首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Since the discovery of hydrothermal vents more than 25 years ago, the Calvin-Bassham-Benson (Calvin) cycle has been considered the principal carbon fixation pathway in this microbe-based ecosystem. However, on the basis of recent molecular data of cultured free-living and noncultured episymbiotic members of the epsilon subdivision of Proteobacteria and earlier carbon isotope data of primary consumers, an alternative autotrophic pathway may predominate. Here, genetic and culture-based approaches demonstrated the abundance of reverse tricarboxylic acid cycle genes compared to the abundance of Calvin cycle genes in microbial communities from two geographically distinct deep-sea hydrothermal vents. PCR with degenerate primers for three key genes in the reverse tricarboxylic acid cycle and form I and form II of ribulose 1,5-bisphosphate carboxylase/oxygenase (Calvin cycle marker gene) were utilized to demonstrate the abundance of the reverse tricarboxylic acid cycle genes in diverse vent samples. These genes were also expressed in at least one chimney sample. Diversity, similarity matrix, and phylogenetic analyses of cloned samples and amplified gene products from autotrophic enrichment cultures suggest that the majority of autotrophs that utilize the reverse tricarboxylic acid cycle are members of the epsilon subdivision of Proteobacteria. These results parallel the results of previously published molecular surveys of 16S rRNA genes, demonstrating the dominance of members of the epsilon subdivision of Proteobacteria in free-living hydrothermal vent communities. Members of the epsilon subdivision of Proteobacteria are also ubiquitous in many other microaerophilic to anaerobic sulfidic environments, such as the deep subsurface. Therefore, the reverse tricarboxylic acid cycle may be a major autotrophic pathway in these environments and significantly contribute to global autotrophic processes.  相似文献   

3.
During exponential growth, ordinary colorless (OC) plants of Blastocladiella emersonii consumed little glucose and produced no lactic acid. Similarly, resistant sporangial (RS) plants did not utilize glucose or produce lactic acid during the first 24 hr of exponential growth. During the next 24 hr of RS development, glucose was consumed with the concomitant production of lactic acid which was then reutilized. Lactic acid gradually accumulated again at maturity. Enzyme studies on cell-free extracts indicated the presence of all tricarboxylic cycle enzymes except α-ketoglutarate dehydrogenase at all stages of development of both RS and OC plants. Included among the enzymes detected were an adenosine monophosphate-stimulated, nicotinamide adenine dinucleotide-isocitric dehydrogenase, and citrate-condensing enzyme. When measured on a per plant basis, tricarboxylic cycle enzyme levels increased during the exponential growth of both kinds of plants. Only after the bicarbonate ceased to have effect on RS plant morphogenesis was there a decrease in the levels of the tricarboxylic cycle enzymes when measured on a per plant basis. Specific activity measurements indicated some differences in the differential rates of synthesis among the enzymes studied previous to 36 hr. Preliminary studies utilizing short periods of 14C-bicarbonate fixation in young RS plants indicated that during the first 4 min most of the label was located in aspartic acid. These results are discussed in terms of previous results and particularly Cantino's hypothesis concerning the relationship between bicarbonate induction and tricarboxylic-cycle enzymes in the morphogenesis of B. emersonii.  相似文献   

4.
Effect of Light on the Tricarboxylic Acid Cycle in Scenedesmus   总被引:16,自引:16,他引:0  
  相似文献   

5.
SYNOPSIS. Activities of enzymes of the tricarboxylic acid cycle in extracts of Tetrahymena pyriformis S, axenically recovered after living in the hemocoel of female cockroaches Periplaneta americana for 48 hr, were compared with activities in ciliates not exposed to the cockroach. Malic dehydrogenase activity was depressed after recovery from the cockroach; isocitric and succinic dehydrogenases and α-ketoglutaric oxidase activities were unchanged. Citrate synthetase activity was increased, and pyruvi oxidase activity decreased, after ciliates had been in the cockroach. These alterations persisted for several hundred generations after recovery from the insect.  相似文献   

