  马国栋 《生态学报》2015,35(24):8155-8164
将森林抚育间伐与森林水化学效应结合起来进行研究,探讨小强度间伐对森林水质的影响。基于固定样地的研究方法,在秦岭火地塘林区选择天然锐齿栎林,设置抚育间伐强度分别为5%、10%、15%和20%的样地和对照样地,定期采集大气降雨、林内雨和枯透水样品,测定其水化学物质浓度,采用对比分析的方法,研究间伐强度对锐齿栎林内雨和枯透水化学效应的影响。结果表明:间伐样地林内雨和枯透水的pH值均低于对照样地,呈弱酸性,在5%的间伐强度下,森林冠层和枯落物层对大气降雨pH值的调升作用较显著,随着间伐强度的增加,调升幅度逐渐减小;大气降雨对森林冠层和枯落物层中的SO_4~(2-)、NO_3~-和PO_4~(3-)均具有淋溶作用,尤其是对照样地林内雨和枯透水中SO_4~(2-)的浓度增幅最显著,NO_3~-次之,PO_4~(3-)最不显著。间伐样地,雨水对林冠层和枯落物层SO_4~(2-)、NO_3~-和PO_4~(3-)的淋溶作用均低于对照样地,20%的间伐强度最有利于净化雨水中的SO_4~(2-),其在林内雨和枯透水中的含量较对照样地降幅最大,间伐强度为5%时,林内雨中NO_3~-、NH_4~+和PO_4~(3-)的含量最低,三者较对照样地的含量分别降低了56.3%、46%和9.2%而枯透水中三者的降幅分别为64.6%、45%和60.8%;在10%的间伐强度下,大气降雨对林冠层和枯落物层中K~+、Ca~(2+)、Mg~(2+)的淋溶作用最强,3种离子中以Ca~(2+)和Mg~(2+)的含量增幅最为显著。林内雨中Ca~(2+)和Mg~(2+)的含量分别较对照样地增加了89.9%和120%,枯透水中二者较对照样地分别增加了72.4%和40%,K~+的增幅相对不明显;大气降雨中的Pb~(2+)、Zn~(2+)和Cd~(2+)经过森林冠层和枯落物层的阻减,其在林内雨和枯透水中的含量随着间伐强度的增加呈先增大后减小的趋势,当间伐强度达到20%时,三者含量明显降低。总体上,20%的间伐强度最有利于森林冠层及枯落物层对重金属Pb~(2+)、Zn~(2+)和Cd~(2+)的截留净化。  相似文献   

9.
In the U.S., high elevation spruce-fir forests receive greater amounts of nitrogen deposition relative to low elevation areas. At high elevations the cycling of nitrogen is naturally low due to slower decomposition and low biological N demand. The combination of these factors make spruce-fir ecosystems potentially responsive to changes in N inputs.Excess nitrogen deposition across the northeastern United States and Europe has provided an opportunity to observe ecosystem response to changing N inputs. Effects on foliar and forest floor chemistry were examined in a field study of 161 spruce-fir sites across a longitudinal (west-to-east) N deposition gradient. Both foliar elemental concentrations and forest floor elemental concentrations and rates of potential N mineralization were correlated with position along this gradient.Nitrogen deposition was positively correlated with potential forest floor nitrification and mineralization, negatively correlated with forest floor C:N and Mg concentrations and with spruce foliar lignin, lignin:N and Mg:N ratios. Foliar lignin:N and forest floor C:N were positively correlated and both were negatively correlated with nitrification and mineralization. Correlations found between forest floor and foliar N and Mg concentrations support the theory of nutrient imbalance as a potential cause of forest decline.  相似文献   

10.
Foliar respiration is a major component of ecosystem respiration, yet extrapolations are often uncertain in tropical forests because of indirect estimates of leaf area index (LAI). A portable tower was used to directly measure LAI and night-time foliar respiration from 52 vertical transects throughout an old-growth tropical rain forest in Costa Rica. In this study, we (1) explored the effects of structural, functional and environmental variables on foliar respiration; (2) extrapolated foliar respiration to the ecosystem; and (3) estimated ecosystem respiration. Foliar respiration temperature response was constant within plant functional group, and foliar morphology drove much of the within-canopy variability in respiration and foliar nutrients. Foliar respiration per unit ground area was 3.5 ± 0.2  µ mol CO2 m−2 s−1, and ecosystem respiration was 9.4 ± 0.5  µ mol CO2 m−2 s−1[soil = 41%; foliage = 37%; woody = 14%; coarse woody debris (CWD) = 7%]. When modelled with El Niño Southern Oscillation (ENSO) year temperatures, foliar respiration was 9% greater than when modelled with temperatures from a normal year, which is in the range of carbon sink versus source behaviour for this forest. Our ecosystem respiration estimate from component fluxes was 33% greater than night-time net ecosystem exchange for the same forest, suggesting that studies reporting a large carbon sink for tropical rain forests based solely on eddy flux measurements may be in error.  相似文献   

