首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jacobaea vulgaris subsp. vulgaris (syn. Senecio jacobaea subsp. jacobaea) constitutes an intricate polyploid complex distributed in Europe. Four cytotypes have been reported in this species, three with euploid (diploid, tetraploid and octoploid; 2n=20, 40 and 80) and one with aneuploid (2n=32) chromosome numbers. Here we report that the diploid chromosome number (2n=20) reported from Bulgaria is due to misidentification with Jacobaea aquatica. On the other hand, we have discovered a new, hexaploid (2n=6x=60) cytotype within J. vulgaris subsp. vulgaris using flow cytometry. The new cytotype occurs within four sympatric populations of otherwise tetraploid and octoploid plants in Pannonia (one locality in the eastern Czech Republic and two localities in southwestern Slovakia) and in Podillya (one locality in western Ukraine). The frequency of hexaploid individuals within 76 studied populations is very low (only 10 of 693 analysed plants), and hexaploids probably represent hybrids between tetraploid and octoploid plants. Three mixed populations with hexaploid plants were subjected to detailed morphological and pollen fertility analyses. Multivariate morphometric analysis reveals partial separation of tetraploid and octoploid plants, whereas hexaploid individuals are similar in morphology to octoploids. In comparison with tetraploids, octoploids and hexaploids exhibit slightly longer ray florets, involucral bracts and tubular florets and more hairy outer achenes. Hexaploid plants display larger pollen grains and lower pollen fertility compared to tetraploids and octoploids.  相似文献   

2.
Fifty-seven Iranian collections of Hordeum violaceum Boiss. & Huet, a perennial forage grass, contained diploid (2n = 14), tetraploid (2n = 28), and hexaploid (2n = 42) chromosome races. All collections came from moderate to high elevations in the Alborz and Zagros mountains and adjacent plateau areas of Iran. Each chromosome race had a discrete distribution, and the hexaploids were the most widespread. The diploids were cytologically regular, except for a chromosome interchange that occurred in about half of the plants. The tetraploids and hexaploids behaved cytologically as autopolyploids. The hexaploids were taller, coarser and later-flowering than the diploids and tetraploids, and they had fewer but thicker culms and larger seeds. The tetraploids were the leafiest and most productive, making them the most desirable from an agronomic standpoint. All races were more or less self-sterile, a characteristic that sets H. violaceum apart from most other Hordeum species. The taxonomic status of H. violaceum and its closest relatives, H. turkestanicum Nevski and H. brevisubulatum Link, is uncertain because of close morphological similarities and the occurrence of chromosome races in each taxon.  相似文献   

3.
New chromosome number determinations are presented for 48 populations of five subspecies of Turnera sidoides. Chromosome counts in sspp. carnea, holosericea, integrifolia and sidoides confirm previous data while, in ssp. pinnatifida , the numbers 2n=2x = 14 and 2n = 6x = 42 are reported for the first time. The results show that polyploidy is a very frequent phenomenon. Populations are primarily tetraploids (2n = 4x = 28), while diploids (2n = 2x = 14), hexaploids (2n = 6x =42) and octoploids (2rc = 8x = 56) are less frequent. Diploid, tetraploid and hexaploid cytotypes occur in sspp. carnea and pinnatifida , whereas tetraploids and hexaploids are known in ssp. holosericea. Turnera sidoides ssp. integrifolia shows a polyploid series with ploidy levels from 2x to 8x. The ssp. sidoides appears to be uniformly tetraploid, with the exception of an isolated pentaploid (2rc = 5x = 35). On the basis of these counts and previous reports the geographical distribution of the cytotypes has been determined and related to climatic and ecological factors.  相似文献   

