共查询到20条相似文献,搜索用时 0 毫秒
1.
A pseudoknot ribozyme structure is active in vivo and required for hepatitis delta virus RNA replication. 总被引:3,自引:2,他引:3
下载免费PDF全文

The ribozymes of hepatitis delta virus (HDV) have so far been studied primarily in vitro. Several structural models for HDV ribozymes based on truncated HDV RNA fragments, which are different from the hammerhead or the hairpin/paperclip ribozyme model proposed for plant viroid or virusoid RNAs, have been proposed. Whether these structures actually exist in vivo and whether ribozymes actually function in the HDV replication cycle have not been demonstrated. We have now developed an in vivo ribozyme self-cleavage assay capable of detecting self-cleavage of dimer or trimer HDV RNA in vivo. By site-directed mutagenesis and compensatory mutations to disrupt and restore potential base pairing in the ribozyme domain of the full-length HDV RNA according to the various structural models, a close correlation between the detected in vivo and the predicted in vitro ribozyme activities of various mutant RNAs was demonstrated. These results suggest that the proposed in vitro ribozyme structure likely exists and functions during the HDV replication cycle in vivo. Furthermore, the pseudoknot model most likely represents the structure responsible for the ribozyme activity in vivo. All of the mutants that had lost the ribozyme activity could not replicate, indicating that the ribozyme activities are indeed required for HDV RNA replication. However, some of the compensatory mutants which have restored both the cleavage and ligation activities could not replicate, suggesting that the ribozyme domains are also involved in other unidentified functions or in the formation of an alternative structure that is required for HDV RNA replication. This study thus established that the ribozyme has important biological functions in the HDV life cycle. 相似文献
2.
A long-range pseudoknot is required for activity of the Neurospora VS ribozyme. 总被引:2,自引:0,他引:2
下载免费PDF全文

Four small RNA self-cleaving domains, the hammerhead, hairpin, hepatitis delta virus and Neurospora VS ribozymes, have been identified previously in naturally occurring RNAs. The secondary structures of these ribozymes are reasonably well understood, but little is known about long-range interactions that form the catalytically active tertiary conformations. Our previous work, which identified several secondary structure elements of the VS ribozyme, also showed that many additional bases were protected by magnesium-dependent interactions, implying that several tertiary contacts remained to be identified. Here we have used site-directed mutagenesis and chemical modification to characterize the first long-range interaction identified in VS RNA. This interaction contains a 3 bp pseudoknot helix that is required for tertiary folding and self-cleavage activity of the VS ribozyme. 相似文献
3.
Shefer K Brown Y Gorkovoy V Nussbaum T Ulyanov NB Tzfati Y 《Molecular and cellular biology》2007,27(6):2130-2143
Telomerase copies a short template within its integral telomerase RNA onto eukaryotic chromosome ends, compensating for incomplete replication and degradation. Telomerase action extends the proliferative potential of cells, and thus it is implicated in cancer and aging. Nontemplate regions of telomerase RNA are also crucial for telomerase function. However, they are highly divergent in sequence among species, and their roles are largely unclear. Using in silico three-dimensional modeling, constrained by mutational analysis, we propose a three-dimensional model for a pseudoknot in telomerase RNA of the budding yeast Kluyveromyces lactis. Interestingly, this structure includes a U-A.U major-groove triple helix. We confirmed the triple-helix formation in vitro using oligoribonucleotides and showed that it is essential for telomerase function in vivo. While triplex-disrupting mutations abolished telomerase function, triple compensatory mutations that formed pH-dependent G-C.C(+) triples restored the pseudoknot structure in a pH-dependent manner and partly restored telomerase function in vivo. In addition, we identified a novel type of triple helix that is formed by G-C.U triples, which also partly restored the pseudoknot structure and function. We propose that this unusual structure, so far found only in telomerase RNA, provides an essential and conserved telomerase-specific function. 相似文献
4.
A procedure for RNA pseudoknot prediction 总被引:2,自引:0,他引:2
The RNA pseudoknot has been proposed as a significant structuralmotif in a wide range of biological processes of RNAs. A pseudoknotinvolves intramolecular pairing of bases in a hairpin loop withbases outside the stem of the loop to form a second stem andloop region. In this study, we propose a method for searchingand predicting pseudoknots that are likely to have functionalmeaning. In our procedure, the orthodox hairpin structure involvedin the pseudoknot is required to be both statistically significantand relatively stable to the others in the sequence. The basesoutside the stem of the hairpin loop in the predicted pseudoknotare not entangled with any formation of a highly stable secondarystructure in the sequence. Also, the predicted pseudoknot issignificantly more stable than those that can be formed froma large set of scrambled sequences under the assumption thatthe energy contribution from a pseudoknot is proportional tothe size of second loop region and planar energy contributionfrom second stem region. A number of functional pseudoknotsthat have been reported before can be identified and predictedfrom their sequences by our method. 相似文献
5.
