首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using immunochemical and immunohistochemical methods, the binding site ofAnguilla anguilla agglutinin (AAA) was characterized and compared with the related fucose-specific lectin fromUlex europaeus (UEA-I). In solid-phase enzyme-linked immunoassays, the two lectins recognized Fuc1-2Gal-HSA. AAA additionally cross-reacted with neoglycolipids bearing lacto-N-fucopentaose (LNFP) I [H type 1] and II [Lea] and lactodifucotetraose (LDFT) as glycan moieties. UEA-I, on the other hand, bound to a LDFT-derived neoglycolipid but not to the other neoglycolipids tested. Binding of AAA to gastric mucin was competitively neutralized by Lea-specific monoclonal antibodies. UEA-I binding, on the other hand, was reduced after co-incubation with H type 2- and Ley-specific monoclonal antibodies. According to our results, AAA reacts with fucosylated type 1 chain antigens, whereas UEA-I binds only to the 1-2-fucosylated LDFT-derived neoglycolipid. In immunohistochemical studies, the reactivity of AAA and UEA-I in normal pyloric mucosa from individuals with known Lewis and secretor status was analysed. AAA showed a broad reaction in the superficial pyloric mucosa from secretors and non-secretors, but AAA reactivity was more pronounced in Le(a+b-) individuals. On the other hand, UEA-I stained the superficial pyloric mucosa only from secretor individuals. A staining of deep mucous glands by the lectins was found in all specimens. Both reacted with most human carcinomas of different origin. Slight differences in their binding pattern were observed and may be explained by the different fine-specificities of the lectins.  相似文献   

2.
We have examined the pattern of binding of eleven lectins--BSL-II, WGA, LPA, Con A, DBA, SBA, LTA, UEA-I, MPA, PNA, and RCA-I, with specificity for a range of saccharides, to postimplantation mouse embryos from 6 to 8 days of gestation. The lectins were used to stain sections of ethanol-fixed paraffin-embedded and formaldehyde-fixed gelatin-embedded embryonic material. Our observations reveal a complex pattern of lectin binding to both cell surfaces and cytoplasm. Many of the lectins bind particularly to the outer surface of visceral endoderm (e.g., DBA, WGA, SBA, and RCA-I) and to the surface of the proamniotic cavity (e.g., RCA-I, PNA, and WGA). In the newly formed mesenchyme of primitive-streak-stage embryos, galactose and N-Ac-neuraminic acid are present but lectins with specificity for other sugars either did not bind to the cells or bound only in small amounts.  相似文献   

3.
Carbohydrate residues were localized in the glandular cells of the epidermis of Lumbricus terrestris by lectin histochemistry. The following biotinylated lectins were used: ConA, PNA, WGA, UEA-I. Each lectin has a specific binding pattern in the epidermal glandular cells. The ConA binding is evident in the orthochromatic mucous cells; PNA in the metachromatic mucous cells; WGA in the neuroendocrine-like cells; UEA-I in the cuticle. The epidermal glandular cells possess specific sites for the different lectins in relation to their functional characteristics. Therefore, these sugar residues indicate different behaviours of the cells in epidermal functions related to ion transport, receptor-secretory processes and defence.  相似文献   

4.
The display of carbohydrate structures was measured in promyelocytic HL60 cells and in histiocytic U937 cells induced to differentiate to phagocytic cellsin vitro during three to seven days of cultivation in the presence of dimethylsulfoxide (DMSO). It was assessed by micro-or spectrofluorometric quantification of the binding of fluorescent lectins. Changes in the cell size and the association and uptake of IgG-or complementopsonized yeast cells (Saccharomyces cerevisiae) were used as signs of phagocyte differentiation.The binding of wheat germ agglutinin (WGA), concanavalin A (Con A),Ricinus communis agglutinin-I (RCA-I) andUlex europaeus agglutinin-I (UEA-I) varied due to the presence of DMSO during cultivation, and without DMSO also on the number of days in culture and the type of cell.Abbreviations DMSO dimethylsulfoxide - PMA phorbol 12-myristate 13-acetate - KRG Krebs-Ringer phosphate buffer with glucose - WGA wheat germ agglutinin - Con A concanavalin A - RCA-I Ricinus communis agglutinin-I - UEA-I Ulex europaeus agglutinin-I  相似文献   

