首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have completely sequenced and annotated the genomes of several relatives of the bacteriophage T4, including three coliphages (RB43, RB49 and RB69), three Aeromonas salmonicida phages (44RR2.8t, 25 and 31) and one Aeromonas hydrophila phage (Aeh1). In addition, we have partially sequenced and annotated the T4-like genomes of coliphage RB16 (a close relative of RB43), A. salmonicida phage 65, Acinetobacter johnsonii phage 133 and Vibrio natriegens phage nt-1. Each of these phage genomes exhibited a unique sequence that distinguished it from its relatives, although there were examples of genomes that are very similar to each other. As a group the phages compared here diverge from one another by several criteria, including (a) host range, (b) genome size in the range between approximately 160 kb and approximately 250 kb, (c) content and genetic organization of their T4-like genes for DNA metabolism, (d) mutational drift of the predicted T4-like gene products and their regulatory sites and (e) content of open-reading frames that have no counterparts in T4 or other known organisms (novel ORFs). We have observed a number of DNA rearrangements of the T4 genome type, some exhibiting proximity to putative homing endonuclease genes. Also, we cite and discuss examples of sequence divergence in the predicted sites for protein-protein and protein-nucleic acid interactions of homologues of the T4 DNA replication proteins, with emphasis on the diversity in sequence, molecular form and regulation of the phage-encoded DNA polymerase, gp43. Five of the sequenced phage genomes are predicted to encode split forms of this polymerase. Our studies suggest that the modular construction and plasticity of the T4 genome type and several of its replication proteins may offer resilience to mutation, including DNA rearrangements, and facilitate the adaptation of T4-like phages to different bacterial hosts in nature.  相似文献   

2.
Mycobacteriophages are viruses that infect mycobacterial hosts. Expansion of a collection of sequenced phage genomes to a total of 60—all infecting a common bacterial host—provides further insight into their diversity and evolution. Of the 60 phage genomes, 55 can be grouped into nine clusters according to their nucleotide sequence similarities, 5 of which can be further divided into subclusters; 5 genomes do not cluster with other phages. The sequence diversity between genomes within a cluster varies greatly; for example, the 6 genomes in Cluster D share more than 97.5% average nucleotide similarity with one another. In contrast, similarity between the 2 genomes in Cluster I is barely detectable by diagonal plot analysis. In total, 6858 predicted open-reading frames have been grouped into 1523 phamilies (phams) of related sequences, 46% of which possess only a single member. Only 18.8% of the phams have sequence similarity to non-mycobacteriophage database entries, and fewer than 10% of all phams can be assigned functions based on database searching or synteny. Genome clustering facilitates the identification of genes that are in greatest genetic flux and are more likely to have been exchanged horizontally in relatively recent evolutionary time. Although mycobacteriophage genes exhibit a smaller average size than genes of their host (205 residues compared with 315), phage genes in higher flux average only 100 amino acids, suggesting that the primary units of genetic exchange correspond to single protein domains.  相似文献   

3.
Bacteriophage genomics   总被引:9,自引:0,他引:9  
Comparative genomic studies of bacteriophages, especially the tailed phages, together with environmental studies, give a dramatic new picture of the size, genetic structure and dynamics of this population. Sequence comparisons reveal some of the detailed mechanisms by which these viruses evolve and influence the evolution of their bacterial and archaeal hosts. We see rampant horizontal exchange of sequences among genomes, mediated by both homologous and nonhomologous recombination. High frequency exchange among phages occupying similar ecological niches leads to a high degree of mosaic diversity in local populations. Horizontal exchange also takes place at lower frequency across the entire span of phage sequence space.  相似文献   

4.
Marine phages are the most abundant biological entities in the oceans. They play important roles in carbon cycling through marine food webs, gene transfer by transduction and conversion of hosts by lysogeny. The handful of marine phage genomes that have been sequenced to date, along with prophages in marine bacterial genomes, and partial sequencing of uncultivated phages are yielding glimpses of the tremendous diversity and physiological potential of the marine phage community. Common gene modules in diverse phages are providing the information necessary to make evolutionary comparisons. Finally, deciphering phage genomes is providing clues about the adaptive response of phages and their hosts to environmental cues.  相似文献   

