首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bradykinin (BK)-induced release of arachidonic acid (AA) fromMadin-Darby canine kidney (MDCK) D1 cells was investigated. Phorbol12-myristate 13-acetate (PMA) caused a synergistic increase in BK- andA-23187-induced release of AA but alone had no effect on this release.Inhibition of protein kinase C (PKC) with bisindolmaleimide I (BIS)abolished the synergistic effects of PMA but did not affect AA releasecaused by BK or A-23187 alone. Downregulation of PKC with 100 nM PMAresulted in a reduction of AA release induced by BK or A-23187addition, which corresponded to a decrease in cytoplasmic phospholipaseA2(cPLA2) activity as measured incell extracts. Although Western blotting revealed no differences in cPLA2 expression as a result ofPMA treatment, phosphorylation of the enzyme, as assessed byphosphoserine content, was significantly reduced in PKC-depleted cells.These results imply that, with PKC downregulation, subsequent BKstimulation results in aCa2+-dependent translocation of aless phosphorylated, less active form ofcPLA2. Any stimulation of PKC byBK addition did not appear as a significant event in onset reponsesleading to AA release. On the other hand, inhibition of themitogen-activated protein kinase (MAPK) cascade with the MAPK kinaseinhibitor, PD-98059, significantly decreased BK-induced release of AA,a finding that, with our other results, points to the existence of aPKC-independent route for stimulation of MAPK and the propagation ofonset responses.

  相似文献   

2.
In an attempt to define the mechanism by which endotoxin induces its biologic activity, LPS was incorporated into phospholipid vesicles (liposomes) and compared with free LPS for ability to stimulate human monocytes. Activation of human monocytes by free LPS caused the translocation of protein kinase C (PKC) from the cytosol to the plasma membranes, the production of both IL-1, alpha and beta, and IL-1 secretion. Activation by LPS presented in multilamellar vesicles (MLV)-LPS caused IL-1 production but not IL-1 secretion. Moreover, MLV-LPS did not induce PKC translocation. MLV themselves did not inhibit monocyte stimulation by LPS, since LPS presented at the surface of lyophilized liposomes behaved like free LPS in cell activation. In contrast, MLV-LPS primed monocytes for subsequent LPS stimulation. When monocytes were activated by LPS in the presence of PKC inhibitors, no plasma membrane-associated PKC or IL-1 secretion was detected, whereas IL-1 production was observed. PKC inhibitors did not affect IL-1 alpha and IL-1 beta production, showing that PKC is not involved in the production of either IL-1. It can be concluded that IL-1 production and secretion are induced independently, and that IL-1 secretion involves PKC.  相似文献   

3.
Arsenic is the first metal to be identified as a human carcinogen. Arsenite, one inorganic form of arsenic, has been found to induce sister chromatid exchange, chromosome aberrations, and gene amplification in a variety of in vitro systems. In this study of arsenite-induced genotoxicity represented as micronuclei production in Chinese hamster ovary cells (CHO-K1), we found that the calcium channel blocker, verapamil, can potentiate arsenite-induced micronuclei. And after arsenite treatment, the elevation of intracellular calcium was observed. When extracellular calcium was depleted during arsenite treatment, the arsenite-induced micronuclei formation was significantly suppressed. These data indicated that a calcium ion plays an essential role in arsenite-induced genotoxicity. Further, it was found that the cotreatment of arsenite and a calcium ionophore, A23187, can increase the micronuclei induction. In contrast, pretreatment of the intracellular calcium chelator, quin 2, significantly inhibited micronuclei production of arsenite administration. In addition, we measured the activity of calcium-and phospholipid-dependent protein kinase C (PKC) and found that arsenite can activate PKC activity in a dose-dependent manner. Subsequently, some PKC activators and inhibitors were applied to investigate the involvement of PKC on arsenite-induced micronuclei formation. It was found that H7, a PKC inhibitor, can depress but TPA, a PKC activator, can enhance arsenite-induced micronuclei significantly. These data indicated that arsenite exposure perturbs intracellular calcium homeostasis and activates PKC activity. As a result, the activation of PKC activity may play an important role in arsenite-induced genotoxicity. J. Cell. Biochem. 64:423–433. © 1997 Wiley-Liss, Inc.  相似文献   