6.
Strain MC-1 is a marine, microaerophilic, magnetite-producing, magnetotactic coccus phylogenetically affiliated with the alpha-Proteobacteria. Strain MC-1 grew chemolithotrophically with sulfide and thiosulfate as electron donors with HCO3-/CO2 as the sole carbon source. Experiments with cells grown microaerobically in liquid with thiosulfate and H14CO3-/14CO2 showed that all cell carbon was derived from H14CO3-/14CO2 and therefore that MC-1 is capable of chemolithoautotrophy. Cell extracts did not exhibit ribulose-1,5-bisphosphate carboxylase-oxygenase (RubisCO) activity, nor were RubisCO genes found in the draft genome of MC-1. Thus, unlike other chemolithoautotrophic, magnetotactic bacteria, strain MC-1 does not appear to utilize the Calvin-Benson-Bassham cycle for autotrophy. Cell extracts did not exhibit carbon monoxide dehydrogenase activity, indicating that the acetyl-coenzyme A pathway also does not function in strain MC-1. The 13C content of whole cells of MC-1 relative to the 13C content of the inorganic carbon source (Deltadelta13C) was -11.4 per thousand. Cellular fatty acids showed enrichment of 13C relative to whole cells. Strain MC-1 cell extracts showed activities for several key enzymes of the reverse (reductive) tricarboxylic acid (rTCA) cycle including fumarate reductase, pyruvate:acceptor oxidoreductase and 2-oxoglutarate:acceptor oxidoreductase. Although ATP citrate lyase (another key enzyme of the rTCA cycle) activity was not detected in strain MC-1 using commonly used assays, cell extracts did cleave citrate, and the reaction was dependent upon the presence of ATP and coenzyme A. Thus, we infer the presence of an ATP-dependent citrate-cleaving mechanism. These results are consistent with the operation of the rTCA cycle in MC-1. Strain MC-1 appears to be the first known representative of the alpha-Proteobacteria to use the rTCA cycle for autotrophy.  相似文献   

7.
Nitrogen-limited cells of Selenastrum minutum (Naeg.) Collins are able to assimilate NH4+ in the dark under anaerobic conditions. Addition of NH4+ to anaerobic cells results in a threefold increase in tricarboxylic acid cycle (TCAC) CO2 efflux and an eightfold increase in the rate of anaplerotic carbon fixation via phosphoenolpyruvate carboxylase. Both of these observations are consistent with increased TCAC carbon flow to supply intermediates for amino acid biosynthesis. Addition of H14CO3 to anaerobic cells assimilating NH4+ results in the incorporation of radiolabel into the α-carboxyl carbon of glutamic acid. Incorporation of radiolabel into glutamic acid is not simply a short-term phenomenon following NH4+ addition as the specific activity of glutamic acid increases over time. This indicates that this alga is able to maintain partial oxidative TCAC carbon flow while under anoxia to supply α-ketoglutarate for glutamate production. During dark aerobic NH4+ assimilation, no radiolabel appears in fumarate or succinate and only a small amount occurs in malate. During anaerobic NH4+ assimilation, these metabolites contain a large proportion of the total radiolabel and radiolabel accumulates in succinate over time. Also, the ratio of dark carbon fixation to NH4+ assimilation is much higher under anaerobic than aerobic conditions. These observations suggest the operation of a partial reductive TCAC from oxaloacetic acid to malate, fumarate, and succinate. Such a pathway might contribute to redox balance in an anaerobic cell maintaining partial oxidative TCAC activity.  相似文献   

8.
Infected cells of soybean (Glycine max) nodules require NADH,ATP, and 2-oxoglutarate for ammonia assimilation. The role ofmitochondria in nodule metabolism was investigated by determiningtheir respiratory properties and comparing them with cotyledonmitochondria. Nodule mitochondria oxidized malate at a ratetwice that of any other NAD-linked substrate although theirmalic enzyme activity was very low, accounting for only 12%of malate oxidation at pH 6.4 compared to 56% for cotyledonmitochondria. The reduction of NAD+ in mitochondria of noduleson adding malate (determined by fluorescence) was rapid andreached a stable level, whereas in cotyledon mitochondria theNADH level declined rapidly as oxaloacetate accumulated. Anoxaloacetate scavenging system in the mitochondrial reactionmedium increased malate oxidation by cotyledon mitochondria4-fold, but increased that of nodule mitochondria by less than50%. This demonstrates that the efflux of oxaloacetate by theoxaloacetate carrier is highly regulated by the extra-mitochondrialoxaloacetate concentration in cotyledon mitochondria comparedto nodule mitochondria. The activity of TCA cycle enzymes, exceptmalate and succinate dehydrogenases, was low in nodule mitochondria.Their oxaloacetate export during malate oxidation was rapid.The aspartate amino transferase activity associated with nodulemitochondria was sufficient to account for significant formationof 2-oxoglutarate from oxaloacetate and glutamate. These resultssuggest that nodule mitochondria operate a truncated form ofthe TCA cycle and primarily oxidize malate to provide oxaloacetateand ATP for NH3 assimilation. Key words: Glycine max (L.), nitrogen fixation, gluconeogenesis, respiration  相似文献   