4.
The existence of neopolyploidy in prairie cordgrass (Spartina pectinata Link) has been documented. The neohexaploid was discovered coexisting with tetraploids in central Illinois, and has been reported to exhibit competitiveness in the natural environment. It is hypothesized that the natural tetraploid cytotype produced the hexaploid cytotype via production of unreduced gametes. Meiosis I chromosome pairing was observed in tetraploid (2n?=?4x?=?40), hexaploid (2n?=?6x?=?60), and octoploid (2n?=?8x?=?80) accessions and the percentage of meiotic abnormality was determined. Significant differences in meiotic abnormality exist between tetraploid, hexaploid, and octoploid cytotypes. An elevated incidence of abnormal, predominantly trivalent pairing in the neohexaploid suggests that it may possess homologous chromosomes in sets of three, in contrast to the tetraploid and octoploid cytotypes, which likely possess homologous chromosomes in sets of two. Abnormal chromosome pairing in the hexaploid may result in unequal allocation of chromosomes to daughter cells during later stages of meiosis. Chromosome pairing patterns in tetraploid, hexaploid, and octoploid cytotypes indicate genome compositions of AABB, AAABBB, and AABBA′A′B′B′, respectively.  相似文献   

5.
A chromosome survey of 278 individuals from 52 localities confirmed, that the principal components of theCalamagrostis purpurea—langsdorffi—canadensis complex in the lowlands of Hokkaido are tetraploid (2n=28) and octoploid (2n=56). A few hexploids (2n=42), were also found, but they may be either a triploid of the tetraploid plants or a hybrid between the tetraploid and octoploid plants. These hexaploids clearly differ in origin from the North American plants with 2n=42 which are generally placed underC. canadensis. The tetraploids and the octoploids are significantly different in pollen size but resemble each other in other morphological features and ecological requirements. These two races are also not disparate in distribution within Hokkaido. The tetraploids in Hokkaido are closely related to the tetraploids known in Alaska, and these tetraploid plants may be continuously distributed from Hokkaido to Alaska. The octoploids in Hokkaido have shown good pollen. They seem to have had a somewhat different course of evolution fromC. purpurea s. str. which principally reproduces in an apomictic manner.  相似文献   

6.
Chromosome numbers were determined on 223 collections ofCalamagrostis sachalinensis from 18 localities in Japan. The plants were found to be tetraploid (2n=28), hexaploid (2n=42) or octoploid (2n=56). A few collections were found to include one or two B-chromosomes. The tetraploid collections were made from central Honshu and Mt. Apoi in Hokkaido, while the hexaploids and the octoploids were detected in many localities. Pollen examination of these collections showed that the tetraploids with but one exception have good pollen and the hexaploids and the octoploids have no pollen or have bad pollen with stainability less than 10%. With the help of pollen examination of a number of herbarium specimens, the distribution of the tetraploids and that of the assemblage of the hexaploids and octoploids were delineated. Morphological studies indicated that the tetraploid, hexaploid and octoploid plants can not be separated in gross and spikelet morphology and that the tetraploids in central Honshu and those in Mt. Apoi are significantly different in leaf features. It was concluded thatC. sachalinensis represents an apo-amphimictic complex, which includes the following four races: 1) tetraploid, amphimictic, having thin leaf blades 5–10 mm broad and growing on the subalpine conifer forest belt and the conifer forest-alpine ecotone in the mountains of central Honshu; 2) tetraploid, amphimictic, having hard leaf blades 2–6 mm broad and growing on the stony, arid and exposed alpine belt on Mt. Apoi in Hokkaido; 3) hexaploid, mainly apomictic, the most variable ecologically, widely distributed; 4) octoploid, mainly apomictic, frequent in the upper montane to alpine belts, probably widely distributed.  相似文献   

7.
8.
Analysis of 512 plants derived from 200 populations shows that the widely distributed western North American Chaenactis douglasii species-complex consists of diploids (n = 6), triploids, tetraploids, and hexaploids. Microsporocytes were the source of most of the chromosome counts. About 9% of all plants examined had one or more full-sized extra chromosomes. Multivalents, usually a ring or chain of four chromosomes, were almost entirely restricted to polyploids, where one or more were identified in 38% of the tetraploids and 33% of the hexaploids. With two exceptions, diploids and polyploids were not found in the same population. Frequencies of diploid, triploid, tetraploid, and hexaploid populations were, respectively, 34, 1.5, 55 and 9.5%. With significant exceptions, diploid populations predominate in the Pacific and Rocky Mountain Systems, whereas polyploid ones are most frequent in the intervening plateaus. Ploidy level is correlated with age of substrate, rather than with climate, elevation, vegetation, or soil type. Range, morphology, ploidy level, and meiotic behavior suggest that var. achilleifolia tetraploids and hexaploids are descendents of hybrids between other variants of the complex. The diploid-tetraploid-hexaploid geographic distribution and the age of the substrates where each tends to occur suggest that the complex evolved in late Cenozoic time in response to major climatic and geologic changes that induced migration and hybridization. The hybrid derivatives, stabilized by polyploidy and tolerant of increasing aridity, came to occupy newly available habitats in areas disturbed by volcanic activity and glacial or glacial-related processes.  相似文献   