11.
Nitrogen inputs, fluxes, internal generation and consumption, and outputs were monitored in a subalpine spruce-fir forest at approximately 1000-m elevation on Whiteface Mountain in the Adirondacks of New York, USA. Nitrogen in precipitation, cloudwater and dry deposition was collected on an event basis and quantified as an input. Throughfall, stemflow, litterfall and soil water were measured to determine fluxes within the forest. Nitrogen mineralization in the forest floor was estimated to determine internal sources of available N. Lower mineral horizon soil water was used to estimate output from the ecosystem. Vegetation and soil N pools were determined.During four years of continuous monitoring, an average of 16 kg N ha–1 yr–1 was delivered to the forest canopy as precipitation, cloudwater and dry deposition from the atmosphere. Approximately 30% of the input was retained by the canopy. Canopy retention is likely the result of both foliar uptake and immobilization by bark, foliage and microorganisms. Approximately 40 kg of N was made available within the forest floor from mineralization of organic matter. Virtually all the available ammonium (mineralized plus input from throughfall) is utilized in the forest floor, either by microorganisms or through uptake by vegetation. The most abundant N component of soil water solutions leaving the system was nitrate. Net ecosystem fluxes indicate accumulation of both ammonium and nitrate. There is a small net loss of organic N from the ecosystem. Some nitrate leaves the bottom of the B horizon throughout the year. Comparisons with other temperate coniferous sites and examination of the ecosystem N mass balance indicate that N use efficiency is less at our site, which suggests that the site is not severely limited by N.  相似文献   

12.
The effects of whole-tree clear-cutting on soil processes and streamwater chemistry were examined in a northern hardwood forest at the Hubbard Brook Experimental Forest, New Hampshire. Soil processes were examined by monitoring soil solution chemistry collected using zero-tension lysimeters from the Oa, Bh and Bs horizons at three sites along an elevational/vegetation gradient. Whole-tree clear-cutting created a severe ecosystem disturbance leading to leaching losses of nutrients from the soil profile, increased acidification, and elevated concentrations of Al-ions in soil solutions and streamwater. The response was driven by the process of nitrification that led to production of nitric acid in both the forest floor and mineral soil horizons. This acidity was largely neutralized by release and leaching of basic cations and inorganic monomeric Al-ions leaching with the NO3-ions. The major source of nutrient loss was from the forest floor. The chemical response to the clear-cut was most intense during the second year following the treatment and declined to near reference concentrations in 4–5 years. High elevation sites showed the greatest response to disturbance and the slowest recovery of soil solution concentrations to pre-cut concentrations. Shallow soils and a slower recovery of vegetation at the upper elevation sites were the primary factors contributing to the enhanced disturbance and delayed recovery (and enhanced response to disturbance in the upper elevation sites).  相似文献   

13.
雪被是影响高海拔森林凋落物分解的重要生态因子,其是否影响到生长季节与非生长季节凋落物中的P元素释放,尚未量化。为了量化季节性雪被对高海拔森林凋落物分解过程中P元素释放的影响,于2010年10月至2012年10月间,在青藏高原东缘川西高海拔森林不同厚度冬季雪被斑块下,设置凋落物分解袋实验。检测该地区代表性树种岷江冷杉(Abies faxoniana)、红桦(Betula albo-sinensis)、四川红杉(Larix mastersiana)和方枝柏(Sabina saltuaria)凋落叶在雪被覆盖不同关键时期(雪被形成前期、完全覆盖期和消融期)以及生长季节的P元素动态。结果表明,凋落物质量与雪被厚度均显著影响了P元素的释放过程。雪被覆盖时期凋落物P元素释放率表现为有雪被覆盖大于无雪被覆盖,而生长季节中除岷江冷杉外的其他3种凋落物P元素释放率均为无雪被覆盖下最大。相对于无雪被覆盖斑块,冬季雪被的存在提供了保护绝缘层,促进凋落物P元素释放,提高了各物种冬季P元素释放贡献率。这些结果表明,全球变化情景下的雪被减少可能减缓高海拔森林凋落物P元素的释放过程,改变森林土壤P元素水平。所以在研究高寒、高海拔地区全球气候变化下生态系统功能的工作中,应注重雪被这一异质性环境因子对生态系统功能的影响。  相似文献   