5.
A characteristic feature of bacteriophage genomes is that they are architecturally mosaic, with each individual genome representing a unique assemblage of individual exchangeable modules. Plausible mechanisms for generating mosaicism include homologous recombination at shared boundary sequences of module junctions, illegitimate recombination in a non-sequence-directed process, and site-specific recombination. Analysis of the novel mycobacteriophage Giles genome not only extends our current perspective on bacteriophage genetic diversity, with more than 60% of the genes unrelated to other mycobacteriophages, but offers novel insights into how mosaic genomes are created. In one example, the integration/excision cassette is atypically situated within the structural gene operon and could have moved there either by illegitimate recombination or more plausibly via integrase-mediated site-specific recombination. In a second example, a DNA segment has been recently acquired from the host bacterial chromosome by illegitimate recombination, providing further evidence that phage genomic mosaicism is generated by nontargeted recombination processes.  相似文献   

6.
The size and diversity of bacteriophage populations require methodologies to quantitatively study the landscape of phage differences. Statistical approaches are confronted with small genome sizes forbidding significant single-phage analysis, and comparative methods analyzing full phage genomes represent an alternative but they are of difficult interpretation due to lateral gene transfer, which creates a mosaic spectrum of related phage species. Based on a large-scale codon bias analysis of 116 DNA phages hosted by 11 translationally biased bacteria belonging to different phylogenetic families, we observe that phage genomes are almost always under codon selective pressure imposed by translationally biased hosts, and we propose a classification of phages with translationally biased hosts which is based on adaptation patterns. We introduce a computational method for comparing phages sharing homologous proteins, possibly accepted by different hosts. We observe that throughout phages, independently from the host, capsid genes appear to be the most affected by host translational bias. For coliphages, genes involved in virion morphogenesis, host interaction and ssDNA binding are also affected by adaptive pressure. Adaptation affects long and small phages in a significant way. We analyze in more detail the Microviridae phage space to illustrate the potentiality of the approach. The small number of directions in adaptation observed in phages grouped around ϕX174 is discussed in the light of functional bias. The adaptation analysis of the set of Microviridae phages defined around ϕMH2K shows that phage classification based on adaptation does not reflect bacterial phylogeny. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
The number of completely sequenced tailed-bacteriophage genomes that have been published increased to more than 125 last year. The comparison of these genomes has brought their highly mosaic nature into much sharper focus. Furthermore, reports of the complete sequences of about 150 bacterial genomes have shown that the many prophage and parts thereof that reside in these bacterial genomes must comprise a significant fraction of Earth's phage gene pool. These phage and prophage genomes are fertile ground for attempts to deduce the nature of viral evolutionary processes, and such analyses have made it clear that these phage have enjoyed a significant level of horizontal exchange of genetic information throughout their long histories. The strength of these evolutionary deductions rests largely on the extensive knowledge that has accumulated during intensive study into the molecular nature of the life cycles of a few 'model system' phages over the past half century. Recent molecular studies of phages other than these model system phages have made it clear that much remains to be learnt about the variety of lifestyle strategies utilized by the tailed-phage.  相似文献   

8.
The evolution of cooperation was studied in an empirical system utilizing a parasitic bacteriophage (f1) and a bacterial host. Infected cells were propagated by serial passage so that a phage could increase its representation among infected hosts only by enhancing the rate of growth of its host. Loss of infectivity was therefore without selective penalty, and phage benevolence could potentially evolve through a variety of genetic changes. The infected hosts evolved to grow faster over the course of the study, but the genetic bases of this phenotypic change were more difficult to anticipate. Two fundamentally different types of genetic changes in the phage were revealed. One involved the loss of some phage genes, resulting in a noninfectious plasmid that continued to replicate via the parental phage replicon. The second change involved integration of the phage genome into host DNA by a process that, at low frequency, could be reversed to produce infectious phage particles. Integration is a previously unknown property of wild-type f1, and in the system studied, may have resulted from the use of a phage bearing an insert containing nonfunctional DNA. The evolution of this novel function apparently depended only on the presence of a small region in the phage genome that provided some homology to the host DNA, with the host providing all necessary functions. Although f1 is one of the simplest phages known, these observations suggest that host-parasite interactions of the filamentous phages are more complicated than previously thought. More generally, the f1 system offers a useful model for many problems concerning the genetic basis of adaptation.  相似文献   