4.
In isolated parietal cells from gastric fundic mucosa of the rabbit, activation of protein kinase C by the stable diacylglycerol analogue, OAG, and by the phorbol ester, TPA, inhibited in a dose-dependant manner both histamine-stimulated AP accumulation (EC50: 25 microM and 1.6 nM, respectively) and carbachol-stimulated AP accumulation (EC50: 15 microM and 0.6 nM, respectively). Stimulation by forskolin, but not that induced by db-cAMP, was also inhibited. A pretreatment of the cells with cholera toxin caused a reduction of the inhibitory effect of OAG on histamine stimulation, suggesting an action of the PKC on the Gs subunit of the adenylate cyclase. The IP3 generation induced by stimulation of the muscarinic receptor with carbachol was inhibited when the cells were pretreated with TPA. In the same way, the cholinergic-dependent rise of intracellular Ca2+ in parietal cells was dose-dependently inhibited by TPA or OAG and this inhibition was correlated with the inhibition of AP accumulation evaluated in the same conditions. In conclusion, this study demonstrates an involvement of the PKC in the control of the two pathways of the stimulation of acid secretion by a mechanism different from that involved in the negative regulation by prostaglandins.  相似文献   

5.
Protein kinase D (PKD) is a protein serine kinase that is directly stimulated in vitro by phorbol esters and diacylglycerol in the presence of phospholipids, and activated by phorbol esters, neuropeptides, and platelet-derived growth factor via protein kinase C (PKC) in intact cells. Recently, oxidative stress was shown to activate transfected PKC isoforms via tyrosine phosphorylation, but PKD activation was not demonstrated. Here, we report that oxidative stress initiated by addition of H(2)O(2) (0.15-10 mm) to quiescent Swiss 3T3 fibroblasts activates PKD in a dose- and time- dependent manner, as measured by autophosphorylation and phosphorylation of an exogenous substrate, syntide-2. Oxidative stress also activated transfected PKD in COS-7 cells but not a kinase-deficient mutant PKD form or a PKD mutant with critical activating serine residues 744 and 748 mutated to alanines. Genistein, or the specific Src inhibitors PP-1 and PP-2 (1-10 micrometer) inhibited H(2)O(2)-mediated PKD activation by 45%, indicating that Src contributes to this signaling pathway. PKD activation by H(2)O(2) was also selectively potentiated by cotransfection of PKD together with an active form of Src (v-Src) in COS-7 cells, as compared with PDB-mediated activation. The specific phospholipase C inhibitor, partly blocked H(2)O(2)-mediated but not PDB-mediated PKD activation. In contrast, PKC inhibitors blocked H(2)O(2) or PDB-mediated PKD activation essentially completely, suggesting that whereas Src mediates part of its effects via phospholipase C activation, PKC acts more proximally as an upstream activator of PKD. Together, these studies reveal that oxidative stress activates PKD by initiating distinct Src-dependent and -independent pathways involving PKC.  相似文献   

6.
The purpose of this study is to clarify the involvement of protein kinase C in pulmonary surfactant secretion from adult rat alveolar type II cells in primary culture. Surfactant secretion in vitro is stimulated by at least two classes of compounds. One class, (e.g. terbutaline) increases intracellular cyclic AMP, whereas the other class (e.g. 12-O-tetradecanoylphorbol 13-acetate (TPA] does not. TPA has been shown to activate protein kinase C in other cell systems. In our studies, 1-oleoyl-2-acetyl-sn-glycerol (OAG), which is a direct activator of protein kinase C, stimulated [3H] phosphatidylcholine secretion by alveolar type II cells in a dose- and time-dependent manner. Tetracaine, which is an inhibitor of protein kinase C, inhibited the TPA-induced secretion of [3H]phosphatidylcholine from alveolar type II cells in a dose-dependent manner. However, tetracaine had no effect on terbutaline-induced secretion. The effects of terbutaline and OAG upon surfactant secretion were significantly more than additive, but those of TPA and OAG were less than additive. The specific activity of protein kinase C was 6-fold higher than cyclic AMP-dependent protein kinase found in type II cells when both kinases were assayed using lysine-rich histone as a common phosphate acceptor. Ninety-four per cent of protein kinase C activity was recovered in the cytosolic fraction of unstimulated type II cells, and 40% of activity in cytosolic fraction was translocated to particulate fraction upon treatment with TPA. As observed in other tissues, protein kinase C of alveolar type II cells was highly activated by 1,2-dioleoyl-sn-glycerol or TPA in the presence of Ca2+ and phosphatidylserine. These results suggest that pulmonary surfactant secretion in vitro is stimulated by both protein kinase C and cyclic AMP-dependent protein kinase.  相似文献   