14.
The influence of environmental gradients on the foliar nutrient economy of forests has been well documented; however, we have little understanding of what drives variability among individuals within a single forest stand, especially tropical forests. We evaluated inter‐ and intra‐specific variation in nutrient resorption, foliar nutrient concentrations and physical leaf traits of nine canopy tree species within a 1‐ha secondary tropical rain forest in northeastern Costa Rica. Both nitrogen (N) and phosphorus (P) resorption efficiency (RE) and proficiency of the nine tree species varied significantly among species, but not within. Both N and P RE were significantly negatively related to leaf specific strength. Green leaf N and P concentrations were strongly negatively related to leaf mass per area, and senesced leaf nutrient concentrations were significantly positively related to green leaf nutrient concentrations. This study reveals a strong influence of physical leaf traits on foliar nutrient and resorption traits of co‐occurring species in a secondary wet tropical forest stand.  相似文献   

15.
The perturbation of the global nitrogen (N) cycle due to the increase in N deposition over the last 150 years will likely have important effects on carbon (C) cycling, particularly via impacts on forest C sequestration. To investigate this effect, and the relative importance of different mechanisms involved, we used the Generic Decomposition And Yield (G'DAY) forest C–N cycling model, introducing some new assumptions which focus on N deposition. Specifically, we (i) considered the effect of forest management, (ii) assumed that belowground C allocation was a function of net primary production, (iii) assumed that foliar litterfall and specific leaf area were functions of leaf N concentration, (iv) assumed that forest canopies can directly take up N, and (v) modified the model such that leaching occurred only for nitrate N. We applied the model with and without each of these modifications to estimate forest C sequestration for different N deposition levels. Our analysis showed that N deposition can have a large effect on forest C storage at ecosystem level. Assumptions (i), (ii) and (iv) were the most important, each giving rise to a markedly higher level of forest C sequestration than in their absence. On the contrary assumptions (iii) and (v) had a negligible effect on simulated net ecosystem production (NEP). With all five model modifications in place, we estimated that the C storage capacity of a generic European forest ecosystem was at most 121 kg C kg?1 N deposited. This estimate is four times higher than that obtained with the original version of G'DAY (27.8 kg C kg?1 N). Thus, depending on model assumptions, the G'DAY ecosystem model can reproduce the range of dC : dNdep values found in the literature. We conclude that effects of historic N deposition must be taken into account when estimating the C storage capacity of a forest ecosystem.  相似文献   

16.
Tree islands in the Everglades wetlands are centers of biodiversity and targets of restoration, yet little is known about the pattern of water source utilization by the constituent woody plant communities: upland hammocks and flooded swamp forests. Two potential water sources exist: (1) entrapped rainwater in the vadose zone of the organic soil (referred to as upland soil water), that becomes enriched in phosphorus, and (2) phosphorus-poor groundwater/surface water (referred to as regional water). Using natural stable isotope abundance as a tracer, we observed that hammock plants used upland soil water in the wet season and shifted to regional water uptake in the dry season, while swamp forest plants used regional water throughout the year. Consistent with the previously observed phosphorus concentrations of the two water sources, hammock plants had a greater annual mean foliar phosphorus concentration over swamp forest plants, thereby supporting the idea that tree island hammocks are islands of high phosphorus concentrations in the oligotrophic Everglades. Foliar nitrogen levels in swamp forest plants were higher than those of hammock plants. Linking water sources with foliar nutrient concentrations can indicate nutrient sources and periods of nutrient uptake, thereby linking hydrology with the nutrient regimes of different plant communities in wetland ecosystems. Our results are consistent with the hypotheses that (1) over long periods, upland tree island communities incrementally increase their nutrient concentration by incorporating marsh nutrients through transpiration seasonally, and (2) small differences in micro-topography in a wetland ecosystem can lead to large differences in water and nutrient cycles.  相似文献   