9.
Bacillus thuringiensis sporulates in a glucose-glutamate medium without concurrent derepression of the tricarboxylic acid cycle. Glutamate appears to regulate tricarboxylic acid cycle activity as well as to influence spore heat resistance and production of dipicolinic acid.  相似文献   

10.
In the present work, lysine production by Corynebacterium glutamicum was improved by metabolic engineering of the tricarboxylic acid (TCA) cycle. The 70% decreased activity of isocitrate dehydrogenase, achieved by start codon exchange, resulted in a >40% improved lysine production. By flux analysis, this could be correlated to a flux shift from the TCA cycle toward anaplerotic carboxylation.With an annual market volume of more than 1,000,000 tons, lysine is one of the dominating products in biotechnology. In recent years, rational metabolic engineering has emerged as a powerful tool for lysine production (16, 18, 22). Hereby, different target enzymes and pathways in the central metabolism could be identified and successfully modified to create superior production strains (1, 2, 5, 8, 10, 17-20). The tricarboxylic acid (TCA) cycle has not been rationally engineered so far, despite its major role in Corynebacterium glutamicum (6). From metabolic flux studies, however, it seems that the TCA cycle might offer a great potential for optimization (Fig. (Fig.1),1), which is also predicted from in silico pathway analysis (13, 22). Experimental evidence comes from studies with Brevibacterium flavum exhibiting increased lysine production due to an induced bottleneck toward the TCA cycle (21). In the present work, we performed TCA cycle engineering by downregulation of isocitrate dehydrogenase (ICD). ICD is the highest expressed TCA cycle enzyme in C. glutamicum (7). Downregulation was achieved by start codon exchange, controlling ICD expression on the level of translation.Open in a separate windowFIG. 1.Stoichiometric correlation of lysine yield (%), biomass yield (g/mol) and TCA cycle flux (%; entry flux through citrate synthase) determined by 13C metabolic flux analysis achieved by paraboloid fitting of the data set (parameters were determined with Y0 = 105.1, a = −1.27, b = 0.35, c = −9.35 × 10−3, d = −11.16 × 10−3). The data displayed represent values from 18 independent experiments with different C. glutamicum strains taken from previous studies (1-3, 11, 12, 15, 23).  相似文献   

11.
Acetobacter suboxydans does not contain an active tricarboxylic acid cycle, yet two pathways have been suggested for glutamate synthesis from acetate catalyzed by cell extracts: a partial tricarboxylic acid cycle following an initial condensation of oxalacetate and acetyl coenzyme A. and the citramalate-mesaconate pathway following an initial condensation of pyruvate and acetyl coenzyme A. To determine which pathway functions in growing cells, acetate-1-(14)C was added to a culture growing in minimal medium. After growth had ceased, cells were recovered and fractionated. Radioactive glutamate was isolated from the cellular protein fraction, and the position of the radioactive label was determined. Decarboxylation of the C5 carbon removed 100% of the radioactivity found in the purified glutamate fraction. These experiments establish that growing cells synthesize glutamate via a partial tricarboxylic acid cycle. Aspartate isolated from these hydrolysates was not radioactive, thus providing further evidence for the lack of a complete tricarboxylic acid cycle. When cell extracts were analyzed, activity of all tricarboxylic acid cycle enzymes, except succinate dehydrogenase, was demonstrated.  相似文献   

12.
The Effect of Anaerobiosis on Acids of the Tricarboxylic Acid Cycle in Peas   总被引:2,自引:0,他引:2  
Maturing seeds of the pea (Pisum sativum) were subjected to24 hours' anaerobiosis and then returned to air. Carbon-dioxideevolution was estimated. At intervals samples were analysedfor their content of organic acids by silica gel and paper chromatographyand for bound carbon dioxide. During the anaerobic period there was a large accumulation oflactate, an initial increase of succinate, and a slow, continuingdecrease of malate and citrate. On return to air the main changes were a fall in the concentrationof lactate and succinate, a rise in malate and acetate, anda rapid rise followed by a fall of pyruvate and -oxo-glutarate. Comparison of these changes with each other and with the rateof production of carbon dioxide shows that they do not fit apattern based on the tricarboxylic acid cycle. The possibilitythat this was the result of a system of ‘pools’of these acids is considered.  相似文献   