7.
Insulin and AMP-activated protein kinase (AMPK) signal pathways are involved in the regulation of glucose uptake. The integration of signals between these two pathways to maintain glucose homeostasis remains elusive. In this work, stimulation of insulin and berberine conferred a glucose uptake or surface glucose transporter 4 (GLUT4) translocation that was less than simple summation of their effects in insulin-sensitive muscle cells. Using specific inhibitors to key kinases of both pathways and PKCzeta small interference RNA, protein kinase C zeta (PKCzeta) was found to regulate insulin-stimulated protein kinase B (PKB) activation and inhibit AMPK activity on dorsal cell surface. In the presence of berberine, PKCzeta controlled AMPK activation and AMPK blocked PKB activity in perinuclear region. The inhibition effect of PKCzeta on AMPK activation or the arrestment of PKB activity by AMPK still existed in basal condition. These results suggest that there is antagonistic regulation between insulin and AMPK signal pathways, which is mediated by the switch roles of PKCzeta.  相似文献   

8.
9.
The possibility that protein kinase C is involved in phototransduction by phosphorylating rhodopsin was explored in situ and in vitro. Pretreatment of intact retinas with phorbol myristate acetate markedly increased the light-dependent phosphorylation of rhodopsin, with the greatest effects observed at lower light levels. Phorbol myristate acetate treatment did not affect rhodopsin phosphorylation in retinas not exposed to light, suggesting that protein kinase C modulates the phosphorylation state of rhodopsin in a light-dependent manner. Limited proteolysis of rhodopsin phosphorylated in situ indicates that protein kinase C modifies rhodopsin on a domain distinct from that recognized by rhodopsin kinase. In vitro, protein kinase C purified from bovine retinas phosphorylated unbleached and bleached rhodopsin. Our results are consistent with protein kinase C phosphorylating unbleached rhodopsin in response to low light, suggesting that protein kinase C plays a role in light adaptation.  相似文献   

10.
Caveolins have been identified as key components of caveolae, specialized cholesterol-enriched raft domains visible as small flask-shaped invaginations of the plasma membrane. In polarized MDCK cells caveolin-1 and -2 are found together on basolateral caveolae whereas the apical membrane, where only caveolin-1 is present, lacks caveolae. Expression of a caveolin mutant prevented the formation of the large caveolin-1/-2 hetero-oligomeric complexes, and led to intracellular retention of caveolin-2 and disappearance of caveolae from the basolateral membrane. Correspondingly, in MDCK cells over-expressing caveolin-2 the basolateral membrane exhibited an increased number of caveolae. These results indicate the involvement of caveolin-2 in caveolar biogenesis.  相似文献   