17.
Trophic control of grassland production and biomass by pathogens   总被引:3,自引:0,他引:3  
Current theories of trophic regulation of ecosystem net primary production and plant biomass incorporate herbivores, but not plant pathogens. Obstacles to the incorporation of pathogens include a lack of data on pathogen effects on primary production, especially outside agricultural and forest ecosystems, and an apparent inability to quantify pathogen biomass. Here, I report the results of an experiment factorially excluding foliar fungal pathogens and insect herbivores from an intact grassland ecosystem. At peak in control plots, 8.9% of community leaf area was infected by pathogens. Disease reduction treatment dramatically increased root production and biomass by increasing leaf longevity and photosynthetic capacity. In contrast, herbivory reduction had no detectable effects at the ecosystem or leaf scale. Additionally, biomass of foliar fungal pathogens in the ecosystem was comparable with that of insect herbivores. These results identify pathogens as potential regulators of ecosystem processes and promote the incorporation of pathogens into trophic theory.  相似文献   

18.
Meerts  Pierre  Van Isacker  Nathalie 《Plant Ecology》1997,133(2):221-231
In continental Europe, the heavy metal hyperaccumulator Thlaspi caerulescens occurs both on heavy-metal polluted soils (subsp. calaminare) and on soils with normal heavy metal content (subsp. caerulescens). In order to assess the extent and partitioning of variation in heavy metal tolerance and foliar mineral composition, twelve families from two populations of each subspecies were grown in pots in four soil treatments differing in heavy metal (Zn, Pb) and macronutrient concentrations. The two subspecies differed systematically in many respects. Subsp. calaminare had a higher survival at high levels of heavy metals and a higher tolerance index in all treatments. It also had three times lower foliar zinc and lead concentrations when grown at moderate levels of heavy metals. This, together with a negative correlation of foliar Pb concentration with growth in subsp. caerulescens, suggests that heavy metal accumulation per se is not a mechanism of tolerance in this species. Variation among families within populations accounted for a larger proportion of total variance in growth and mineral composition than variation between populations. Additionally, within population variation in heavy metal tolerance and accumulation was significantly lower in subsp. calaminare. This suggests that, adding to a background constitutive tolerance at the species level, natural selection has increased heavy metal tolerance in metallicolous populations of Thlaspi caerulescens.  相似文献   

19.
Salih  Nagwa  Andersson  Folke 《Plant and Soil》1999,209(1):85-100
The response of a Norway spruce (Picea abies L. Karst.) forest, located in SW Sweden, to various combinations of nitrogen, phosphorus, potassium and dolomite was investigated two and five years after fertilization in a semi-factorial experiment. The aim has been to apply a diagnostic field test as a base for development of suitable composition of compensatory or vitality fertilizers within an area showing nutritional imbalances. Different ways of describing foliar analysis were tested: current needle (C) critical concentrations, Deviation from Optimum Percentage (DOP), and nutrient/N percentage ratios. The graphical Relative Concentration and Content change (RCC) technique was also used. Nutritional status of the control plots showed deficiency in N, P and K. According to the analyses, N alone or N together with P are the growth-limiting elements. Fertilization with N alone induced limitation of K or P. Based on our results, NPK is a suitable compensatory fertilizer at the site. The only significant difference between dolomite and non-dolomite treatments was in Ca and Mg concentrations. The effect of dolomite on Ca and Mg became more evident during the fifth season following fertilization. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
An understanding of the dynamic behavior of trace elements leaching from coal mine spoil is important in predicting the groundwater quality. The relationship between trace element concentrations and leaching times, pH values of the media is studied. Column leaching tests conducted in the laboratory showed that there was a close correlation between pH value and trace element concentrations. The longer the leaching time, the higher the trace element concentrations. Different trace elements are differently affected by pH values of leaching media. A numerical model for water flow and trace element transport has been developed based on analyzing the characteristics of migration and transformation of trace elements leached from coal mine spoil. Solutions to the coupled model are accomplished by Eulerian-Lagrangian localized adjoint method. Numerical simulation shows that rainfall intensity determined maximum leaching depth. As rainfall intensity is 3.6ml/s, the outflow concentrations indicate a breakthrough of trace elements beyond the column base, with peak concentration at 90cm depth. And the subsurface pollution range has a trend of increase with time. The model simulations are compared to experimental results of trace element concentrations, with reasonable agreement between them. The analysis and modeling of trace elements suggested that the infiltration of rainwater through the mine spoil might lead to potential groundwater pollution. It provides theoretical evidence for quantitative assessment soil-water quality of trace element transport on environment pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号