首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have studied the interactions of dimethyl sulfoxide (DMSO), Giant Cell Tumor (GCT) cell-conditioned medium (GCT CM), and highly purified granulocyte-macrophage colony-stimulating factors (GM-CSF) on the growth and maturation of a highly passaged population of HL-60 cells. DMSO produced dose-dependent inhibition of HL-60 growth in liquid and semisolid media. Growth was partially to completely restored by the addition of GCT CM to cultures. Experiments in which cell volume, cell cycle kinetics, tritiated thymidine (3HTdr) incorporation, cell number, and nitroblue tetrazolium (NBT) reduction were compared during culture indicated that DMSO inhibited the spontaneous increase in cell volume and flow of cells through the cell cycle which occurred in the first day of culture, the increase in 3HTdr incorporation which was detectable by day 2; and the increment in cell counts which occurred by day 3. These effects were opposed by GCT CM. In contrast, the DMSO-induced increase in NBT reduction which occurred by day 6 was not influenced by GCT CM. The major principle opposing DMSO was GM-CSF, since (1) highly purified GM-CSF from GCT cells and recombinant GM-CSF from COS cells transfected with the Mo cell GM-CSF gene overcame greater than 50% of DMSO inhibition; and (2) conditioned media from cells not producing CSF, G-CSF from GCT cells, and recombinant G-CSF from Escherichia coli transfected with the G-CSF gene from 5,637 cells were inactive. DMSO had little or no effect on the elaboration of autostimulatory activity by HL-60 cells. DMSO is a useful agent for inhibiting the spontaneous growth of HL-60 cells and restoring their dependence on GM-CSF, a property which may be mediated through the effects of DMSO on cell cycle kinetics and/or maturation.  相似文献   

2.
Phagocytosis of fluorescent microspheres by HL-60 promyelocytic leukemia cells following induction of differentiation with dimethyl sulfoxide (DMSO) was monitored using flow cytometry. Initiation of phagocytic capability following initiation of differentiation with 1.5% DMSO coincided with the attainment of respiratory burst activity as measured by NBT (nitro blue tetrazolium) reduction; the degree of phagocytic activity was dependent upon parameters such as microsphere size, microsphere number, and exposure time. Ingestion of fluorescent microspheres did not interfere with the measurement of DNA content using propidium iodide; thus, simultaneous determination of phagocytic activity and the cell cycle phase was possible. Accumulation of cells in the G1/G0 phase of the cell cycle following DMSO treatment was correlated with the acquisition of the capacity to phagocytize. Analysis of two-parameter correlated data also indicated that phagocytosis is coupled with residence in the G1/G0 phase of the cell cycle, further suggesting that the ability to phagocytize fluorescent microspheres is associated with end-stage differentiation.  相似文献   

3.
CHO cells which have been sorted by mitotic detachment, centrifugal elutriation and fluorescence activated cell sorting have been followed for up to 14 hr by flow cytometry to examine their progression characteristics. Mathematical modelling techniques were used to provide quantitative estimates of the cell-cycle parameters. Mitotic detachment gives an 11.2-hr cycle time with mean transit times TG1, TS and TG2M equal to 3.2, 5.6 and 2.4 respectively. Cells prepared by central elutriation in an early G1 state have a 14-hr cycle time with TG1, TS and TG2M of 5.7, 6.0 and 2.3 hr. Populations prepared by centrifugal elutriation enriched in early S and late S and G2M have transit times of 2.7, 5.9 and 1.6 hr and 4.9, 6.7 and 2.1 hr with cycle times of 11.2 and 13.2 hr respectively. Cell sorting for a G1 population gives transit times of 9.8, 8.0 and 3.6 for an overall 21.4-hr cycle time.  相似文献   