11.
Regulation of phosphate uptake was studied in HeLa cell lines after transfection with DNA encoding the human 5-HT1A receptor. Phosphate uptake was saturable and greater than 90% sodium-dependent, with Vmax approximately 30-35% without changing Km. Treatment with 5-HT or the 5-HT1A-specific agonist 8-OH-2-(di-n-propylamino)1,2,3,4-tetrahydronaphthalene increased Vmax approximately 40% without affecting Km. This effect was blocked by pretreatment with the 5-HT1 antagonists, methiothepine and spiperone, or pertussis toxin. Surprisingly, the stimulation was not secondary to an inhibition of adenylyl cyclase because 5-HT stimulated phosphate uptake approximately 20% in the presence of 1 mM 8-Br-cAMP. Rather, the primary pathway linked to the stimulation of phosphate uptake involved activation of protein kinase C because (i) 5-HT measurably activated protein kinase C in these cells, (ii) activators of protein kinase C (phorbol esters and diacylglycerol analogues) stimulated phosphate uptake in these cells (iii) the half-maximal doses for 5-HT-induced phosphatidylinositol hydrolysis and stimulation of phosphate uptake were virtually equivalent, and both effects were equally sensitive to pertussis toxin, and (iv) the stimulation was markedly attenuated in cells made deficient in protein kinase C. These results demonstrate that the stimulation of phosphatidylinositol hydrolysis by the 5-HT1A receptor can generate physiologically measurable effects on cellular transport and suggest that such accessory pathways may play a prominent role in signal transduction.  相似文献   

12.
Rho GTPases participate in various important signaling pathways and have been implicated in myogenic differentiation. Here the first evidence is provided that in C2C12 myoblasts sphingosine 1-phosphate (SPP) rapidly and transiently induced membrane association of Rho A in a pertussis toxin-insensitive manner. The bioactive lipid preferentially relocalized the GTPase to Golgi-enriched membrane. Translocation of Rho A was abolished by inhibition or down-regulation of protein kinase C (PKC). Notably, treatment with G?6976, an inhibitor of conventional PKCs, which selectively blocked PKC alpha in these cells, prevented SPP-induced Rho A translocation. Conversely rottlerin, a selective inhibitor of PKC delta, was without effect, demonstrating that SPP signaling to Rho A involves PKC alpha but not PKC delta activation. This novel functional relationship between the two proteins may have a role in SPP-mediated regulation of downstream effectors.  相似文献   

13.
We have previously described an Ia-expressing macrophage hybridoma clone, termed clone 59, which attains the ability to induce Ts cells after activation with murine rIFN-gamma. In this report, we show that a protein kinase C (PKC) activator, PMA (10 ng/ml) can replace IFN-gamma in inducing this form of macrophage competence. IFN-gamma-induced cellular competence was abrogated specifically by a PKC inhibitor but not by inhibitors that have specificity for cyclic nucleotide-dependent protein kinases. Furthermore, PGE2 known to induce protein kinase A in murine macrophages also failed to induce competence. In contrast, the ability to induce Th responses was neither dependent on IFN-gamma nor inhibited by prior treatment with protein kinase inhibitors. Furthermore, PKC depletion of macrophages by treatment with high doses (100 ng/ml) of PMA abrogated their ability to induce Ts cells. In addition, PKC-depleted macrophages failed to regain the ability to stimulate Ts cells after further treatment with IFN-gamma. The ability of IFN-gamma to modulate macrophage-mediated induction of Ts cells does not clearly correlate with an increased Ia expression as inducible expression of Ia was not consistently abrogated by PKC inhibitor treatment. In addition, PKC inhibitors failed to prevent the production of the cytokines IL-1 and IL-6. However, incubation of IFN-gamma or PMA-treated macrophages with antibodies recognizing the putative IJ ligand blocked the ability to induce Ts cells, suggesting the expression of these determinants on accessory cells is responsible for Ts induction.  相似文献   

14.
The eukaryotic tRNA:guanine transglycosylase (TGT) catalyses the base-for-base exchange of guanine for queuine (the q-base)--a nutrition factor for eukaryotes--at position 34 of the anticodon of tRNAsGUN (where 'N' represents one of the four canonical tRNA nucleosides), yielding the modified tRNA nucleoside queuosine (Q). This unique tRNA modification process was investigated in HeLa cells grown under either aerobic (21% O2) or hypoxic conditions (7% O2) after addition of chemically synthesized q-base to q-deficient cells. While the q-base was always inserted into tRNA under aerobic conditions, HeLa cells lost this ability under hypoxic conditions, however, only when serum factors became depleted from the culture medium. The inability to insert q into tRNA did not result from a lack of substrate, because the q-base accumulated within these cells against the concentration gradient, suggesting the presence of an active transport system for this base in HeLa cells. The activity of the TGT enzyme was restored after treatment of the cells with the protein kinase C activator, TPA, even in the presence of mRNA or protein synthesis inhibitors. The results indicate that the eukaryotic tRNA modifying enzyme, TGT, is a downstream target of activated protein kinase C.  相似文献   