13.
14.
The effect of various nutritional conditions on the levels of Krebs cycle enzymes in Bacillus subtilis, B. licheniformis, and Escherichia coli was determined. The addition of glutamate, alpha-ketoglutarate, or compounds capable of being catabolized to glutamate, to a minimal glucose medium resulted in complete repression of aconitase in B. subtilis and B. licheniformis. The synthesis of fumarase, succinic dehydrogenase, malic dehydrogenase, and isocitric dehydrogenase was not repressed by these compounds. It is postulated that glutamate or alpha-ketoglutarate is the true corepressor for the repression of aconitase. A rapidly catabolizable carbon source and alpha-ketoglutarate or glutamate must be simultaneously present for complete repression of the formation of aconitase. Conditions which repress the synthesis of aconitase in B. subtilis restrict the flow of carbon in the sequence of reactions leading to alpha-ketoglutarate but do not prevent glutamate oxidation in vivo. The data indicate that separate and independent mechanisms regulate the activity of the anabolic and catabolic reactions of the Krebs cycle in B. subtilis and B. licheniformis. The addition of glutamate to the minimal glucose medium results in the repression of aconitase, isocitric dehydrogenase, and fumarase, but not malic dehydrogenase in E. coli K-38.  相似文献   

15.
Abstract: The effects of 3-nitropropionic acid (3-NPA), an inhibitor of succinate dehydrogenase, on cerebral metabolism were investigated in mice by NMR spectroscopy. 3-NPA, 180 mg/kg, caused a dramatic buildup of succinate. Succinate was labeled 5.5 times better from [1-13C]glucose than from [2-13C]acetate, showing a predominantly neuronal accumulation. [1-13C]Glucose labeled GABA in the C-2 position only, compatible with inhibition of the tricarboxylic acid (TCA) cycle associated with GABA formation, at the level of succinate dehydrogenase. Aspartate was not labeled by [1-13C]glucose in 3-NPA-intoxicated animals. In contrast, [1-13C]glucose labeled glutamate in the C-2, C-3, and C-4 positions showing uninhibited cycling of label in the TCA cycle associated with the large, neuronal pool of glutamate. The labeling of glutamine, and hence GABA, from [2-13C]acetate showed that the TCA cycle of glial cells was unaffected by 3-NPA and that transfer of glutamine from glia to neurons took place during 3-NPA intoxication. The high 13C enrichment of the C-2 position of glutamine from [1-13C]glucose showed that pyruvate carboxylation was active in glia during 3-NPA intoxication. These findings suggest that 3-NPA in the initial phase of intoxication fairly selectively inhibited the TCA cycle of GABAergic neurons; whereas the TCA cycle of glia remained uninhibited as did the TCA cycle associated with the large neuronal pool of glutamate, which includes glutamatergic neurons. This may help explain why the caudoputamen, which is especially rich in GABAergic neurons, selectively undergoes degeneration both in humans and animals intoxicated with 3-NPA. Further, the present results may be of relevance for the study of basal ganglia disorders such as Huntington's disease.  相似文献   

16.
Edwardsiella ictaluri is a Gram-negative facultative intracellular pathogen causing enteric septicemia of channel catfish (ESC). The disease causes considerable economic losses in the commercial catfish industry in the United States. Although antibiotics are used as feed additive, vaccination is a better alternative for prevention of the disease. Here we report the development and characterization of novel live attenuated E. ictaluri mutants. To accomplish this, several tricarboxylic acid cycle (sdhC, mdh, and frdA) and one-carbon metabolism genes (gcvP and glyA) were deleted in wild type E. ictaluri strain 93-146 by allelic exchange. Following bioluminescence tagging of the E. ictaluri ΔsdhC, Δmdh, ΔfrdA, ΔgcvP, and ΔglyA mutants, their dissemination, attenuation, and vaccine efficacy were determined in catfish fingerlings by in vivo imaging technology. Immunogenicity of each mutant was also determined in catfish fingerlings. Results indicated that all of the E. ictaluri mutants were attenuated significantly in catfish compared to the parent strain as evidenced by 2,265-fold average reduction in bioluminescence signal from all the mutants at 144 h post-infection. Catfish immunized with the E. ictaluri ΔsdhC, Δmdh, ΔfrdA, and ΔglyA mutants had 100% relative percent survival (RPS), while E. ictaluri ΔgcvP vaccinated catfish had 31.23% RPS after re-challenge with the wild type E. ictaluri.  相似文献   

