首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The presenilin (PS)-dependent site 3 (S3) cleavage of Notch liberates its intracellular domain (NICD), which is required for Notch signaling. The similar γ-secretase cleavage of the β-amyloid precursor protein (βAPP) results in the secretion of amyloid β-peptide (Aβ). However, little is known about the corresponding C-terminal cleavage product (CTFγ). We have now identified CTFγ in brain tissue, in living cells, as well as in an in vitro system. Generation of CTFγ is facilitated by PSs, since a dominant-negative mutation of PS as well as a PS gene knock out prevents its production. Moreover, γ-secretase inhibitors, including one that is known to bind to PS, also block CTFγ generation. Sequence analysis revealed that CTFγ is produced by a novel γ-secretase cut, which occurs at a site corresponding to the S3 cleavage of Notch.  相似文献   

2.
Mutations in presenilin-1 and presenilin-2 (PS1 and PS2) are the most common cause of familial Alzheimer disease. PS1 and PS2 are the presumptive catalytic components of the multisubunit γ-secretase complex, which proteolyzes a number of type I transmembrane proteins, including the amyloid precursor protein (APP) and Notch. APP processing by γ-secretase produces β-amyloid peptides (Aβ40 and Aβ42) that accumulate in the Alzheimer disease brain. Here we identify a pathogenic L435F mutation in PS1 in two affected siblings with early-onset familial Alzheimer disease characterized by deposition of cerebral cotton wool plaques. The L435F mutation resides in a conserved C-terminal PAL sequence implicated in active site conformation and catalytic activity. The impact of PS1 mutations in and around the PAL motif on γ-secretase activity was assessed by expression of mutant PS1 in mouse embryo fibroblasts lacking endogenous PS1 and PS2. Surprisingly, the L435F mutation caused a nearly complete loss of γ-secretase activity, including >90% reductions in the generation of Aβ40, Aβ42, and the APP and Notch intracellular domains. Two nonpathogenic PS1 mutations, P433L and L435R, caused essentially complete loss of γ-secretase activity, whereas two previously identified pathogenic PS1 mutations, P436Q and P436S, caused partial loss of function with substantial reductions in production of Aβ40, Aβ42, and the APP and Notch intracellular domains. These results argue against overproduction of Aβ42 as an essential property of presenilin proteins bearing pathogenic mutations. Rather, our findings provide support for the hypothesis that pathogenic mutations cause a general loss of presenilin function.  相似文献   

3.
The γ-secretase complex is an appealing drug target when the therapeutic strategy is to alter amyloid-β peptide (Aβ) aggregation in Alzheimer disease. γ-Secretase is directly involved in Aβ formation and determines the pathogenic potential of Aβ by generating the aggregation-prone Aβ42 peptide. Because γ-secretase mediates cleavage of many substrates involved in cell signaling, such as the Notch receptor, it is crucial to sustain these pathways while altering the Aβ secretion. A way of avoiding interference with the physiological function of γ-secretase is to use γ-secretase modulators (GSMs) instead of inhibitors of the enzyme. GSMs modify the Aβ formation from producing the amyloid-prone Aβ42 variant to shorter and less amyloidogenic Aβ species. The modes of action of GSMs are not fully understood, and even though the pharmacology of GSMs has been thoroughly studied regarding Aβ generation, knowledge is lacking about their effects on other substrates, such as Notch. Here, using immunoprecipitation followed by MALDI-TOF MS analysis, we found that two novel, second generation GSMs modulate both Notch β and Aβ production. Moreover, by correlating S3-specific Val-1744 cleavage of Notch intracellular domain (Notch intracellular domain) to total Notch intracellular domain levels using immunocytochemistry, we also demonstrated that Notch intracellular domain is not modulated by the compounds. Interestingly, two well characterized, nonsteroidal anti-inflammatory drugs (nonsteroidal anti-inflammatory drug), R-flurbiprofen and sulindac sulfide, affect only Aβ and not Notch β formation, indicating that second generation GSMs and nonsteroidal anti-inflammatory drug-based GSMs have different modes of action regarding Notch processing.  相似文献   