5.
Abstract. Testis and epididymis of sexually mature mice were studied histochemically using 25 fluorescein-isothiocyanate-labeled lectins. Several lectin-specific binding patterns were recognized. Thus, HAA, HPA, GSA-I, and UEA-I1 reacted only with spermatozoa. PNA, GSA-11, SBA, VVA, BPA, RCA-I, and RCA-I1 reacted with spermatozoa and spermatocytes. WGA, PEA, LCA, and MPA reacted with spermatogonia, spermatocytes, and spematozoa in increasing order of intensity. ConA, SUC. ConA, LAA, STA, LTA, LPA, PHA-E, PHA-L, IJEA-I, and LBA reacted with all spermatogenic cells with equal intensity. In the epididymis, 12 lectins reacted uniformly with the epithelial cells lining all segments of this organ. One lectin (VVA) did not react with epididymal lining cells. The remaining 12 lectins reacted in a specific manner with portions of the head, body, or tail, thus selectively outlining different portions of the epididymis. RCA-I and RCA-I1 selectively accentuated the so-called halo cells of the epididymis. These findings provide a detailed map of lectin-binding sites in the mouse testis and epididymis and show that certain lectins can be used as specific markers for spermatogenic cells and segments of the epididymis.  相似文献   

6.
The Authors report histochemical findings about rabbit's duodenal mucosa. The present study has been carried out using five different lectins (Peanut Agglutinin (PNA), Dolichos Biflorus Agglutinin (DBA), Wheat Germ Agglutinin (WGA), Soybean Agglutinin (SBA), Ulex Europaeus Agglutinin I (UEA-I). These lectins have been labelled with Horseradish Peroxidase and binding sites have been stained with 3-3' Diaminobenzidine, according to Farragiana et al. The PNA reacted with the glandular cells, while the reaction was negative in the superficial cells. The DBA reacted exclusively with the glandular cells. The superficial and the glandular cells showed strong positive binding sites to the WGA and slight positive binding sites to the SBA. The UEA-I did not react with the epithelial cells. The presence of binding sites for the lectins we have used in the present study, shows a different glycoprotein composition of the cellular secretion, in comparison with the other animals we have already studied. In addition, these lectins can not be used as cellular differentiation markers in the epithelial cells of the rabbit's duodenal mucosa.  相似文献   

7.
This study determined the effects of lectin binding to theronts of Ichthyophthirius multifiliis on theront immobilization, invasion, trophont development and survival in channel catfish Ictalurus punctatus excised fins in vitro. Soybean agglutinin (SBA), lentil agglutinin (LCA), gorse agglutinin (UEA-I) and wheat germ agglutinin (WGA) were used to treat theronts. Percentages of theronts immobilized by 4 lectins ranged from 12.0 to 19.4% at a concentration of 1000 microg ml(-1). These lectins bound more than half of the theronts at a concentration of 50 microg ml(-1). More theronts were labeled by SBA and WGA than by lectin LCA at concentrations of 50 and 100 microg ml(-1), respectively. The binding of these lectins to theronts indicated that monosaccharides (D-galactose, L-fucose, D-mannose and D-glucose) and amino sugar derivatives (N-acetylgalactosamine and N-acetylglucosamine) were present on the surface of theronts. Invasion was reduced significantly for theronts treated with LCA, UEA-I and WGA. No difference in invasion was found between control and SBA bound theronts (p > 0.05). The binding of lectin LCA, UEA-I and WGA to theronts significantly reduced the development of trophonts (p < 0.05). The mean volumes of trophonts labeled with these 3 lectins were smaller than volumes in control trophonts from 8 to 48 h after exposure. Survival was lower in trophonts labeled with lectins than in control trophonts at 48 h after exposure.  相似文献   