17.
Less than 50% of theoretical oxygen uptake was observed when glucose was dissimilated by resting cells of Pseudomonas natriegens. Low oxygen uptakes were also observed when a variety of other substrates were dissimilated. When uniformly labeled glucose-(14)C was used as substrate, 56% of the label was shown to accumulate in these resting cells. This material consisted, in part, of a polysaccharide which, although it did not give typical glycogen reactions, yielded glucose after its hydrolysis. Resting cells previously cultivated on media containing glucose completely catabolized glucose and formed a large amount of pyruvate within 30 min. Resting cells cultivated in the absence of glucose catabolized glucose more slowly and produced little pyruvate. Pyruvate disappeared after further incubation. In this latter case, experimental results suggested (i) that pyruvate was converted to other acidic products (e.g., acetate and lactate) and (ii) that pyruvate was further catabolized via the tricarboxylic acid cycle. Growth on glucose repressed the level of key enzymes of the tricarboxylic acid cycle and of lactic dehydrogenase. Growth on glycerol stimulated the level of these enzymes. A low level of isocitratase, but not malate synthetase, was noted in extracts of glucose-grown cells. Isocitric dehydrogenase was shown to require nicotinamide adenine dinucleotide phosphate (NADP) as cofactor. Previous experiments have shown that reduced NADP (NADPH(2)) cannot be readily oxidized and that pyridine nucleotide transhydrogenase could not be detected in extracts. It was concluded that acetate, lactate, and pyruvate accumulate under growing conditions when P. natriegens is cultivated on glucose (i) because of a rapid initial catabolism of glucose via an aerobic glycolytic pathway and (ii) because of a sluggishly functioning tricarboxylic acid cycle due to the accumulation of NADPH(2) and to repressed levels of key enzymes.  相似文献   

18.
Intracellular bacterial pathogens have developed a variety of strategies to avoid degradation by the host innate immune defense mechanisms triggered upon phagocytocis. Upon infection of mammalian host cells, the intracellular pathogen Francisella replicates exclusively in the cytosolic compartment. Hence, its ability to escape rapidly from the phagosomal compartment is critical for its pathogenicity. Here, we show for the first time that a glutamate transporter of Francisella (here designated GadC) is critical for oxidative stress defense in the phagosome, thus impairing intra-macrophage multiplication and virulence in the mouse model. The gadC mutant failed to efficiently neutralize the production of reactive oxygen species. Remarkably, virulence of the gadC mutant was partially restored in mice defective in NADPH oxidase activity. The data presented highlight links between glutamate uptake, oxidative stress defense, the tricarboxylic acid cycle and phagosomal escape. This is the first report establishing the role of an amino acid transporter in the early stage of the Francisella intracellular lifecycle.  相似文献   

19.
Aconitaseless glutamic acid auxotroph MO-1-9B of Saccharomyces grew in glutamic acid-supplemented minimal medium, but failed to grow when glutamic acid was substituted by proline, arginine, ornithine, or glutamine. This mutant was also unable to utilize lactate or glycerol as a carbon source. Under a glutamic acid-limiting condition, by using acetate-1-(14)C as tracer, the mutant accumulated rather large amounts of (14)C-citric acid and (14)C-succinic acid when compared with the wild-type strain. Under excess glutamic acid supplementation, accumulation of citric acid and succinic acid was considerably reduced. When (14)C-glutamic acid-(U) was used as tracer, (14)C-alpha-ketoglutaric acid, (14)C-citric acid, and (14)C-succinic acid were accumulated in the mutant. The citric acid peak was the largest, followed by alpha-ketoglutaric acid and succinic acid. In the wild-type strain under similar conditions, only small amounts of (14)C-citric acid and (14)C-succinic acid and no (14)C-alpha-ketoglutaric acid were accumulated.  相似文献   