4.
4-Hydroxynonenal (HNE), a product of lipid peroxidation, is an highly reactive aldehyde that, at concentration similar to those found in normal cells, blocks proliferation and induces a granulocytic-like differentiation in HL-60 cells. These effects are accompained by a marked increase in the proportion G0/G1 cells. The mechanisms of HNE action were investigated by analyzing the expression of the cyclins and cyclin-dependent protein kinases (CDKs), controlling the cell cycle progression. Data obtained by exposing cells to dimethyl sulfoxide (DMSO) were used for comparison. 4-Hydroxynonenal downregulated both mRNA and protein contents of cyclins D1, D2, and A until 24 h from the treatments, whereas DMSO inhibited cyclin D1 and D2 expression until the end of experiment (2 days) and induces an increase of cyclin A until 1 day. Cyclins B and E, and protein kinase CDK2 and CDK4 expressions were not affected by HNE, whereas DMSO induced an increase of cyclin E, B, and CDK2 from 8 h to 1 day. These data are in agreement with previous results indicating a different time-course of accumulation in G0/G1 phases of cells treated with HNE and DMSO and suggest that the HNE inhibitory effect on proliferation and cell cycle progression may depend by the downregulation of D1, D2, and A cyclin expression.  相似文献   

5.
Proliferation of human B- and T-lymphoid cell lines including Raji and Akata cells was found to be arrested at the G1 stage in the cell cycle by dimethyl sulfoxide (DMSO). The G1 arrest by DMSO occurred gradually and was completed within 96 h after addition of 1.5% DMSO concomitantly with a decrease in growth rate. Progression of G1-phase cells containing a larger amount of RNA into S-phase began 9-12 h after removal of DMSO. At 24 h, the DNA pattern of the cell cycle was similar to that of nontreated log-phase cells. The expression of six differentiation markers on the lymphoid cells was not appreciably changed by treatment with DMSO. On the other hand, the expression of transferrin receptor (one of the growth-related markers) on G1-phase cells 96 h after addition of DMSO was decreased to one-fourth that on log-phase cells and was completely restored 24 h after removal of DMSO. These results indicate that DMSO, known as an inducer of differentiation in several myeloid cell lines, acts as an agent inducing G1 arrest in the cell cycle of the lymphoid cells.  相似文献   

6.
Neutrophils are characterized by their distinct nuclear shape, which is thought to facilitate the transit of these cells through pore spaces less than one-fifth of their diameter. We used human promyelocytic leukemia (HL-60) cells as a model system to investigate the effect of nuclear shape in whole cell deformability. We probed neutrophil-differentiated HL-60 cells lacking expression of lamin B receptor, which fail to develop lobulated nuclei during granulopoiesis and present an in vitro model for Pelger-Huët anomaly; despite the circular morphology of their nuclei, the cells passed through micron-scale constrictions on similar timescales as scrambled controls. We then investigated the unique nuclear envelope composition of neutrophil-differentiated HL-60 cells, which may also impact their deformability; although lamin A is typically down-regulated during granulopoiesis, we genetically modified HL-60 cells to generate a subpopulation of cells with well defined levels of ectopic lamin A. The lamin A-overexpressing neutrophil-type cells showed similar functional characteristics as the mock controls, but they had an impaired ability to pass through micron-scale constrictions. Our results suggest that levels of lamin A have a marked effect on the ability of neutrophils to passage through micron-scale constrictions, whereas the unusual multilobed shape of the neutrophil nucleus is less essential.  相似文献   

7.
We have previously shown that dimethyl sulfoxide (DMSO) treatment of mouse embryo fibroblasts (MEF) at the early hours of mitogenic stimuli resulted in the inhibition of DNA and protein synthesis; delayed treatment of serum-stimulated cells with DMSO had little effect on the synthesis of these macromolecules. Here, we demonstrate the specific inhibition of expression of early growth response genes by DMSO in serum-stimulated MEF. The expression of interleukin 6, and of oncogenes c-myc and c-fos were inhibited when the cells were treated with 2% DMSO from the beginning of serum-stimulated growth but not after 3 h of mitogenic stimuli. Although the actin gene is an early serum-response gene, its expression was not affected by DMSO. The synthesis of another serum-induced protein, the plasminogen activator inhibitor-1 was blocked during concurrent and delayed (after 3 h of stimulation) treatment of serum-stimulated fibroblasts with DMSO. The expression of glyceraldehyde-3-phosphate dehydrogenase gene was not affected by DMSO. These results indicate that the expression of non-growth-related genes are either not affected or affected nonspecifically both at early and late stages of serum-induced growth of mouse embryo fibroblasts. The serum-induced expression of c-fos gene was abolished by DMSO treatment of MEF while the phorbol 12-myristate 13-acetate-induced expression of fos gene was not, indicating that the PMA signaling pathway was refractory to DMSO. Treatment of cells with medium containing 2% DMSO for 24-48 h prevents them from progression into cell cycle by preventing the expression of genes involved in G0-G1 transition of quiescent cells.  相似文献   