4.
The γ-secretase complex is responsible for intramembrane processing of over 60 substrates and is involved in Notch signaling as well as in the generation of the amyloid β-peptide (Aβ). Aggregated forms of Aβ have a pathogenic role in Alzheimer disease and, thus, reducing the Aβ levels by inhibiting γ-secretase is a possible treatment strategy for Alzheimer disease. Regrettably, clinical trials have shown that inhibition of γ-secretase results in Notch-related side effects. Therefore, it is of great importance to find ways to inhibit amyloid precursor protein (APP) processing without disturbing vital signaling pathways such as Notch. Nicastrin (Nct) is part of the γ-secretase complex and has been proposed to be involved in substrate recognition and selection. We have investigated how the four evenly spaced and conserved cysteine residues in the Nct ectodomain affect APP and Notch processing. We mutated these cysteines to serines and analyzed them in cells lacking endogenous Nct. We found that two mutants, C213S (C2) and C230S (C3), differentially affected APP and Notch processing. Both the formation of Aβ and the intracellular domain of amyloid precursor protein (AICD) were reduced, whereas the production of Notch intracellular domain (NICD) was maintained on a high level, although C230S (C3) showed impaired complex assembly. Our data demonstrate that single residues in a γ-secretase component besides presenilin are able to differentially affect APP and Notch processing.  相似文献   

5.

Background

γ-Secretase is an intramembrane aspartyl protease whose cleavage of the amyloid precursor protein (APP) generates the amyloid β-peptide (Aβ) and the APP intracellular domain. Aβ is widely believed to have a causative role in Alzheimer''s disease pathogenesis, and therefore modulation of γ-secretase activity has become a therapeutic goal. Besides APP, more than 50 substrates of γ-secretase with different cellular functions during embryogenesis as well as adulthood have been revealed. Prior to γ-secretase cleavage, substrates are ectodomain shedded, producing membrane bound C-terminal fragments (CTFs).

Principal Findings

Here, we investigated γ-secretase cleavage of five substrates; APP, Notch1, N-cadherin, ephrinB and p75 neurotrophin receptor (p75-NTR) in membranes isolated from embryonic, young or old adult rat brain by analyzing the release of the corresponding intracellular domains (ICDs) or Aβ40 by western blot analysis and ELISA respectively. The highest levels of all ICDs and Aβ were produced by embryonic membranes. In adult rat brain only cleavage of APP and Notch1 could be detected and the Aβ40 and ICD production from these substrates was similar in young and old adult rat brain. The CTF levels of Notch1, N-cadherin, ephrinB and p75-NTR were also clearly decreased in the adult brain compared to embryonic brain, whereas the APP CTF levels were only slightly decreased.

Conclusions

In summary our data suggests that γ-secretase dependent ICD production is down-regulated in the adult brain compared to embryonic brain. In addition, the present approach may be useful for evaluating the specificity of γ-secretase inhibitors.  相似文献   

6.
Alzheimer''s disease (AD) is characterized by neuronal loss and accumulation of β-amyloid-protein (Aβ) in the brain parenchyma. Sleep impairment is associated with AD and affects about 25–40% of patients in the mild-to-moderate stages of the disease. Sleep deprivation leads to increased Aβ production; however, its mechanism remains largely unknown. We hypothesized that the increase in core body temperature induced by sleep deprivation may promote Aβ production. Here, we report temperature-dependent regulation of Aβ production. We found that an increase in temperature, from 37 °C to 39 °C, significantly increased Aβ production in amyloid precursor protein-overexpressing cells. We also found that high temperature (39 °C) significantly increased the expression levels of heat shock protein 90 (Hsp90) and the C-terminal fragment of presenilin 1 (PS1-CTF) and promoted γ-secretase complex formation. Interestingly, Hsp90 was associated with the components of the premature γ-secretase complex, anterior pharynx-defective-1 (APH-1), and nicastrin (NCT) but was not associated with PS1-CTF or presenilin enhancer-2. Hsp90 knockdown abolished the increased level of Aβ production and the increased formation of the γ-secretase complex at high temperature in culture. Furthermore, with in vivo experiments, we observed increases in the levels of Hsp90, PS1-CTF, NCT, and the γ-secretase complex in the cortex of mice housed at higher room temperature (30 °C) compared with those housed at standard room temperature (23 °C). Our results suggest that high temperature regulates Aβ production by modulating γ-secretase complex formation through the binding of Hsp90 to NCT/APH-1.  相似文献   