8.
Helicobacter pylori attaches via lectins, carbohydrate binding proteins, to the carbohydrate residues of gastric mucins. Guinea-pigs are a suitable model for a H. pylori infection and thus the carbohydrate composition of normal and H. pylori infected gastric mucosa was investigated by lectin histochemistry. The stomach of all infected animals showed signs of an active chronic gastritis in their mucosa, whereas no inflammation was present in the control animals. The corpus–fundus regions of the controls showed heterogeneous WGA, SNA-I, UEA-I and HPA binding in almost all parts of the gastric glands. While these lectins labelled the superficial mucous cells and chief cells heterogeneously, the staining of the parietal cells was limited to WGA and PHA-L. Mucous neck cells reacted heterogeneously with UEA-I, HPA, WGA and PHA-L. In the antrum, the superficial mucous cells and glands were stained by WGA, UEA-I, HPA, SNA-I or PHA-L. WGA, UEA-I, SNA-I and HPA labelled the surface lining cells strongly. The mucoid glands reacted heterogeneously with WGA, UEA-I, HPA, SNA-I and PHA-L. In both regions, the H. pylori infected animals showed similar lectin binding pattern as the controls. No significant differences in the lectin binding pattern and thus in the carbohydrate composition between normal and H. pylori infected mucosa could be detected, hence H. pylori does not induce any changes in the glycosylation of the mucosa of the guinea-pig. This unaltered glycosylation is of particular relevance for the sialic acid binding lectin SNA-I as H. pylori uses sialic acid binding adhesin for its attachment to the mucosa. As sialic acid binding sites are already expressed in the normal mucosa H. pylori can immediately attach via its sialic acid binding adhesin to the mucosa making the guinea-pig particularly useful as a model organism.This work is dedicated to Professor B. Tillmann on the occasion of his 65th birthday  相似文献   

9.
The binding of 20 fluorescein isothiocyanate (FITC)-labeled lectins to various portions of the pregnant and non-pregnant murine oviduct and uterus was studied by fluorescence microscopy. Five lectins (from Ricinus communis (RCA-I), Maclura pomifera (MPA), Triticum vulgare (wheat germ-WGA), Bauhinia purpurea (BPA), and Ulex europeus (UEA-I] reacted differentially with the epithelium of pregnant as compared with the non-pregnant uterus. The binding of RCA-I, MPA and WGA delineated pregnancy-related changes in the distal oviduct and colliculus tubaris. WGA recognized also pregnancy related changes in the proximal oviduct. The reactivity of the remaining 15 lectins did not distinguish the pregnant and non-pregnant oviduct and uterus, although some of them served to identify specific components of the mouse genital tract. Thus, Soybean lectin (SBA) reacted almost exclusively with the colliculus tubaris. UEA-I alone reacted exclusively with the epithelium of the non-pregnant uterus. RCA-II reacted preferentially with the epithelium of the oviduct and uterus as compared with its weak reactivity with the stroma. Two lectins (from Pisum sativum and Lens culinaris) reacted selectively with stromal cells of the uterus and oviduct. Present data indicate that the differential binding properties of these FITC-labeled lectins can be exploited to identify certain components of the mouse oviduct and uterus and to indicate changes in the cell surface and/or cytoplasm in these structures during pregnancy.  相似文献   