8.
FMP2.1, a cloned cell line which has morphological characteristics of mast/basophil cells, requires either interleukin 3 (IL-3) or granulocyte-macrophage colony-stimulating factor (GM-CSF) for both survival and proliferation. IL-3 and GM-CSF were equally effective as proliferative stimuli. FMP2.1 cells were sensitive to growth factor stimulation in the G1 phase, which has a duration of 9.5 h. G1 cells were selected from FMP2.1 in log phase growth on the basis of Hoechst 33324 staining using a fluorescence activated cell sorter (FACS). It was found that G1 phase cells had to be exposed to either IL-3 or GM-CSF for approximately 1 h for cells to enter S (greater than 20%); without growth factor, FMP2.1 remained in G1 unable to progress into S. Receptor expression was analyzed to further understand this rapid activation of FMP2.1 into cycle. Autoradiography using either 125I-IL-3 or 125I-GM-CSF showed that most cells express both receptor types. In the presence of saturating concentrations of IL-3, FMP2.1 have a relatively high number of IL-3 receptors (42,000/cell) compared to other cell lines (e.g., 32D cl23; 13,000 receptors/cell), and far outnumber GM-CSF receptors on the same cells (600 receptors/cell). Although average IL-3 receptor expression differed for FMP2.1- and IL-3-dependent 32D cl23, the concentration-dependent proliferative response to IL-3 was essentially identical for both cell types. Scatchard plot analysis for 125I-IL-3 and 125I-GM-CSF binding to FMP2.1 cells at 4 degrees C revealed a single type of binding site for both ligands, with dissociation constants (Kd) of approximately 1 nM for GM-CSF and 8 pM for IL-3. The relatively high affinity IL-3 binding to a large number of available IL-3 receptors was associated with a shallow dose response of the FMP2.1 cells to IL-3, compared to the steep GM-CSF dose response which was mediated through fewer receptor sites of relatively low affinity. Mitogenic stimulation of G1 phase cells was observed with either IL-3 or GM-CSF, and appeared to be unaffected by differences in receptor number or binding affinity.  相似文献   