7.
8.
Accumulation and deposition of amyloid-β peptide (Aβ) in the brain is a primary cause of the pathogenesis of Alzheimer’s disease (AD). Aβ is generated from amyloid-β precursor protein (APP) through sequential cleavages first by β-secretase and then by γ-secretase. Inhibiting β-secretase activity is believed to be one of the most promising strategies for AD treatment. In the present study, we found that a resveratrol trimer, miyabenol C, isolated from stems and leaves of the small-leaf grape (Vitisthunbergii var. taiwaniana), can markedly reduce Aβ and sAPPβ levels in both cell cultures and the brain of AD model mice. Mechanistic studies revealed that miyabenol C affects neither protein levels of APP, the two major α-secretases ADAM10 and TACE, and the γ-secretase component Presenilin 1, nor γ-secretase-mediated Notch processing and TACE activity. In contrast, although miyabenol C has no effect on altering protein levels of the β-secretase BACE1, it can inhibit both in vitro and in vivo β-secretase activity. Together, our results indicate that miyabenol C is a prominent β-secretase inhibitor and lead compound for AD drug development.  相似文献   

9.
Understanding the molecular mechanisms controlling the physiological and pathological activity of γ-secretase represents a challenging task in Alzheimer disease research. The assembly and proteolytic activity of this enzyme require the correct interaction of the 19 transmembrane domains (TMDs) present in its four subunits, including presenilin (PS1 or PS2), the γ-secretase catalytic core. GXXXG and GXXXG-like motifs are critical for TMDs interactions as well as for protein folding and assembly. The GXXXG motifs on γ-secretase subunits (e.g. APH-1) or on γ-secretase substrates (e.g. APP) are known to be involved in γ-secretase assembly and in Aβ peptide production, respectively. We identified on PS1 and PS2 TMD8 two highly conserved AXXXAXXXG motifs. The presence of a mutation causing an inherited form of Alzheimer disease (familial Alzheimer disease) in the PS1 motif suggested their involvement in the physiopathological configuration of the γ-secretase complex. In this study, we targeted the role of these motifs on TMD8 of PSs, focusing on their role in PS assembly and catalytic activity. Each motif was mutated, and the impact on complex assembly, activity, and substrate docking was monitored. Different amino acid substitutions on the same motif resulted in opposite effects on γ-secretase activity, without affecting the assembly or significantly impairing the maturation of the complex. Our data suggest that AXXXAXXXG motifs in PS TMD8 are key determinants for the conformation of the mature γ-secretase complex, participating in the switch between the physiological and pathological functional conformations of the γ-secretase.  相似文献   

10.
β-Amyloid (Aβ) accumulation in the brain is widely accepted to be critical to the development of Alzheimer’s disease (AD). Current efforts at reducing toxic Aβ40 or 42 have largely focused on modulating γ-secretase activity to produce shorter, less toxic Aβ, while attempting to spare other secretase functions. In this paper we provide data that offer the potential for a new approach for the treatment of AD. The method is based on our previous findings that the production of Aβ from the interaction between the β-amyloid precursor protein (APP) and Presenilin (PS), as part of the γ-secretase complex, in cell culture is largely inhibited if the entire water-soluble NH2-terminal domain of PS is first added to the culture. Here we demonstrate that two small, non-overlapping water-soluble peptides from the PS-1 NH2-terminal domain can substantially and specifically inhibit the production of total Aβ as well as Aβ40 and 42 in vitro and in vivo in the brains of APP transgenic mice. These results suggest that the inhibitory activity of the entire amino terminal domain of PS-1 on Aβ production is largely focused in a few smaller sequences within that domain. Using biolayer interferometry and confocal microscopy we provide evidence that peptides effective in reducing Aβ give a strong, specific and biologically relevant binding with the purified ectodomain of APP 695. Finally, we demonstrate that the reduction of Aβ by the peptides does not affect the catalytic activities of β- or γ-secretase, or the level of APP. P4 and P8 are the first reported protein site-specific small peptides to reduce Aβ production in model systems of AD. These peptides and their derivatives offer new potential drug candidates for the treatment of AD.  相似文献   

11.