9.
Phages play a key role in the marine environment by regulating the transfer of energy between trophic levels and influencing global carbon and nutrient cycles. The diversity of marine phage communities remains difficult to characterize because of the lack of a signature gene common to all phages. Recent studies have demonstrated the presence of host-derived auxiliary metabolic genes in phage genomes, such as those belonging to the Pho regulon, which regulates phosphate uptake and metabolism under low-phosphate conditions. Among the completely sequenced phage genomes in GenBank, this study identified Pho regulon genes in nearly 40% of the marine phage genomes, while only 4% of nonmarine phage genomes contained these genes. While several Pho regulon genes were identified, phoH was the most prevalent, appearing in 42 out of 602 completely sequenced phage genomes. Phylogenetic analysis demonstrated that phage phoH sequences formed a cluster distinct from those of their bacterial hosts. PCR primers designed to amplify a region of the phoH gene were used to determine the diversity of phage phoH sequences throughout a depth profile in the Sargasso Sea and at six locations worldwide. phoH was present at all sites examined, and a high diversity of phoH sequences was recovered. Most phoH sequences belonged to clusters without any cultured representatives. Each depth and geographic location had a distinct phoH composition, although most phoH clusters were recovered from multiple sites. Overall, phoH is an effective signature gene for examining phage diversity in the marine environment.  相似文献   

10.
Antibiotic resistance is a common and serious public health worldwide. As an alternative to antibiotics, bacteriophage (phage) therapy offers one of the best solutions to antibiotic resistance. Bacteriophages survive where their bacterial hosts are found; thus, they exist in almost all environments and their applications are quite varied in the medical, environmental, and industrial fields. Moreover, a single phage or a mixture of phages can be used in phage therapy; mixed phages tend to be more effective in reducing the number and/or activity of pathogenic bacteria than that of a single phage.  相似文献   

11.
Jiang S  Fu W  Chu W  Fuhrman JA 《Microbial ecology》2003,45(4):399-410
Sixty-two bacteriophages were isolated on eight indigenous bacteria from a Pacific Ocean station spanning 887-m vertical depth, on two occasions between 1999 and 2000. On the basis of 16S rRNA sequences, six hosts were tentatively identified to be in the genus Vibrio and the other two were closely related to Altermonas macleodii (W9a) and Pseudoalteromonas spp. (W13a). Restriction fragment length polymorphism (RFLP) analysis of phage genomes using AccI and HapI showed that 16 phages infecting host C4a (Vibrio) displayed 14 unique RFLP patterns. However, identical phages infecting host C4b, C6a, and C6b (all Vibrio) were obtained from both the surface layer and the hypoxic zone at 850 m. Most phage isolates from the second year had a different RFLP pattern but shared genetic similarity to the phages infecting the same host from the previous year based on a hybridization study using phage genome probes. Cluster analysis of RFLP patterns and hybridization results also indicated that phages infecting the same or genetically related hosts, in general, shared higher degrees of homology in spite of the diverse RFLP patterns. Pulsed field gel electrophoresis (PFGE) analysis of native viral genomes indicated a range in genome size from less than 40 to 200 kb, and the dominant band shifted up by about 5-10 kb in the deep samples compared to the shallow ones. Hybridization of phage genome probes with total viral community DNA from various depths suggests these isolates, or at least some of their genes, represent a detectable portion of the natural viral community and were distributed throughout the water column. Thus, the results of this study demonstrated that the genetic diversity of bacteriophage in the ocean is far greater than that of their bacterial hosts. However, host range may have contributed to the evolution of the diverse phage population in the marine environment.  相似文献   