9.
The phosphatase inhibitor okadaic acid was found to induce cell cycle arrest of human myeloid leukemic cell lines HL-60 and U937 in a concentration- and time-dependent manner. Exposure to low concentrations of okadaic acid (2-8nM) for 24-48 hr caused greater than 70% of cells to arrest at G2/M, with up to 40% of the cells arrested in early mitosis. Cell viability decreased rapidly after 48 hr of treatment, and morphological and DNA structure analysis indicated that this was primarily due to the induction of apoptosis. The cells arrested in mitosis by 8 nM okadaic acid could be highly enriched by density gradient centrifugation and underwent apoptosis when further cultured either with or without okadaic acid, indicating that the effects of okadaic acid were irreversible. In contrast to the effects of low concentrations of okadaic acid, high concentrations (500 nM), inhibited proliferation in less than 3 hr. Remarkably, the majority of cells also entered a mitosis-like state characterized by dissolution of the nuclear membrane and condensation and partial separation of chromosomes. However, these cells had a diploid content of DNA, indicating that the cell cycle arrest occurred at G1/S with premature chromosome condensation (PCC), rather than at G2/M. If cells were first blocked at G1/S with hydroxyurea and then treated with okadaic acid, greater than 90% developed PCC in less than 3 hr without replicating their DNA. Caffeine was not able to induce PCC in these cells, either with or without prior inhibition of DNA synthesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Retinoids are known to induce the differentiation and cell cycle arrest of human myeloid leukemia cells in vitro. Differential display was used to identify putative early regulatory genes that are differentially expressed in HL-60 human promyelocytic leukemia cells treated with retinoic acid. One of the cDNAs cloned encodes sequences identifying Burkitt's lymphoma receptor 1 (BLR1), a recently described chemokine receptor. Northern blot analysis demonstrates that blr1 mRNA expression increases within 9 h of retinoic acid treatment, well before functional differentiation or G(1)/G(0) growth arrest at 48 h or onset of morphological changes, suggesting a possible regulatory function. The expression of blr1 mRNA is transient, peaking at 72 h when cells are differentiated. blr1 mRNA also is induced by other differentiation-inducing agents, 1alpha,25-dihydroxyvitamin D(3) and DMSO. Induction of blr1 mRNA by retinoic acid is not blocked by the protein synthesis inhibitor cycloheximide. In HL-60 cells stably transfected with blr1 cDNA, ectopic expression of blr1 causes an increase in ERK2 MAPK activation and promotes retinoic acid-induced G(1)/G(0) growth arrest and cell differentiation. The early expression of blr1 mRNA during differentiation, its ability to increase ERK2 activation, and its enhancement of retinoic acid-induced differentiation suggest that blr1 expression may be involved in retinoic acid-induced HL-60 differentiation.  相似文献   

11.
In human diploid fibroblasts (HDFs), expression of lamina-associated polypeptide 2 alpha (LAP2alpha) upon entry and exit from G(0) is tightly correlated with phosphorylation and subnuclear localization of retinoblastoma protein (Rb). Phosphoisoforms of Rb and LAP2alpha are down-regulated in G(0). Although RbS780 phosphoform and LAP2alpha are up-regulated upon reentry into G(1) and colocalize in the nucleoplasm, RbS795 migrates between nucleoplasmic and speckle compartments. In HDFs, which are null for lamins A/C, LAP2alpha is mislocalized within nuclear aggregates, and this is correlated with cell cycle arrest and accumulation of Rb within speckles. Nuclear retention of nucleoplasmic Rb during G(1) phase but not of speckle-associated Rb depends on lamin A/C. siRNA knock down of LAP2alpha or lamin A/C in HDFs leads to accumulation of Rb in speckles and G(1) arrest, probably because of activation of a cell cycle checkpoint. Our results suggest that LAP2alpha and lamin A/C are involved in controlling Rb localization and phosphorylation, and a lack or mislocalization of either protein leads to cell cycle arrest in HDFs.  相似文献   

12.
About half the activity level of DNA ligase I in cycling human lymphoblastoid cells (Raji and Akata) remained in the cells arrested at G1 by a 4-day treatment with 1.5% dimethyl sulfoxide (DMSO), and one-third the enzyme activity in actively growing promyelocytic leukemia cells HL-60 was detected in the terminally differentiated cells after DMSO-treatment. In contrast, DNA ligase I mRNA was negligible in the G1-arrested Raji and differentiated HL-60 cells. The steady-state mRNA level was increased 9 h after release from DMSO in the G1-arrested Raji cells and reached a maximum at 18 h. These results indicate that gene expression of human DNA ligase I, but not activity level of the enzyme, is closely correlated with activity of cell proliferation.  相似文献   

13.
The human promyelocytic leukaemia cell line HL-60 can be induced to differentiate towards mature granulocytes by treatment with dibutyryl cyclic adenosine-3',5'-monophosphate (dbcAMP). Differentiation begins within 16-24 h of treatment and is associated with a time- and dose-dependent accumulation of cells in the G0/G1 phase of the cell cycle with a concomitant decrease in the number of cells in the S and G2 + M phases. Using acridine orange staining, we found that the RNA content of the cells also decreased following differentiation. Stathmokinetic analysis of HL-60 cell populations following dbcAMP treatment showed no effect on the total number of cells in the G0/G1 or S phases, or the rate of progression of cells through these cell cycle compartments. In contrast, dbcAMP was found to induce a transient arrest of the cells in the G2 phase. We also found that differentiation induced by dbcAMP did not require progression of the cells through the cell cycle. Cells arrested in either G1/S by hydroxyurea or G2 + M by colcemid eventually expressed markers of mature granulocytes. These results demonstrate that dbcAMP modulates cell cycle progression. However, these cell cycle changes alone are insufficient to induce granulocytic differentiation of HL-60 cells.  相似文献   