Tertiary or higher-order RNA motifs that regulate replication of positive-strand RNA viruses are as yet poorly understood. Using Japanese encephalitis virus (JEV), we now show that a key element in JEV RNA replication is a complex RNA motif that includes a string of three discontinuous complementary sequences (TDCS). The TDCS consists of three 5-nt-long strands, the left (L) strand upstream of the translation initiator AUG adjacent to the 5′-end of the genome, and the middle (M) and right (R) strands corresponding to the base of the Flavivirus-conserved 3′ stem–loop structure near the 3′-end of the RNA. The three strands are arranged in an antiparallel configuration, with two sets of base-pairing interactions creating L-M and M-R duplexes. Disrupting either or both of these duplex regions of TDCS completely abolished RNA replication, whereas reconstructing both duplex regions, albeit with mutated sequences, fully restored RNA replication. Modeling of replication-competent genomes recovered from a large pool of pseudorevertants originating from six replication-incompetent TDCS mutants suggests that both duplex base-pairing potentials of TDCS are required for RNA replication. In all cases, acquisition of novel sequences within the 3′M-R duplex facilitated a long-range RNA–RNA interaction of its 3′M strand with either the authentic 5′L strand or its alternative (invariably located upstream of the 5′ initiator), thereby restoring replicability. We also found that a TDCS homolog is conserved in other flaviviruses. These data suggest that two duplex base-pairings defined by the TDCS play an essential regulatory role in a key step(s) of Flavivirus RNA replication. 相似文献
6.
Specific binding of tombusvirus replication protein p33 to an internal replication element in the viral RNA is essential for replication
下载免费PDF全文

The mechanism of template selection for genome replication in plus-strand RNA viruses is poorly understood. Using the prototypical tombusvirus, Tomato bushy stunt virus (TBSV), we show that recombinant p33 replicase protein binds specifically to an internal replication element (IRE) located within the p92 RNA-dependent RNA polymerase coding region of the viral genome. Specific binding of p33 to the IRE in vitro depends on the presence of a C.C mismatch within a conserved RNA helix. Interestingly, the absence of the p33:p33/p92 interaction domain in p33 prevented specific but allowed nonspecific RNA binding, suggesting that a multimeric form of this protein is involved in the IRE-specific interaction. Further support for the selectivity of p33 binding in vitro was provided by the inability of the replicase proteins of the closely related Turnip crinkle virus and distantly related Hepatitis C virus to specifically recognize the TBSV IRE. Importantly, there was also a strong correlation between p33:IRE complex formation in vitro and viral replication in vivo, where mutations in the IRE that disrupted selective p33 binding in vitro also abolished TBSV RNA replication both in plant and in Saccharomyces cerevisiae cells. Based on these findings and the other known properties of p33 and the IRE, it is proposed that the p33:IRE interaction provides a mechanism to selectively recruit viral RNAs into cognate viral replicase complexes. Since all genera in Tombusviridae encode comparable replicase proteins, these results may be relevant to other members of this large virus family. 相似文献
7.
Vyas N Goswami D Manonmani A Sharma P Ranganath HA VijayRaghavan K Shashidhara LS Sowdhamini R Mayor S 《Cell》2008,133(7):1214-1227
Hedgehog (Hh) plays crucial roles in tissue-patterning and activates signaling in Patched (Ptc)-expressing cells. Paracrine signaling requires release and transport over many cell diameters away by a process that requires interaction with heparan sulfate proteoglycans (HSPGs). Here, we examine the organization of functional, fluorescently tagged variants in living cells by using optical imaging, FRET microscopy, and mutational studies guided by bioinformatics prediction. We find that cell-surface Hh forms suboptical oligomers, further concentrated in visible clusters colocalized with HSPGs. Mutation of a conserved Lys in a predicted Hh-protomer interaction interface results in an autocrine signaling-competent Hh isoform--incapable of forming dense nanoscale oligomers, interacting with HSPGs, or paracrine signaling. Thus, Hh exhibits a hierarchical organization from the nanoscale to visible clusters with distinct functions. 相似文献
8.