12.
The objective of this study was to determine the genomic changes that underlie coevolution between Escherichia coli B and bacteriophage T3 when grown together in a laboratory microcosm. We also sought to evaluate the repeatability of their evolution by studying replicate coevolution experiments inoculated with the same ancestral strains. We performed the coevolution experiments by growing Escherichia coli B and the lytic bacteriophage T3 in seven parallel continuous culture devices (chemostats) for 30 days. In each of the chemostats, we observed three rounds of coevolution. First, bacteria evolved resistance to infection by the ancestral phage. Then, a new phage type evolved that was capable of infecting the resistant bacteria as well as the sensitive bacterial ancestor. Finally, we observed second-order resistant bacteria evolve that were resistant to infection by both phage types. To identify the genetic changes underlying coevolution, we isolated first- and second-order resistant bacteria as well as a host-range mutant phage from each chemostat and sequenced their genomes. We found that first-order resistant bacteria consistently evolved resistance to phage via mutations in the gene, waaG, which codes for a glucosyltransferase required for assembly of the bacterial lipopolysaccharide (LPS). Phage also showed repeatable evolution, with each chemostat producing host-range mutant phage with mutations in the phage tail fiber gene T3p48 which binds to the bacterial LPS during adsorption. Two second-order resistant bacteria evolved via mutations in different genes involved in the phage interaction. Although a wide range of mutations occurred in the bacterial waaG gene, mutations in the phage tail fiber were restricted to a single codon, and several phage showed convergent evolution at the nucleotide level. These results are consistent with previous studies in other systems that have documented repeatable evolution in bacteria at the level of pathways or genes and repeatable evolution in viruses at the nucleotide level. Our data are also consistent with the expectation that adaptation via loss-of-function mutations is less constrained than adaptation via gain-of-function mutations.  相似文献   

13.
Bacterial genome nucleotide sequences are being completed at a rapid and increasing rate. Integrated virus genomes (prophages) are common in such genomes. Fifty-one of the 82 such genomes published to date carry prophages, and these contain 230 recognizable putative prophages. Prophages can constitute as much as 10-20% of a bacterium's genome and are major contributors to differences between individuals within species. Many of these prophages appear to be defective and are in a state of mutational decay. Prophages, including defective ones, can contribute important biological properties to their bacterial hosts. Therefore, if we are to comprehend bacterial genomes fully, it is essential that we are able to recognize accurately and understand their prophages from nucleotide sequence analysis. Analysis of the evolution of prophages can shed light on the evolution of both bacteriophages and their hosts. Comparison of the Rac prophages in the sequenced genomes of three Escherichia coli strains and the Pnm prophages in two Neisseria meningitidis strains suggests that some prophages can lie in residence for very long times, perhaps millions of years, and that recombination events have occurred between related prophages that reside at different locations in a bacterium's genome. In addition, many genes in defective prophages remain functional, so a significant portion of the temperate bacteriophage gene pool resides in prophages.  相似文献   

14.
Antagonistic coevolution between hosts and parasites is probably ubiquitous. However, very little is known of the genetic changes associated with parasite infectivity evolution during adaptation to a coevolving host. We followed the phenotypic and genetic changes in a lytic virus population (bacteriophage; phage Φ2) that coevolved with its bacterial host, Pseudomonas fluorescens SBW25. First, we show the rapid evolution of numerous unique phage infectivity phenotypes, and that both phage host range and bacterial resistance to individual phage increased over coevolutionary time. Second, each of the distinct phage phenotypes in our study had a unique genotype, and molecular evolution did not act uniformly across the phage genome during coevolution. In particular, we detected numerous substitutions on the tail fibre gene, which is involved in the first step of the host-parasite interaction: host adsorption. None of the observed mutations could be directly linked with infection against a particular host, suggesting that the phenotypic effects of infectivity mutations are probably epistatic. However, phage genotypes with the broadest host ranges had the largest number of nonsynonymous amino acid changes on genes implicated in infectivity evolution. An understanding of the molecular genetics of phage infectivity has helped to explain the complex phenotypic coevolutionary dynamics in this system.  相似文献   