10.
Lectin histochemistry study in the human vas deferens   总被引:1,自引:0,他引:1  
The oligosaccharide sequences of glycoconjugates in the normal human vas deferens and the nature of the saccharide linkage were studied by lectin histochemistry. The cytoplasm of all epithelial cell types (principal cells, basal cells, and mitochondria-rich cells) and luminal contents reacted positively with WGA, MAA, PNA, DSA, LTA, UEA-I, AAA, and ConA. The reaction was more intense in the stereocilia of principal cells. Cytoplasmic staining was diffuse except for PNA and DSA labeling which was limited to the apical cytoplasm and stereocilia of columnar cells. The cytoplasm of all cell types also reacted diffusely with HPA, although staining was weak and was not observed in the stereocilia. Positive reaction with SBA only was encountered in the stereocilia of principal cells. SNA, LTA, and DBA were unreactive. GNA-labeling showed a granular distribution in the supranuclear cytoplasm of columnar epithelial cells. Reactions with MAA, PNA, DSA, AAA, HPA and SBA disappeared after the -elimination reaction. Reactions with WGA and UEA-I decreased after -elimination or Endo-F digestion. Reactions with ConA and GNA were suppressed by Endo-F digestion. Reactions with PNA, HPA, and SBA increased after desialylation. Of all the lectins that label the luminal contents of the vas deferens, only UEA-I was not found in the luminal contents of seminiferous tubules and epididymis and, thus, this lectin would probably bind to glycoproteins secreted by the vas deferens. The chemical treatments used suggest that this secretion contains fucose residues located in both N- and O-linked oligosaccharides. The other lectins may label secreted proteins, but also structural proteins or proteins reabsorbed from the luminal fluid. The lectin- binding pattern of mitochondria-rich cells in the vas deferens differed from that found in the epididymis.  相似文献   

11.
The binding of seven lectins (concanavalin A, Con A; Dolichos biflorus agglutinin, DBA; peanut agglutinin, PNA; Ricinus communis agglutinin I, RCA-I; soybean agglutinin, SBA; Ulex europeus agglutinin, UEA-I; and wheat germ agglutinin, WGA) to the small intestine in metamorphosing Xenopus laevis was studied by the avidin-biotin-peroxidase (ABC) method. The staining pattern of the epithelium with all lectins except for UEA-I and Con A changed gradually during metamorphic climax; the main component of the epithelium, absorptive cells, gradually became positive for DBA, PNA, and SBA and the scattered goblet cells for RCA-I and WGA. On the other hand, the change of the staining pattern in the connective tissue occurred only for Con A, RCA-I, and WGA, and this change took place rapidly at the beginning of climax (stage 60). Increased staining for Con A and WGA at stage 60 was observed only in a group of connective tissue cells close to the epithelium and in the basement membrane. As metamorphosis progressed, this localization of the staining intensity became less clear. At the completion of metamorphosis (stage 66), the absorptive cells were stained with all lectins except for UEA-I, whereas the goblet cells stained only with RCA-I and WGA. These results indicate that lectin histochemistry can distinguish between larval and adult cells of both two epithelial types (absorptive and goblet cells). The technique may also identify a group of connective tissue cells, close to the epithelium, that possibly induce the metamorphic epithelial changes.  相似文献   

12.
The avidin-biotin-peroxidase complex technique was used with 13 lectins to study the glycoconjugates of normal human renal tissue. The evaluated lectins included Triticum vulgaris (WGA), Concanavalin ensiformis (ConA), Phaseolus vulgaris leukoagglutinin and erythroagglutinin (PHA-L and PHA-E), Lens culinaris (LCA), Pisum sativum (PSA), Dolichos biflorus (DBA), Glycine max (SBA), Arachis hypogaea (PNA), Sophora japonica (SJA), Bandeiraea simplicifolia I (BSL-I), Ulex europaeus I (UEA-I) and Ricinus communis I (RCA-I). Characteristic and reproducible staining patterns were observed. WGA and ConA stained all tubules; PHA-L, PHA-E, LCA, PSA stained predominantly proximal tubules; DBA, SBA, PNA, SJA and BSL-I stained predominantly distal portions of nephrons. In glomeruli, WGA and PHA-L stained predominantly visceral epithelial cells; ConA stained predominantly basement membranes and UEA-I stained exclusively endothelial cells. UEA-I also stained endothelial cells of other blood vessels and medullary collecting ducts. Sialidase treatment before staining caused marked changes of the binding patterns of several lectins including a focal loss of glomerular and tubular staining by WGA; an acquired staining of endothelium by PNA and SBA; and of glomeruli by PNA, SBA, PHA-E, LCA, PSA and RCA-I. The known saccharide specificities and binding patterns of the lectins employed in this study allowed some conclusions about the nature and the distribution of the sugar residues in the oligosaccharide chains of renal glycoconjugates. The technique used in this report may be applicable to other studies such as evaluation of normal renal maturation, classification of renal cysts and pathogenesis of nephrotic syndrome. The observations herein reported may serve as a reference for these studies.  相似文献   