Background

Presenilin 1(PS1) is the catalytic subunit of γ-secretase, the enzyme responsible for the Aβ C-terminal cleavage site, which results in the production of Aβ peptides of various lengths. Production of longer forms of the Aβ peptide occur in patients with autosomal dominant Alzheimer disease (AD) due to mutations in presenilin. Many modulators of γ-secretase function have been described. We hypothesize that these modulators act by a common mechanism by allosterically modifying the structure of presenilin.

Methodology/Principal Findings

To test this hypothesis we generated a genetically encoded GFP-PS1-RFP (G-PS1-R) FRET probe that allows monitoring of the conformation of the PS1 molecule in its native environment in live cells. We show that G-PS1-R can be incorporated into the γ-secretase complex, reconstituting its activity in PS1/2 deficient cells. Using Förster resonance energy transfer (FRET)-based approaches we show that various pharmacological and genetic manipulations that target either γ-secretase components (PS1, Pen2, Aph1) or γ-secretase substrate (amyloid precursor protein, APP) and are known to change Aβ42 production are associated with a consistent conformational change in PS1.

Conclusions/Significance

These results strongly support the hypothesis that allosteric changes in PS1 conformation underlie changes in the Aβ42/40 ratio. Direct measurement of physiological and pathological changes in the conformation of PS1/γ-secretase may provide insight into molecular mechanism of Aβ42 generation, which could be exploited therapeutically.  相似文献   

12.
Previous studies suggest that loss of γ-secretase activity in postnatal mouse brains causes age-dependent memory impairment and neurodegeneration. Due to the diverse array of γ-secretase substrates, it remains to be demonstrated whether loss of cleavage of any specific substrate(s) is responsible for these defects. The bulk of the phenotypes observed in mammals deficient for γ-secretase or exposed to γ-secretase inhibitors are caused by the loss of Notch receptor proteolysis. Accordingly, inhibition of Notch signaling is the main cause for untoward effects for γ-secretase inhibitors as therapeutics for Alzheimer’s disease. Therefore, we wished to determine if loss of canonical Notch signaling is responsible for the age-dependent neurodegeneration observed upon γ-secrectase deficiency in the mouse brain. We generated postnatal forebrain-specific RBPj conditional knockout (cKO) mice using the CamKII-Cre driver and examined behavior and brain pathology in 12–18 month old animals. Since all four mammalian Notch receptor homologues signal via this DNA binding protein, these mice lack canonical Notch signaling. We found that loss of RBPj in mature excitatory neurons was well tolerated, with no evidence for neurodegeneration or of learning and memory impairment in mice aged up to 18 months. The only phenotypic deficit we observed in the RBPj-deficient mice was a subtle abnormality in olfactory preferences, particularly in females. We conclude that the loss of canonical Notch signaling through the four receptors is not responsible for age-dependent neurodegeneration or learning and memory deficits seen in γ-secretase deficient mice.  相似文献   