9.
Chromosome counts were made for a total of 540 collections ofCalamagrostis hakonensis from 66 localities ranging from Kyushu to Hokkaido. Distribution and habitat preferences of the cytotypes involved are described. Sympatric occurrence of tetraploids (=semidiploids, 2n=28) and higher polyploids, as well as that of septaploids and plants at hexaploid and/or octoploid levels, was confirmed in several localities, and mixtures of hexaploids and octoploids within a population were frequently observed. Plants at hexaploid and octoploid levels were the most abundant and widespread. An examination of pollen of the voucher specimens showed that tetraploids (amphimictic) had good pollen, while higher polyploids (apomictic) were generally devoid of pollen and very rarely produced moderately good pollen, the grains of higher polyploids being larger than those of tetraploids. Distributions of tetraploids and higher polyploids were more precisely delineated through an examination of pollen of many herbarium specimens. In relation to the processes by which the complicated internal structure ofC. hakonensis has been established, the following subjects are discussed: infraspecific hybridization between ecotypically differentiated populations, enrichment of variability through occasional sexual reproduction expected in plants with more than 2n=42, persistence of the variants by apomictic reproduction, and probable roles of some extinct taxa.  相似文献   

10.
Meiosis and mode of reproduction are described in Agropyron ferganense Drob., a perennial forage grass from Central Asia. This species is diploid (2n = 14); it exhibits normal meiosis and reproduces by cross-pollination. Hybrids were produced between A. ferganense and six species with known genome formulas: 1) North American A. spicatum (Pursh) Scribn. & Smith, an SS diploid (2n = 14), 2) Middle Eastern A. libanoticum Hack., an SS diploid (2n = 14), 3) North American A. dasystachyum (Hook.) Scribn., an SSHH tetraploid (2n = 28), 4) Eurasian A. caninum (L.) Beauv., an SSHH tetraploid (2n = 28), 5) North American Sitation hystrix (Nutt.) J. G. Smith, an SSHH tetraploid (2n = 28), and 6) South American Elymus patagonicus Speg., an SSHHHH hexaploid (2n = 42). Almost complete chromosome pairing in the A. ferganense x A. spicatum and A. libanoticum hybrids demonstrated that A. fergenanse is an SS diploid, but it is genetically isolated from the other SS diploids because of high sterility in the F1 hybrids. S-genome diploids form a network of species that extend from the Middle East through Central Asia to western North America. Frequent occurrence of seven univalents and seven bivalents at metaphase I in the triploid hybrids of A. ferganense x A. dasystachyum, A. caninum and S. hystrix was consistent with the proposed genome formulas of SS for A. ferganense, SSHH for the three tetraploid species, and SSH for the hybrids. Chromosome pairing was highly variable in the A. ferganense x E. patagonicus hybrids; however, some cells had almost complete bivalent pairing, an expected observation in an SSHH hybrid from a cross between an SS diploid (A. ferganense) and an SSHHHH hexaploid (E. patagonicus). Various options were considered concerning the appropriate generic classification of the S-genome diploids, which are now commonly placed in Agropyron. The inclusion of these species in the genus Eiytrigia, as advocated by some Soviet taxonomists, appears to be a reasonable decision.  相似文献   

11.
Chromosome numbers of n = 8, 12, and 16 were determined for 11 populations of Claytonia lanceolata occurring in the southwestern Rocky Mountains of Utah. No evidence of the wide infra-populational variation of chromosome numbers known in the related eastern species, C. virginica, was observed. The chromosome numbers in C. lanceolata probably evolved from a base number of x = 8. Diploids(n = 8) apparently produced tetraploids (n = 16) of putative autoploid origin. Pairing relationships, including the presence of univalents, bivalents, and trivalents, suggest the chromosome numbers of n = 12 are triploids derived from natural hybridization between diploids and tetraploids. Higher chromosome numbers previously reported in C. lanceolata from Colorado, and presumably based on x = 12, can be explained by subsequent polyploid increases in the triploids. The diploid and tetraploid populations analyzed in this study occupy different ecological habitats. The diploids occur at lower elevations along the foothills, whereas the tetraploids are restricted to higher montane and sub-alpine elevations. The triploids were discovered at intermediate elevations.  相似文献   