RNA pseudoknots are structural elements that participate in a variety of biological processes. At -1 ribosomal frameshifting sites, several types of pseudoknot have been identified which differ in their organisation and functionality. The pseudoknot found in infectious bronchitis virus (IBV) is typical of those that possess a long stem 1 of 11-12 bp and a long loop 2 (30-164 nt). A second group of pseudoknots are distinguishable that contain stems of only 5 to 7 bp and shorter loops. The NMR structure of one such pseudoknot, that of mouse mammary tumor virus (MMTV), has revealed that it is kinked at the stem 1-stem 2 junction, and that this kinked conformation is essential for efficient frameshifting. We recently investigated the effect on frameshifting of modulating stem 1 length and stability in IBV-based pseudoknots, and found that a stem 1 with at least 11 bp was needed for efficient frameshifting. Here, we describe the sequence manipulations that are necessary to bypass the requirement for an 11 bp stem 1 and to convert a short non-functional IBV-derived pseudoknot into a highly efficient, kinked frameshifter pseudoknot. Simple insertion of an adenine residue at the stem 1-stem 2 junction (an essential feature of a kinked pseudoknot) was not sufficient to create a functional pseudoknot. An additional change was needed: efficient frameshifting was recovered only when the last nucleotide of loop 2 was changed from a G to an A. The requirement for an A at the end of loop 2 is consistent with a loop-helix contact similar to those described in other RNA tertiary structures. A mutational analysis of both partners of the proposed interaction, the loop 2 terminal adenine residue and two G.C pairs near the top of stem 1, revealed that the interaction was essential for efficient frameshifting. The specific requirement for a 3'-terminal A residue was lost when loop 2 was increased from 8 to 14 nt, suggesting that the loop-helix contact may be required only in those pseudoknots with a short loop 2. 相似文献
9.
Inactivated replication forks may be reversed by the annealing of leading- and lagging-strand ends, resulting in the formation of a Holliday junction (HJ) adjacent to a DNA double-strand end. In Escherichia coli mutants deficient for double-strand end processing, resolution of the HJ by RuvABC leads to fork breakage, a reaction that we can directly quantify. Here we used the HJ-specific resolvase RusA to test a putative role of the RuvAB helicase in replication fork reversal (RFR). We show that the RuvAB complex is required for the formation of a RusA substrate in the polymerase III mutants dnaEts and holD, affected for the Pol III catalytic subunit and clamp loader, and in the helicase mutant rep. This finding reveals that the recombination enzyme RuvAB targets forks in vivo and we propose that it directly converts forks into HJs. In contrast, RFR occurs in the absence of RuvAB in the dnaNts mutant, affected for the processivity clamp of Pol III, and in the priA mutant, defective for replication restart. This suggests alternative pathways of RFR. 相似文献
10.
11.
12.
Several lines of evidence indicate that the universally conserved 530 loop of 16S ribosomal RNA plays a crucial role in translation, related to the binding of tRNA to the ribosomal A site. Based upon limited phylogenetic sequence variation, Woese and Gutell (1989) have proposed that residues 524-526 in the 530 hairpin loop are base paired with residues 505-507 in an adjoining bulge loop, suggesting that this region of 16S rRNA folds into a pseudoknot structure. Here, we demonstrate that Watson-Crick interactions between these nucleotides are essential for ribosomal function. Moreover, we find that certain mild perturbations of the structure, for example, creation of G-U wobble pairs, generate resistance to streptomycin, an antibiotic known to interfere with the decoding process. Chemical probing of mutant ribosomes from streptomycin-resistant cells shows that the mutant ribosomes have a reduced affinity for streptomycin, even though streptomycin is thought to interact with a site on the 30S subunit that is distinct from the 530 region. Data from earlier in vitro assembly studies suggest that the pseudoknot structure is stabilized by ribosomal protein S12, mutations in which have long been known to confer streptomycin resistance and dependence. 相似文献
13.
We have recently shown that Escherichia coli cells deficient in Hfq protein (i.e. the Qbeta "host factor") support bacteriophage Qbeta replication inefficiently, but that the phage evolves rapidly in the mutant host to become essentially host factor independent. An identical set of four point mutations was identified as being responsible for the adapted phenotype in each of three independent adaptation experiments. Here we report the effects of the single mutations and of some of their combinations on host factor dependence of phage multiplication in vivo and of phage RNA replication by Qbeta replicase in vitro. We find that each single substitution produces only small effects, but that in combination the four mutations synergistically account for most of the observed adaptation of the evolved phages. Surprisingly, a reanalysis of the 3'-terminal sequence of the adapted phages resulted in the discovery of a fifth mutation in all three independently evolved phage populations, namely, a C to U residue transition at nucleotide 4214. This mutation had been missed previously because of its location only three nucleotides from the 3'-end. It appears to contribute little to the Hfq independence but may enhance RNA stability by re-establishing the possibility of forming a long-range base-pairing interaction involving the immediate 3'-terminal sequence. 相似文献
14.