15.
本文在大鼠杏仁核脑片上刺激外囊(external capsule,EC),在基底外侧杏仁核(basolateral amygdala,BLA)记录场电位,观察能否在杏仁核诱导长时程增强(long—term potentiation,LTP),并探讨杏仁核LTP形成的可能机制。应用两串间隔10min的0频率波刺激EC,可见BLA的场电位明显增强,持续时间在30min以上。EC—BLA的LTP表现为通路特异性,可被N-甲基-D-天冬氨酸受体(N-methyl—D—aspartate receptor,NMDAR)阻断剂D,L-2-氨基-5磷酸基戊酸(APV)阻断。在灌流液中加入蛋白激酶C(protein kinaseC,PKC)抑制剂chelerythrine chloride,对BLA的基础场电位和配对脉冲比率(pairedpulse ratio,PPR)没有影响;但在chelerythrine chloride存在的情况下,两串θ频率波刺激不能诱导出LTP;若于两串高频刺激10min后,在灌流液中加入chelerythrine chloride不能阻断BLA的LTP。上述结果表明,EC—BLA的LTP为NMDAR依赖性,PKC参与BLA的LTP诱导和早期维持。  相似文献   

16.
Estrogen activates protein kinase C in neurons: role in neuroprotection   总被引:10,自引:0,他引:10  
It has been previously demonstrated that estrogen can protect neurons from a variety of insults, including beta-amyloid (Abeta). Recent studies have shown that estrogen can rapidly modulate intracellular signaling pathways involved in cell survival. In particular, estrogen activates protein kinase C (PKC) in a variety of cell types. This enzyme plays a key role in many cellular events, including regulation of apoptosis. In this study, we show that 17beta-estradiol (E2) rapidly increases PKC activity in primary cultures of rat cerebrocortical neurons. A 1 h pre-treatment with E2 or phorbol-12-myristate-13-acetate (PMA), a potent activator of PKC, protects neurons against Abeta toxicity. Protection afforded by both PMA and E2 is blocked by pharmacological inhibitors of PKC. Further, depletion of PKC levels resulting from prolonged PMA exposure prevents subsequent E2 or PMA protection. Our results indicate that E2 activates PKC in neurons, and that PKC activation is an important step in estrogen protection against Abeta. These data provide new understanding into the mechanism(s) underlying estrogen neuroprotection, an action with therapeutic relevance to Alzheimer's disease and other age-related neurodegenerative disorders.  相似文献   

17.
The involvement of protein kinase C in the Ca2+-dependent phosphorylation of a 29 000-Mr insulin-granule membrane protein prepared from a rat insulinoma was investigated. Protein kinase C activity towards exogenous lysine-rich histone was detected in a cytosolic fraction prepared from an insulinoma homogenate in the presence of EGTA. This activity bound reversibly to insulin granules in a Ca2+-dependent manner. Phosphatidylserine liposomes removed both protein kinase C activity and the 29 000-Mr protein-phosphorylating activity from the cytosolic fraction in a Ca2+-dependent fashion. Protein kinase C activity and the enzymic activity responsible for the phosphorylation of the 29 000-Mr granule protein behaved identically on sucrose-density-gradient centrifugation, ion-exchange chromatography, (NH4)2SO4 fractionation and gel filtration of the cytosolic fraction. These results are consistent with protein kinase C being the enzyme responsible for the phosphorylation of the 29 000-Mr insulin-granule membrane protein.  相似文献   