13.
Understanding how different species of Aβ are generated by γ-secretase cleavage has broad therapeutic implications, because shifts in γ-secretase processing that increase the relative production of Aβx-42/43 can initiate a pathological cascade, resulting in Alzheimer disease. We have explored the sequential stepwise γ-secretase cleavage model in cells. Eighteen BRI2-Aβ fusion protein expression constructs designed to generate peptides from Aβ1–38 to Aβ1–55 and C99 (CTFβ) were transfected into cells, and Aβ production was assessed. Secreted and cell-associated Aβ were detected using ELISA and immunoprecipitation MALDI-TOF mass spectrometry. Aβ peptides from 1–38 to 1–55 were readily detected in the cells and as soluble full-length Aβ proteins in the media. Aβ peptides longer than Aβ1–48 were efficiently cleaved by γ-secretase and produced varying ratios of Aβ1–40:Aβ1–42. γ-Secretase cleavage of Aβ1–51 resulted in much higher levels of Aβ1–42 than any other long Aβ peptides, but the processing of Aβ1–51 was heterogeneous with significant amounts of shorter Aβs, including Aβ1–40, produced. Two PSEN1 variants altered Aβ1–42 production from Aβ1–51 but not Aβ1–49. Unexpectedly, long Aβ peptide substrates such as Aβ1–49 showed reduced sensitivity to inhibition by γ-secretase inhibitors. In contrast, long Aβ substrates showed little differential sensitivity to multiple γ-secretase modulators. Although these studies further support the sequential γ-secretase cleavage model, they confirm that in cells the initial γ-secretase cleavage does not precisely define subsequent product lines. These studies also raise interesting issues about the solubility and detection of long Aβ, as well as the use of truncated substrates for assessing relative potency of γ-secretase inhibitors.  相似文献   

14.
15.
The relative increase in Aβ42 peptides from familial Alzheimer disease (FAD) linked APP and PSEN mutations can be related to changes in both ε-cleavage site utilization and subsequent step-wise cleavage. Cleavage at the ε-site releases the amyloid precursor protein (APP) intracellular domain (AICD), and perturbations in the position of ε-cleavage are closely associated with changes in the profile of amyloid β-protein (Aβ) species that are produced and secreted. The mechanisms by which γ-secretase modulators (GSMs) or FAD mutations affect the various γ-secretase cleavages to alter the generation of Aβ peptides have not been fully elucidated. Recent studies suggested that GSMs do not modulate ε-cleavage of APP, but the data were derived principally from recombinant truncated epitope tagged APP substrate. Here, using full length APP from transfected cells, we investigated whether GSMs modify the ε-cleavage of APP under more native conditions. Our results confirmed the previous findings that ε-cleavage is insensitive to GSMs. In addition, fenofibrate, an inverse GSM (iGSM), did not alter the position or kinetics of ε-cleavage position in vitro. APH1A and APH1B, a subunit of the γ-secretase complex, also modulated Aβ42/Aβ40 ratio without any alterations in ε-cleavage, a result in contrast to what has been observed with PS1 and APP FAD mutations. Consequently, GSMs and APH1 appear to modulate γ-secretase activity and Aβ42 generation by altering processivity but not ε-cleavage site utilization.  相似文献   

16.
Amyloid β-peptide (Aβ) pathology is an invariant feature of Alzheimer disease, preceding any detectable clinical symptoms by more than a decade. To this end, we seek to identify agents that can reduce Aβ levels in the brain via novel mechanisms. We found that (20S)-Rg3, a triterpene natural compound known as ginsenoside, reduced Aβ levels in cultured primary neurons and in the brains of a mouse model of Alzheimer disease. The (20S)-Rg3 treatment induced a decrease in the association of presenilin 1 (PS1) fragments with lipid rafts where catalytic components of the γ-secretase complex are enriched. The Aβ-lowering activity of (20S)-Rg3 directly correlated with increased activity of phosphatidylinositol 4-kinase IIα (PI4KIIα), a lipid kinase that mediates the rate-limiting step in phosphatidylinositol 4,5-bisphosphate synthesis. PI4KIIα overexpression recapitulated the effects of (20S)-Rg3, whereas reduced expression of PI4KIIα abolished the Aβ-reducing activity of (20S)-Rg3 in neurons. Our results substantiate an important role for PI4KIIα and phosphoinositide modulation in γ-secretase activity and Aβ biogenesis.  相似文献   

17.
Processing of the amyloid precursor protein (APP) by β- and γ-secretases generates pathogenic β-amyloid (Aβ) peptides associated with Alzheimer disease (AD), whereas cleavage of APP by α-secretases precludes Aβ formation. Little is known about the role of α-secretase cleavage in γ-secretase regulation. Here, we show that α-secretase-cleaved APP C-terminal product (αCTF) functions as an inhibitor of γ-secretase. We demonstrate that the substrate inhibitory domain (ASID) within αCTF, which is bisected by the α-secretase cleavage site, contributes to this negative regulation because deleting or masking this domain turns αCTF into a better substrate for γ-secretase. Moreover, α-secretase cleavage can potentiate the inhibitory effect of ASID. Inhibition of γ-secretase activity by αCTF is observed in both in vitro and cellular systems. This work reveals an unforeseen role for α-secretase in generating an endogenous γ-secretase inhibitor that down-regulates the production of Aβ. Deregulation of this feedback mechanism may contribute to the pathogenesis of AD.  相似文献   