15.
We report the complete 36,717 bp genome sequence of bacteriophage Mu and provide an analysis of the sequence, both with regard to the new genes and other genetic features revealed by the sequence itself and by a comparison to eight complete or nearly complete Mu-like prophage genomes found in the genomes of a diverse group of bacteria. The comparative studies confirm that members of the Mu-related family of phage genomes are genetically mosaic with respect to each other, as seen in other groups of phages such as the phage lambda-related group of phages of enteric hosts and the phage L5-related group of mycobacteriophages. Mu also possesses segments of similarity, typically gene-sized, to genomes of otherwise non-Mu-like phages. The comparisons show that some well-known features of the Mu genome, including the invertible segment encoding tail fiber sequences, are not present in most members of the Mu genome sequence family examined here, suggesting that their presence may be relatively volatile over evolutionary time.The head and tail-encoding structural genes of Mu have only very weak similarity to the corresponding genes of other well-studied phage types. However, these weak similarities, and in some cases biochemical data, can be used to establish tentative functional assignments for 12 of the head and tail genes. These assignments are strongly supported by the fact that the order of gene functions assigned in this way conforms to the strongly conserved order of head and tail genes established in a wide variety of other phages. We show that the Mu head assembly scaffolding protein is encoded by a gene nested in-frame within the C-terminal half of another gene that encodes the putative head maturation protease. This is reminiscent of the arrangement established for phage lambda.  相似文献   

16.
We have identified conserved orthologs in completely sequenced genomes of double-strand DNA phages and arranged them into evolutionary families (phage orthologous groups [POGs]). Using this resource to analyze the collection of known phage genomes, we find that most orthologs are unique in their genomes (having no diverged duplicates [paralogs]), and while many proteins contain multiple domains, the evolutionary recombination of these domains does not appear to be a major factor in evolution of these orthologous families. The number of POGs has been rapidly increasing over the past decade, the percentage of genes in phage genomes that have orthologs in other phages has also been increasing, and the percentage of unknown "ORFans" is decreasing as more proteins find homologs and establish a family. Other properties of phage genomes have remained relatively stable over time, most notably the high fraction of genes that are never or only rarely observed in their cellular hosts. This suggests that despite the renowned ability of phages to transduce cellular genes, these cellular "hitchhiker" genes do not dominate the phage genomic landscape, and a large fraction of the genes in phage genomes maintain an evolutionary trajectory that is distinct from that of the host genes.  相似文献   

17.
Bacteriophages (phages) evolve rapidly by acquiring genes from other phages. This results in mosaic genomes. Here, we identify numerous genetic transfers between distantly related phages and aim at understanding their frequency, consequences, and the conditions favoring them. Gene flow tends to occur between phages that are enriched for recombinases, transposases, and nonhomologous end joining, suggesting that both homologous and illegitimate recombination contribute to gene flow. Phage family and host phyla are strong barriers to gene exchange, but phage lifestyle is not. Even if we observe four times more recent transfers between temperate phages than between other pairs, there is extensive gene flow between temperate and virulent phages, and between the latter. These predominantly involve virulent phages with large genomes previously classed as low gene flux, and lead to the preferential transfer of genes encoding functions involved in cell energetics, nucleotide metabolism, DNA packaging and injection, and virion assembly. Such exchanges may contribute to the observed twice larger genomes of virulent phages. We used genetic transfers, which occur upon coinfection of a host, to compare phage host range. We found that virulent phages have broader host ranges and can mediate genetic exchanges between narrow host range temperate phages infecting distant bacterial hosts, thus contributing to gene flow between virulent phages, as well as between temperate phages. This gene flow drastically expands the gene repertoires available for phage and bacterial evolution, including the transfer of functional innovations across taxa.  相似文献   