15.
The motif V of plum pox potyvirus CI RNA helicase is involved in NTP hydrolysis and is essential for virus RNA replication. 总被引:6,自引:2,他引:6
下载免费PDF全文

A Fernndez H S Guo P Senz L Simn-Buela M Gmez de Cedrn J A García 《Nucleic acids research》1997,25(22):4474-4480
The plum pox potyvirus (PPV) protein CI is an RNA helicase whose function in the viral life cycle is still unknown. The CI protein contains seven conserved sequence motifs typical of RNA helicases of the superfamily SF2. We have introduced several individual point mutations into the region coding for motif V of the PPV CI protein and expressed these proteins in Escherichia coli as maltose binding protein fusions. Mutations that abolished RNA helicase activity also disturbed NTP hydrolysis. No mutations affected the RNA binding capacity of the CI protein. These mutations were also introduced in the PPV genome making use of a full-length cDNA clone. Mutant viruses carrying CI proteins with reduced RNA helicase activity replicated very poorly in protoplasts and were unable to infect whole plants without rapid pseudoreversion to wild-type. These results indicate that motif V is involved in the NTP hydrolysis step required for potyvirus RNA helicase activity, and that this activity plays an essential role in virus RNA replication inside the infected cell. 相似文献
16.
Hillary S.W. Han 《Mathematical biosciences》2009,219(1):7-14
In this paper we study the distribution of stacks/loops in k-non-crossing, τ-canonical RNA pseudoknot structures (〈k,τ〉-structures). Here, an RNA structure is called k-non-crossing if it has no more than k-1 mutually crossing arcs and τ-canonical if each arc is contained in a stack of length at least τ. Based on the ordinary generating function of 〈k,τ〉-structures [G. Ma, C.M. Reidys, Canonical RNA pseudoknot structures, J. Comput. Biol. 15 (10) (2008) 1257] we derive the bivariate generating function , where Tk,τ(n,t) is the number of 〈k,τ〉-structures having exactly t stacks and study its singularities. We show that for a specific parametrization of the variable u, Tk,τ(x,u) exhibits a unique, dominant singularity. The particular shift of this singularity parametrized by u implies a central limit theorem for the distribution of stack-numbers. Our results are of importance for understanding the ‘language’ of minimum-free energy RNA pseudoknot structures, generated by computer folding algorithms. 相似文献
17.
18.
19.
Formation of the central pseudoknot in 16S rRNA is essential for initiation of translation. 总被引:7,自引:1,他引:7
下载免费PDF全文

The postulated central pseudoknot formed by regions 9-13/21-25 and 17-19/916-918 of 16S rRNA of Escherichia coli is phylogenetically conserved in prokaryotic as well eukaryotic species. This pseudoknot is located at the center of the secondary structure of the 16S rRNA and connects the three major domains of this molecule. We have introduced mutations into this pseudoknot by changing the base-paired residues C18 and G917, and the effect of such mutations on the ribosomal activity was studied in vivo, using a 'specialized' ribosome system. As compared with ribosomes having the wild-type pseudoknot, the translational activity of ribosomes containing an A, G or U residue at position 18 was dramatically reduced, while the activity of mutant ribosomes having complementary bases at positions 18 and 917 was at the wild-type level. The reduced translational activity of those mutants that are incapable of forming a pseudoknot was caused by their inability to form 70S ribosomal complexes. These results demonstrate that the potential formation of a central pseudoknot in 16S rRNA with any base-paired residues at positions 18 and 917 is essential to complete the initiation process. 相似文献
20.
The DNA repair helicase UvrD is essential for replication fork reversal in replication mutants
下载免费PDF全文

Replication forks arrested by inactivation of the main Escherichia coli DNA polymerase (polymerase III) are reversed by the annealing of newly synthesized leading- and lagging-strand ends. Reversed forks are reset by the action of RecBC on the DNA double-strand end, and in the absence of RecBC chromosomes are linearized by the Holliday junction resolvase RuvABC. We report here that the UvrD helicase is essential for RuvABC-dependent chromosome linearization in E. coli polymerase III mutants, whereas its partners in DNA repair (UvrA/B and MutL/S) are not. We conclude that UvrD participates in replication fork reversal in E. coli. 相似文献