14.
HL-60 cells were treated by isoverbascoside with different time and different concentrations in vitro. The differentiation of HL-60 cells was evaluated by light and electron microscopy to observe morphological changes, by chemiluminence to detect phagocytosis and by tumorigenesis in nude mice to determine malignancy. The cytotoxical effect of isoverbascoside on HL-60 cells was examined by trypan blue excluding staining and electron microscopy. The influence of isoverbascoside on cell cycle was measured by flow cytometry. Granular differentiation of HL-60 cells was induced by isoverbascoside at 20-25 mumol/L within 1-3 days as the results of morphological changes, enhancement of phagocytosis and decreasing of tumorigenesis. Strong cytotoxicity was evidenced in HL-60 cells treated by isoverbascoside at 30-35 mumol/L. HL-60 cells treated by isoverbascoside at 20 mumol/L were delayed at G1 phase at 12 hours and G2/M phase at 72 hours.  相似文献   

15.
16.
A simple stochastic model has been developed to determine the cell cycle kinetics of the isoprenaline stimulated proliferative response in rat acinar cells. The response was measured experimentally, using 3H-TdR labelling of interphase cells and cumulative collections of mitotic cells with vincristine. The rise and fall of the fraction of labelled interphase cells and of metaphase cells is expressed by the product of the proliferative fraction and a difference of probability distributions. The probability statements of the model were formulated and then compared by an iterative fitting procedure to experimental data to obtain estimates of the model parameters. The model when fitted to the combined fraction labelled interphase (FLIW) and fraction metaphase (FMWa) waves gave a mean Gis transit time of 21-2 hr, mean Gis +S transit time of 27-0 hr, and mean Gis + S + G2 transit time of 35-8 hr for a single injection of isoprenaline, where Gis is the initiation to S phase time. When successive injections of isoprenaline were given at intervals of 24 and 28 hr the corresponding values after the third injection were 12-4 hr, 20-8 hr and 25-7 hr respectively. The variance of the Gis phase dropped from 18-1 to 1-3 while the other variances remained unchanged. The estimated proliferative fraction was 0-24 after a single injection of isoprenaline, and 0.31 after three injections of the drug. Independently determined values of the proliferative fraction, obtained from repeated 3H-TdR injections, were 0-21 and 0-36 respectively.  相似文献   

17.
Mouse 3T3 cells transformed by a conditional mutant of Rous sarcoma virus (LA90) can assume either a normal or a transformed phenotype, depending on the temperature of cultivation. These cells (LA90) were arrested at the G0/G1 phase of the cell cycle by starvation for serum growth factors at the nonpermissive temperature (39 degrees C). Release from the G0/G1 phase by serum growth factors resulted in a rapid stimulation of Rb+ influx. To investigate whether the stimulation of Rb+ influx is obligatory for cell proliferation, the cultures were released from the G0/G1 phase by a temperature decrease in the absence of serum. A temperature decrease from 39 to 32 degrees C activated the viral pp60src gene mitogenic activity. Under these conditions, no rapid stimulation of Rb+ influx was observed. These results suggest that the rapid stimulation of Rb+ influx induced by serum growth factors is not an essential signal for cell release from the G0/G1 phase. However, a delayed increase in Rb+ influx concomitant with an increase in the cell content of K+ was observed in the cultures released from the G0/G1 phase by temperature decrease in the absence of serum growth factors. We found that the LA90 cells incubated at the permissive temperature (32 degrees C) secreted a mitogenic activity into the medium. Moreover, the conditioned medium from cultures incubated at 32 degrees C, but not at 39 degrees C, stimulate Rb+ influx in G0/G1 cells. These results indicate that Rous sarcoma virus pp60src induces a slow autocrine secretion of a mitogenic activity. This mitogenic activity slowly modulates the K+ content. Therefore, the slow elevation in cellular content of K+ is proposed to be an obligatory event for proliferation in normal and transformed cells.  相似文献   