13.
The distribution of carbohydrate moieties in lancelet (Branchiostoma belcheri) oocytes has been studied at different stages of development, using a peroxidase-labeled lectin incubation technique, the PAS-reaction and Alcian Blue staining. Binding sites of 5 lectins, indicating the presence of different sugar moieties (Wheat germ agglutinin (WGA) for N-acetylglucosamine, Concanavalin A (Con A) for glucose/mannose, Helix pomatia agglutinin (HPA) for N-acetyl-D-galactosamine, Ricinus communis agglutinin (RCA-I) for galactose and Ulex europaeus agglutinin (UEA-I) for fucose), were identified and were shown to undergo considerable variation during oocyte development. In the previtellogenic stage, HPA, RCA-I and UEA-I were not identified on the oocyte surface, but WGA and Con A gave strongly positive reactions at this site. In the cytoplasm, 4 lectins (Con A, HPA, RCA-I and UEA-I) gave a weak or moderate reaction, and Con A was also observed in the perinuclear region. In vitellogenic oocytes, these 4 lectins were found to also bind to the nuclear envelope, karyoplasm and nucleolus, and, with the exception of Con A, could also be found in the nuclei of more mature stages. The cytoplasmic yolk granules and Golgi vesicles of the vitellogenic oocyte, were moderately positive for Con A, HPA, RCA-I and UEA-I, but HPA, RCA-I and UEA-I were only weakly bound at the oocyte surface. In mature oocytes, all 5 lectins bound moderately or strongly to yolk granules and cell surface. HPA, RCA-I and UEA-I bound moderately or strongly to various nuclear compartments. Thus, carbohydrate content varied with the development and maturation of the oocytes, and the PAS results were in agreement with the lectin-binding results. Charged carbohydrate residues were observed in the egg envelope and Golgi bodies.These results suggest that the appearence of Con A-, HPA-, RCA-I- and UEA-I-binding glycoconjugates in the nuclei of developing oocytes show a varying pattern indicating different phases of nuclear activity which correlate with different carbohydrate synthetic activities of the oocyte.  相似文献   

14.
Fluorescent conjugates of the lectins soybean agglutinin (SBA), Concanavalin A (Con A), wheat germ agglutinin (WGA), Lotus tetragonolobus agglutinin (LOT), and Limulus polyphemus agglutinin (LPA) bound primarily to amphidial openings and amphidial secretions of viable, preinfective second-stage juveniles (J2) of Meloidogyne incognita races 1 and 3 (Mil, Mi3) and M. javanica (Mj). No substantial difference in fluorescent lectin binding was observed among the populations examined. Binding of only LOT and LPA were inhibited in the presence of 0.1 M competitive sugar. Structural differences in amphidial carbohydrate complexes among populations of Mi 1, Mi3, and Mj were revealed by glycohydrolase treatment of preinfective J2 and subsequent labeling with fluorescent lectins. A quantitative microfiltration enzyme-linked lectin assay revealed previously undetected differences in lectin binding to nonglycohydrolase-treated J2. Freinfective J2 of Mj bound the greatest amount of SBA, LOT, and WGA, whereas J2 of Mil bound the most LPA.  相似文献   