12.
Analysis of 368 plants derived from 239 natural populations showed that this taxonomically perplexing and wide-ranging species-complex consists of diploids (n = 8), tetraploids, hexaploids and octoploids. Microsporocytes were the source of most of the chromosome counts. Meiosis was basically regular. Multivalent formation was uncommon, but 11 % of all the plants examined had one or more full-sized extra chromosomes. The frequency of plants with extra chromosomes varied significantly among the taxa, from 0 (five varieties) to over 20 % (two varieties). Except in one instance, where one population yielded a diploid and a triploid, different ploidy levels were not found in the same population. The frequency of diploid, tetraploid, hexaploid and octoploid populations was, respectively, 71, 22, 4 and 2%. Variety obovatum appears to be exclusively diploid, and var. aphanactis exclusively tetraploid. Diploids and one or more polyploid levels occurred in the other taxa. No correlation was found between polyploidy and geological history, soils, topography or climate, nor were the polyploids more widely distributed than the diploids. Some of the polyploid populations seem to have been derived from inter-varietal hybridizations, but others do not. The complex has a “pillar” structure in which 10 diploid taxa support a three-level polyploid superstructure. The available evidence suggests that the major role of polyploidy here has been to stabilize the products of intra- and inter-varietal hybridizations.  相似文献   

13.
The ploidy level of plants of theVaccinium sect.Oxycoccus (Hill)W.D.J. Koch sampled in the Czech Republic, Germany, Austria and Poland was determined by chromosome counting and/or by flow cytometry. Forty-five characters were measured and scored in the morphometric analysis. Principal component analysis, cluster analysis, canonical discriminant analysis and classificatory discriminant analysis were used in the statistical analyses. Diploid (2n=24), tetraploid (2n=48) and hexaploid (2n=72) populations were confirmed and a new ploidy level — pentaploid hybrid plants (2n=60) — was revealed. Results of the multivariate morphometric analysis support the separation of the two native species. DiploidV. microcarpum (Turcz. exRupr.)Schmalh. differs from the polyploids by smaller size of petals, shorter style and stamens (stamens have long filaments and short anthers), glabrous pedicels, mostly solitary flowers, earlier flowering and by occurrence predominantly inPolytrichum strictum tufts. The low taxonomic significance of some features often used in keys for their separation (shape of fruits, insertion of prophylla, pubescence of filaments) was confirmed.V. oxycoccos L. includes three ploidy levels. The hexaploids represent the most abundant ploidy level in the area studied. They show a slightly bigger size of petals, longer bracts, prophylla, style, sepal tips and wider seeds in comparison with the tetraploids. Pentaploid cranberries are hitherto known only from the Czech Republic. They differ particularly in the low proportion of fully-developed tetrads.  相似文献   

14.
A large panel of hexaploid wheat synthetics was developed. Their tetraploid parents consisted of either four extracted wheat tetraploids (ETWs) or four natural present-day tetraploids, and their diploid parents consisted of twenty accessions of Aegilops tauschii. Analysis of meiotic behaviour of the synthetics showed that chromosome pairing is highly variable and depends on the progenitor. The meiotic behaviour in the four ETWs was compared to that of the natural tetraploid wheats. It appears there was no evolution at the hexaploid level of the meiotic genes carried by the A and B genomes. We also reach the conclusion that the neo-allohexaploids at the origin of present-day wheat had a meiotic behaviour close to that of the present-day hexaploid wheat. It is likely that other neo-hexaploids with an impaired meiosis were formed, but they had no future due to their more or less rapid disappearance due to increasing aneuploidy level and structural changes, mainly Robertsonian translocations.  相似文献   