18.
Adult mouse hemopoietic stem cells (HSCs) are typically quiescent and enter and progress through the cell cycle rarely in steady-state bone marrow, but their rate of proliferation can be dramatically enhanced on demand. We have studied the cell cycle kinetics of HSCs in the developing fetal liver at a stage when they expand extensively. Despite that 100% of fetal liver HSCs divide within a 48-h period, their average cell cycle transit time (10.6 h) is twice that of their downstream progenitors, translating into a prolonged G(1) transit and a period of relative quiescence (G(0)). In agreement with their prolonged G(1) transit when compared with hemopoietic progenitors, competitive transplantation experiments demonstrate that fetal HSCs are highly enriched in G(1) but also functional in S-G(2)-M. This observation combined with experimental data demonstrating that adult HSCs forced to expand ex vivo also sustain a uniquely prolonged cell cycle and G(1) transit, demonstrate at least in part why purified HSCs at any state of development or condition are highly enriched in the G(0)-G(1) phases of the cell cycle. We propose that a uniquely prolonged cell cycle transit is a defining stem cell property, likely to be critical for their maintenance and self-renewal throughout development.  相似文献   

19.
Novel A-ring analogues of the vitamin D receptor (VDR) antagonist (3a), ZK-159222, and its 24-epimer (3b) were convergently synthesized. Preparation of the CD-ring portions with the side chains of 3a,b, followed by palladium-catalyzed cross-coupling with the A-ring enyne precursors (15a,b), (3S,4S,5R)- and (3S,4S,5S)-bis[(tert-butyldimethylsilyl)oxy]-4-methyloct-1-en-7-yne, afforded the 2alpha-methyl-introduced analogues (4a,b) and their 3-epimers (5a,b). The biological profiles of the hybrid analogues were assessed in terms of affinity for VDR, and antagonistic activity to inhibit HL-60 cell differentiation induced by the natural hormone, 1alpha,25-dihydroxyvitamin D(3). The analogue 4a showed an approximately fivefold higher antagonistic activity compared with 3a. The 2alpha-methyl introduction into 3a increased the receptor affinity, thereby enhancing VDR antagonism. This approach to design potent antagonists based on hybridization of structural motifs in the A-ring and in the side chain may prove to be valuable.  相似文献   

20.
Mutations in the LMNA gene, which encodes all A-type lamins, including lamin A and lamin C, cause a variety of tissue-specific degenerative diseases termed laminopathies. Little is known about the pathogenesis of these disorders. Previous studies have indicated that A-type lamins interact with the retinoblastoma protein (pRB). Here we probe the functional consequences of this association and further examine links between nuclear structure and cell cycle control. Since pRB is required for cell cycle arrest by p16(ink4a), we tested the responsiveness of multiple lamin A/C-depleted cell lines to overexpression of this CDK inhibitor and tumor suppressor. We find that the loss of A-type lamin expression results in marked destabilization of pRB. This reduction in pRB renders cells resistant to p16(ink4a)-mediated G(1) arrest. Reintroduction of lamin A, lamin C, or pRB restores p16(ink4a)-responsiveness to Lmna(-/-) cells. An array of lamin A mutants, representing a variety of pathologies as well as lamin A processing mutants, was introduced into Lmna(-/-) cells. Of these, a mutant associated with mandibuloacral dysplasia (MAD R527H), as well as two lamin A processing mutants, but not other disease-associated mutants, failed to restore p16(ink4a) responsiveness. Although our findings do not rule out links between altered pRB function and laminopathies, they fail to support such an assertion. These findings do link lamin A/C to the functional activation of a critical tumor suppressor pathway and further the possibility that somatic mutations in LMNA contribute to tumor progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号