20.
Plant pathogenic bacteria, such as Pseudomonas syringae pv. tomato strain DC3000, the causative agent of tomato bacterial speck disease, grow to high levels in the apoplastic space between plant cells. Colonization of plant tissue requires expression of virulence factors that modify the apoplast to make it more suitable for pathogen growth or facilitate adaptation of the bacteria to the apoplastic environment. To identify new virulence factors involved in these processes, DC3000 Tn5 transposon insertion mutants with reduced virulence on Arabidopsis thaliana were identified. In one of these mutants, the Tn5 insertion disrupted the malate:quinone oxidoreductase gene (mqo), which encodes an enzyme of the tricarboxylic acid cycle. mqo mutants do not grow to wild-type levels in plant tissue at early time points during infection. Further, plants infected with mqo mutants develop significantly reduced disease symptoms, even when the growth of the mqo mutant reaches wild-type levels at late stages of infection. Mutants lacking mqo function grow more slowly in culture than wild-type bacteria when dicarboxylates are the only available carbon source. To explore whether dicarboxylates are important for growth of DC3000 in the apoplast, we disrupted the dctA1 dicarboxylate transporter gene. DC3000 mutants lacking dctA1 do not grow to wild-type levels in planta, indicating that transport and utilization of dicarboxylates are important for virulence of DC3000. Thus, mqo may be required by DC3000 to meet nutritional requirements in the apoplast and may provide insight into the mechanisms underlying the important, but poorly understood process of adaptation to the host environment.One important aspect of interactions between plant pathogens and their hosts is the ability of the pathogen to obtain nutrients within the plant tissue. Nutrient acquisition is essential for growth within the host, since both cell division and DNA replication can be influenced by nutrient availability. Bacterial plant pathogens differ in the strategies they use to get necessary nutrients during infection. Some pathogens, such as Agrobacterium tumefaciens, elicit production of specific carbon and nitrogen sources by the plant (1). Other pathogens may rely on metabolites that are readily available in the plant apoplast or may stimulate the release of water or nutrients from surrounding plant cells (27).Little is known about how pathogenic Pseudomonas syringae strains acquire nutrients when growing in their hosts. P. syringae strains are gram-negative gammaproteobacteria, which as a group cause disease on many agriculturally important plants. For example, P. syringae pv. tomato strain DC3000 causes disease on tomato, A. thaliana, and several agriculturally important Brassicas, such as turnip, mustard, collard, and cauliflower (8, 51). Initially, DC3000 colonizes plant surfaces and then enters the plant tissue through natural openings (such as stomata) or wounds (34, 38). DC3000 then establishes itself in the plant apoplast, the intercellular space between plant cells (38). Once in the apoplast of susceptible hosts, DC3000 multiplies to high levels, and the infected plants develop disease symptoms, including chlorosis (yellowing) of the leaf tissue and necrotic spots or patches called lesions (38, 49). Pseudomonads, such as P. aeruginosa and P. fluorescens, preferentially utilize tricarboxylic acid (TCA) cycle intermediates (20, 29, 33, 44), and DC3000 utilizes these carbon sources in culture (19). Some studies to investigate nutrient acquisition of DC3000 have been carried out (3, 7, 40); however, it is not clear what carbon sources DC3000 utilizes when growing in plant tissue.Several virulence factors are necessary for DC3000 to enter, grow inside the plant, and cause disease. Like many other bacterial pathogens, DC3000 uses a type III secretion system (TTSS) (15), which is encoded by the hrp/hrc genes, to inject effector proteins into plant cells (16, 27). Many of these effectors suppress host defenses, and it is likely that some may be involved in modulating the apoplastic environment or nutrient acquisition (16). DC3000 also produces the phytotoxin coronatine, which promotes entry of the bacteria into the plant apoplast by stimulating the opening of stomata (34) and is required for bacterial growth in the apoplast by suppressing salicylic acid (SA)-dependent host defenses (4, 45). Coronatine also promotes disease symptom development via an SA-independent mechanism (4). While much emphasis has been placed on exploring how type III-secreted effectors and coronatine promote DC3000 virulence, other factors are also likely to be important during pathogenesis.To identify additional factors involved in pathogenesis, we undertook a genetic screen to identify novel virulence factors (5, 24). DC3000 mutants with reduced virulence were identified by assaying for their ability to elicit disease symptoms on A. thaliana and tomato plants (24, 37). One of these mutants, AK4C9, had reduced virulence on both hosts. The gene disrupted in this mutant is the malate:quinone oxidoreductase gene (mqo), which encodes an enzyme of the TCA cycle. mqo mutants grow more slowly than wild-type DC3000 in planta and in culture when dicarboxylates are the only carbon source, suggesting that dicarboxylates are important for the growth of DC3000 in the apoplast. In the present study, we explore the role of Mqo and a dicarboxylate transporter, DctA1, in DC3000 pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号