15.
Polyploidization is an important mechanism of sympatric speciation, but few studies have addressed breeding barriers between polyploids and their diploid progenitors in the field, and the available data have been mainly obtained from diploid-tetraploid contact zones. In contrast to diploid-tetraploid complexes, hybridization between diploid and hexaploid individuals may lead to viable fertile tetraploid offspring, and thus the interactions between these ploidy levels can be more complex. We investigated the breeding barriers operating between diploid and hexaploid individuals of Aster amellus at a contact zone in Central Europe to understand the absence of hybrids (i.e., tetraploids) and mixed populations. Phenological segregation, assortative mating mediated by pollinators and crossing ability were assessed under natural and controlled conditions in diploid and hexaploid populations growing in close proximity. The results revealed low levels of reproductive isolation (RI) due to flowering phenology (RI = 11–45%) and pollinator behavior (RI = 17%), so that pollen transfer between diploids and hexaploids is possible. In contrast, almost complete reproductive isolation was observed due to a series of post-pollination barriers that significantly reduced the production of offspring from inter-cytotype crosses (RI = 99.9%), even though some tetraploids were detected in seeds and seedlings. We conclude that the absence of tetraploids at the contact zone is probably due to a combination of several factors, including spatial segregation, strong post-pollination barriers (such as gametic isolation, low viability of tetraploid seeds and/or inability of tetraploid plants to reach the flowering stage), and to a lesser extent, temporal and behavioral segregation. Future studies should explore the fitness of tetraploids and the effect of different traits on the reproductive success and fitness of each cytotype. This will enable a fuller understanding of the dynamics and mechanisms acting in contact zones.  相似文献   

16.
Populations of theAgrostis flaccida-mertensii complex in Hokkaido were examined as part of the taxonomic study of this complex, which has a wide range and comprises a polyploid series of 2x–8x (x=7). The principal aim was to clarify the taxonomic status of hexaploids growing in Hokkaido. Field explorations were made in the mountains and on the coasts in Hokkaido, and the materials were gathered from 19 localities. The occurrence of four cytotypes (2x, 4x, 6x, 8x), as well as some triploids and septaploids, of this complex in Hokkaido was confirmed, and the ranges of respective cytotypes were delineated. Morphological examinations showed that diploids, triploids and tetraploids are referable toAgrostis flaccida and octoploids toA. mertensii. The hexaploids of Hokkaido were morphologically different fromA. flaccida and also from the related hexaploid species,A. tateyamensis, distributed in Honshu. The hexaploids were quite similar to octoploidA. mertensii in all the morphological features examined and also in habitat preference. Septaploids were sterile hybrids between hexaploids and octoploids. A conclusion was drawn that the hexaploid plant of Hokkaido should be grouped with the octoploid in one and the same species,Agrostis mertensii Trin.Agrostis mertensii in this amended sense is discussed from a cytogeographical viewpoint.  相似文献   

17.
The A genome of the tetraploid wheats (AABB, 2n = 28) shows 5-6 bivalents in crosses with Triticum boeoticum (2n = 14) and various Aegilops diploids (2n = 14). The B genome has never been similarly identified with any species, and is commonly thought to have been modified at the tetraploid level. Triticum boeoticum was presumably accepted as the A-genome donor because of its morphological similarity to the wild tetraploids and because it was formerly the only known wild diploid wheat. The B donor has been thought to be Ae. speltoides or another species of the Sitopsis section of Aegilops, but these diploids show pairing affinity with A rather than B. More recently, another diploid wheat, T. urartu, was found to be sympatric with T. boeoticum throughout the natural range of the tetraploids. The synthetic boeoticum-urartu amphiploid was virtually identical morphologically with the wild tetraploid wheats, whereas various boeoticum-Sitopsis amphiploids were markedly different. But the urartu genome, like those of T. boeoticum and Sitopsis, paired with A and not with B. However, cytological evidence also shows (1) that the genomes of any plausible parental combination pair with one another, (2) that the A and B genomes of the tetraploid wheats pair with one another in the absence of the gene Ph, and (3) that homoeologous chromosomes of the tetraploids have differentiated further, presumably as a result of diploidization. Consequently, chromosome pairing at Meiosis I can be expected to give ambiguous evidence regarding the identity of the tetraploid genomes with their parental prototypes. A hypothesis regarding the expected pairing affinities between tetraploid homoeologues that have differentiated from closely related parental chromosomes is advanced to explain the anomalous pairing behavior of the A and B genomes. Triticum boeoticum and T. urartu are inferred to be the parents of the tetraploid wheats.  相似文献   