18.
The presenilin/γ-secretase complex, an unusual intramembrane aspartyl protease, plays an essential role in cellular signaling and membrane protein turnover. Its ability to liberate numerous intracellular signaling proteins from the membrane and also mediate the secretion of amyloid-β protein (Aβ) has made modulation of γ-secretase activity a therapeutic goal for cancer and Alzheimer disease. Although the proteolysis of the prototypical substrates Notch and β-amyloid precursor protein (APP) has been intensely studied, the full spectrum of substrates and the determinants that make a transmembrane protein a substrate remain unclear. Using an unbiased approach to substrate identification, we surveyed the proteome of a human cell line for targets of γ-secretase and found a relatively small population of new substrates, all of which are type I transmembrane proteins but have diverse biological roles. By comparing these substrates to type I proteins not regulated by γ-secretase, we determined that besides a short ectodomain, γ-secretase requires permissive transmembrane and cytoplasmic domains to bind and cleave its substrates. In addition, we provide evidence for at least two mechanisms that can target a substrate for γ cleavage: one in which a substrate with a short ectodomain is directly cleaved independent of sheddase association, and a second where a substrate requires ectodomain shedding to instruct subsequent γ-secretase processing. These findings expand our understanding of the mechanisms of substrate selection as well as the diverse cellular processes to which γ-secretase contributes.  相似文献   

19.
γ-Secretase is responsible for proteolytic maturation of signaling and cell surface proteins, including amyloid precursor protein (APP). Abnormal processing of APP by γ-secretase produces a fragment, Aβ42, that may be responsible for Alzheimer's disease (AD). The biogenesis and trafficking of this important enzyme in relation to aberrant Aβ processing is not well defined. Using a cell-free reaction to monitor the exit of cargo proteins from the endoplasmic reticulum (ER), we have isolated a transient intermediate of γ-secretase. Here, we provide direct evidence that the γ-secretase complex is formed in an inactive complex at or before the assembly of an ER transport vesicle dependent on the COPII sorting subunit, Sec24A. Maturation of the holoenzyme is achieved in a subsequent compartment. Two familial AD (FAD)–linked PS1 variants are inefficiently packaged into transport vesicles generated from the ER. Our results suggest that aberrant trafficking of PS1 may contribute to disease pathology.  相似文献   

20.
The presenilin/γ-secretase complex, an unusual intramembrane aspartyl protease, plays an essential role in cellular signaling and membrane protein turnover. Its ability to liberate numerous intracellular signaling proteins from the membrane and also mediate the secretion of amyloid-β protein (Aβ) has made modulation of γ-secretase activity a therapeutic goal for cancer and Alzheimer disease. Although the proteolysis of the prototypical substrates Notch and β-amyloid precursor protein (APP) has been intensely studied, the full spectrum of substrates and the determinants that make a transmembrane protein a substrate remain unclear. Using an unbiased approach to substrate identification, we surveyed the proteome of a human cell line for targets of γ-secretase and found a relatively small population of new substrates, all of which are type I transmembrane proteins but have diverse biological roles. By comparing these substrates to type I proteins not regulated by γ-secretase, we determined that besides a short ectodomain, γ-secretase requires permissive transmembrane and cytoplasmic domains to bind and cleave its substrates. In addition, we provide evidence for at least two mechanisms that can target a substrate for γ cleavage: one in which a substrate with a short ectodomain is directly cleaved independent of sheddase association, and a second where a substrate requires ectodomain shedding to instruct subsequent γ-secretase processing. These findings expand our understanding of the mechanisms of substrate selection as well as the diverse cellular processes to which γ-secretase contributes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号