18.
Aims: Salmonella is a worldwide foodborne pathogen causing acute enteric infections in humans. In the recent years, the use of bacteriophages has been suggested as a possible tool to combat this zoonotic pathogen in poultry farms. This work aims to isolate and perform comparative studies of a group of phages active against a collection of specific Salmonella Enteritidis strains from Portugal and England. Also, suitable phage candidates for therapy of poultry will be selected. Methods and Results: The Salm. Enteritidis strains studied were shown to have a significantly high occurrence of defective (cryptic) prophages; however, no live phages were found in the strains. Bacteriophages isolated from different environments lysed all except one of the tested Salm. Enteritidis strains. The bacteriophages studied were divided into different groups according to their genetic homology, RFLP profiles and phenotypic features, and most of them showed no DNA homology with the bacterial hosts. The bacteriophage lytic efficacy proved to be highly dependent on the propagation host strain. Conclusions: Despite the evidences shown in this work that the Salm. Enteritidis strains used did not produce viable phages, we have confirmed that some phages, when grown on particular hosts, behaved as complexes of phages. This is most likely because of the presence of inactive phage‐related genomes (or their parts) in the bacterial strains which are capable of being reactivated or which can recombine with lytic phages. Furthermore, changes of the bacterial hosts used for maintenance of phages must be avoided as these can drastically modify the parameters of the phage preparations, including host range and lytic activity. Significance and Impact of the Study: This work shows that the optimal host and growth conditions must be carefully studied and selected for the production of each bacteriophage candidate for animal therapy.  相似文献   

19.
The entire double-stranded DNA genome of the Actinobacillus actinomycetemcomitans bacteriophage Aa Phi 23 was sequenced. Linear DNA contained in the phage particles is circularly permuted and terminally redundant. Therefore, the physical map of the phage genome is circular. Its size is 43,033 bp with an overall molar G+C content of 42.5 mol%. Sixty-six potential open reading frames (ORFs) were identified, including an ORF resulting from a translational frameshift. A putative function could be assigned to 23 of them. Twenty-three other ORFs share homologies only with hypothetical proteins present in several bacteria or bacteriophages, and 20 ORFs seem to be specific for phage Aa Phi 23. The organization of the phage genome and several genetic functions share extensive similarities to that of the lambdoid phages. However, Aa Phi 23 encodes a DNA adenine methylase, and the DNA packaging strategy is more closely related to the P22 system. The attachment sites of Aa Phi 23 (attP) and several A. actinomycetemcomitans hosts (attB) are 49 bp long.  相似文献   

20.
Bacteriophage genomes show pervasive mosaicism, indicating the importance of horizontal gene exchange in their evolution. Phage genomes represent unique combinations of modules, each of them with a different phylogenetic history. The traditional classification, based on a variety of criteria such as nucleic acid type (single/double-stranded DNA/RNA), morphology, and host range, appeared inconsistent with sequence analyses. With the genomic era, an ever increasing number of sequenced phages cannot be classified, in part due to a lack of morphological information and in part to the intrinsic incapability of tree-based methods to efficiently deal with mosaicism. This problem led some virologists to call for a moratorium on the creation of additional taxa in the order Caudovirales, in order to let virologists discuss classification schemes that might better suit phage evolution. In this context, we propose a framework for a reticulate classification of phages based on gene content. Starting from gene families, we built a weighted graph, where nodes represent phages and edges represent phage-phage similarities in terms of shared genes. We then apply various measures of graph topology to analyze the resulting graph. Most double-stranded DNA phages are found in a single component. The values of the clustering coefficient and closeness distinguish temperate from virulent phages, whereas chimeric phages are characterized by a high betweenness coefficient. We apply a 2-step clustering method to this graph to generate a reticulate classification of phages: Each phage is associated with a membership vector, which quantitatively characterizes its membership to the set of clusters. Furthermore, we cluster genes based on their "phylogenetic profiles" to define "evolutionary cohesive modules." In virulent phages, evolutionary modules span several functional categories, whereas in temperate phages they correspond better to functional modules. Moreover, despite the fact that modules only cover a fraction of all phage genes, phage groups can be distinguished by their different combination of modules, serving the bases for a higher level reticulate classification. These 2 classification schemes provide an automatic and dynamic way of representing the relationships within the phage population and can be extended to include newly sequenced phage genomes, as well as other types of genetic elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号