18.
With the aim of making clear the boundaries between species in thePoa acroleucahisauchii-nipponica aggregate, chromosomes and morphological features of 746 collections gathered from 125 localities in Japan were examined. For morphological observations, the voucher specimens of 95 collections whose chromosome numbers were reported previously (Tateoka, 1985) were also used. Tetraploids (2n=28) and hexaploids (2n=42), as well as a few pentaploids which were the hybrids between 4× and 6×, were found. By examining morphological features of these collections, two groups were recognized in tetraploids and one in hexaploids. The two tetraploid groups corresponded toPoa acroleuca Steud. andP. hisauchii Honda, and the hexaploid group toP. nipponica Koidz. It was confirmed that the hairiness on the internerve surface of lemma, ligule hairiness and the length ratio of anther/ lemma are the most important features for discriminating between these species; panicle shape, leaf shape and anther length are also helpful for the identification. The ambiguity of the boundaries between species which was hitherto present in the taxonomy of this species aggregate was unrelated to the creation of nature itself but was attributable to the insufficiency of our research work.  相似文献   

19.
Summary Fifty-eight somatic hybrid plants, produced both by chemical (11) and electrical fusion (47) of protoplasts of dihaploid Solanum tuberosum and S. brevidens, have been analysed by molecular, cytological and morphological methods. The potentially useful euploid plants constituted 34% of the total, of which 20% were tetraploid and 14% hexaploid; the remainder were aneuploid at the tetraploid, hexaploid and octoploid levels. Analysis of chloroplast DNA showed that 55% of hybrids contained chloroplasts from S. brevidens and 45% from S. tuberosum. Hexaploids, the products of three protoplasts fusing together, were analyzed with specific DNA probes, and this revealed that nuclear genome dosages could be either 21 S. tuberosumS. brevidens, or vice-versa. Chloroplast types of hexaploids were not influenced by nuclear genome dosage, and all six possible combinations of genome dosage and chloroplast types were found amongst tetraploids and hexaploids. To examine the morphology of the hybrid population and its possible relation to the chromosome number and chloroplast DNA type, 18 morphological characteristics were measured on greenhouse-grown plants and analyzed by principal component and canonical variate analyses. Both analyses showed that nuclear ploidy has the most prominent influence on the overall morphology of the hybrids. Differential parental genome expression in the morphology of the hybrids is discussed. These results provide useful data on the range of genetic combinations that can be expected to occur amongst somatic hybrid plants.  相似文献   

20.
Belonging to the genus Cenchrus with 16–22 species, Cenchrus ciliaris L. (syn. Pennisetum ciliare (L.) Link, buffelgrass) is a perennial, common in warmer regions of both hemispheres, growing as a C4 grass in a wide range of habitats. In the present study we determined chromosome number and nuclear DNA content (2C DNA) for 28 natural populations collected from northern to southern Tunisia. Three ploidy levels were found: one tetraploid population (2n?=?4x?=?36), three pentaploid (2n?=?5x?=?45), and 24 hexaploid populations (2n?=?6x?=?54). The hexaploid chromosome number has already been reported for Tunisian populations of C. ciliaris but tetraploid and pentaploid (2n?=?45) are new for this area. The tetraploid population was found in the semi-arid north; pentaploids were mostly on the northern side of the arid region, while the hexaploids were located mainly in the arid southern Tunisian and Saharan region. 2C DNA values, assessed using flow cytometry, correlated with chromosome counts. Nuclear DNA content ranged from 2C?=?3.03 to 4.61 pg, revealing three ploidy levels corresponding to 4x, 5x, 6x, and mean 2C DNA amounts were of 3.03, 3.7 and 4.48 pg, respectively. Each cytotype produced viable pollen. Flow cytometric seed screening neither proved nor disproved apomixis. The most frequent hexaploid populations seem best adapted to arid conditions in southern Tunisia. The monoploid value, 1Cx, was constant. The existence of pentaploid cytotype suggests hybridization ability between tetraploids and hexaploids. It appears that polyploidization is the major evolutionary mechanism in the speciation of C. ciliaris.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号