18.
The objective of this study was to determine whether adenosine A1 or A2 receptor was responsible for the regulation of protein kinase C (PKC) in porcine coronary artery and its coupling to G-protein. Endothelium denuded arterial rings were incubated with PDBu (200nM) in the presence or absence of adenosine receptor agonists and antagonists for 1 day. Following incubation, the arterial rings were contracted with increasing concentrations of endothelin-1 (ET-1) (10–10–10–7M). Arteries incubated with PDBu alone failed to produce contraction in response to ET-1. On the contrary, inclusion of A1 receptor agonist ENBA at 10–9M in the incubation media with PDBu protected against the PDBu induced blunting of the ET-1 contractions by 50%. Incubation with ENBA alone increased ET-1 dependent contractions by about 2 fold. Inclusion of A1 receptor antagonist, N0861 at 10–6 M along with PDBu and ENBA, completely blocked the protective effect of ENBA against the PDBu induced attenuation of ET-1 contractions. N0861 also completely blocked the increase in ET-1 contractions in the arterial rings incubated with ENBA alone. Another A1 receptor antagonist DPCPX also produced similar results as N0861. On the contrary, arterial rings incubated with relatively specific A2 receptor agonist CGS 21680 at 10–4M did not produce any protection against PDBu induced blunting of the ET-1 contractions. Incubation with CGS 21680 alone also did not significantly alter the ET-1 contractions. Interestingly, inclusion of A2 receptor antagonist DMPX at 10–4M in the incubation media along with CGS 21680 mimicked the effects of ENBA alone i.e. produced protection against PDBu and enhanced ET-1 contractions. Incubation of the arteries with ENBA alone caused an accumulation of PKC levels, whereas, incubation with CGS 21680 had no significant effect on PKC levels. To study the coupling of adenosine receptor with G-protein, the tissue was incubated for one day with cholera (CT) or pertussis toxin (PT) in the presence or absence or ENBA and PDBu as described above. Incubation with PT blocked the protective effect of ENBA against PDBu as well as the elevation of ET-1 response when incubated with ENBA alone. On the contrary, incubation with CT did not produce any significant effect on ENBA responses. These results indicate that PKC is modulated by adenosine via A1 adenosine receptors and through a PT sensitive G-protein.This work was supported by National Heart, Lung and Blood Institute Grant HL-27339.  相似文献   

19.
To evaluate a possible modulation by protein kinase C of hormonal, cAMP-mediated effects on renal epithelial cells, we studied the effect of protein kinase C activators and of bradykinin on intracellular cAMP accumulation in MDCK cells. A 15-min pretreatment of cells with phorbol 12-myristate 13-acetate or 1-oleoyl-2-acetylglycerol induced a dose-dependent inhibition of vasopressin-stimulated cAMP synthesis, but not of basal or glucagon-, prostaglandin E2-, and forskolin-stimulated cAMP generation. 4 alpha-Phorbol 12,13-didecanoate, inactive on protein kinase C, did not affect cAMP accumulation. Bradykinin (0.1-10 microM) also inhibited the stimulatory effect of vasopressin on cAMP synthesis in a concentration-dependent manner, but affected neither basal cAMP content, nor its stimulation by glucagon, prostaglandin E2 and forskolin. The effect of activators of protein kinase C and of bradykinin occurred while renal prostaglandin synthesis was blocked with indomethacin. The inhibitory effect of protein kinase C activators and bradykinin on cAMP generation was reversed by the protein kinase C inhibitor H7, was enhanced by monensin, one effect of which is to block the recycling of membrane receptors, and persisted when the GTP-binding protein N1 was blocked with 1 mM Mn2+. Our data suggest that: protein kinase C can modulate the tubular effects of vasopressin by inhibiting cAMP generation; this effect is not mediated by renal prostaglandins, and might result from a direct action on the vasopressin receptor, or on its coupling with Ns; the modulation by bradykinin of vasopressin effects are likely to be exerted, at least partly, through activation of protein kinase C.  相似文献   

20.
Sulfatide (cerebroside sulfate) activated protein kinase C to the same extent as phosphatidylserine did with the tumor promoters, 12-O-tetradecanoylphorbol-13-acetate (TPA), teleocidin and debromoaplysiatoxin. Sulfatide and phosphatidylserine both induced specific binding of [3H]TPA to protein kinase C, although the ratios of specific to non-specific [3H]TPA binding to protein kinase C with the two were not the same. It is concluded that sulfatide is involved in activation of protein kinase C by tumor promoters in a slightly different way from phosphatidylserine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号