15.
The presence of wheat germ agglutinin (WGA) on the cuticular surface of the seed gall nematodes Anguina agrostis and Anguina tritici was demonstrated, and the nature of its binding was examined. Crude extracts from the cuticles of A. tritici agglutinated human red blood cells, and only N-acetylglucosamine (GlucNAc) inhibited the agglutination. Distribution of the lectin was visualized by treating live infective juveniles (J2) with rabbit anti-WGA antibody and staining with fluorescein isothiocyanate (FITC)-conjugated goat anti-rabbit IgG. The lectin bound to the outer cuticular surface of the whole body wall. Pretreatment with GlucNAc oligomers did not reduce the fluorescence created by the anti-WGA-WGA binding, indicating at least a partial nonspeciflc adhesion of the WGA to the nematode surface. Proteolytic enzyme pretreatments diminished the fluorescence, whereas lipase and periodate pretreatments increased the fluorescence. Adult females and males were labeled only on the head and tail, whereas eggs were not labeled at all. It was concluded that the WGA on the J2 cuticle originates from the host.  相似文献   

16.
Six different lectins were used to study the carbohydrate nature of the hyaline layer (HL), the external extracellular matrix of the starfish embryo. Thin sections of embryos fixed in the late gastrula stage were incubated with five fluoresceinated lectins: Con A, WGA, RCA, UEA-I, and SBA. All but UEA-I labelled the HL, suggesting that the following sugars are present: mannose and/or glucose, glcNAc and/or Neu5Ac, galactose, and galNAc. The different lectins produced variable degrees of labelling, with WGA, RCA, and SBA producing more intense labelling than Con A. Binding of lectins by the HL was studied at the ultrastructural level by exposing ultrathin sections to the following lectin-gold conjugates: Con A, WGA, PNA, SBA, and LFA. Lectin binding was observed over the various regions of the HL, recognized by Crawford and Abed (J. Morphol. 176:235–246, '86), i.e., the intervillus layer, the supporting layer and the coarse outer meshwork. Local differences in labelling patterns were observed among the various lectins, with SBA labelling all regions intensely, WGA and PNA labelling the supporting layer predominantly, and Con A labelling the HL only lightly. No labelling was observed with LFA. These lectin-labelling patterns in the HL demonstrate the presence of different glycoconjugates in different regions of the HL, suggesting that the layers differ biochemically. The existence of biochemical differences strengthens the idea that each layer may have different functions in the developing starfish embryo.  相似文献   

17.
The present study sought to characterize the expression and distribution of complex glycoconjugates in the rat retina by lectin histochemistry, using a panel of 21 different lectins with different carbohydrate specificities. Paraffin sections of Carnoy-fixed Sprague-Dawley rat eyes were stained with various biotinylated lectins, followed by the streptavidin-peroxidase and glucose oxidase-diaminobenzidine-nickel staining procedures. The results showed that the retinal pigment epithelium was stained intensely with LCA, Jacalin, WFA, S-WGA, PWA, DSA, UEA-I, LTA and PHA-E, suggesting that this epithelium contained glycoconjugates with alpha-Man, alpha-Glc, alpha-Gal/GalNAc, beta-GalNAc, alpha-Fuc, NeuAc and other oligosaccharide residues. The outer and inner segments of the photoreceptor layer showed different lectin binding affinities. The outer segments reacted with S-WGA and GS-II, whereas the inner segments reacted with UEA-II, UEA-I, LTA and MAA, suggesting that the inner segments contained glycoconjugates rich in alpha-Fuc and NeuAc(alpha2,3)Gal residues. PNA labelled specifically the cones and could be used as a specific marker for these photoreceptors. RCA-I, WFA, S-WGA, DSA, MAA and PHA-E reacted with both the outer and inner plexiform layers. On the other hand, UEA-I and LTA specifically labelled the outer plexiform layer, while PNA labelled the inner plexiform layer. The retinal microglial cells were labelled specifically by GS-I-B4 and SNA. Interestingly, we also observed that WFA bound specifically to Müller cells and could be used as a novel marker for this retinal glial cell. The capillaries and larger vessels in the retina and choriocapillaris reacted intensely with GS-I-B4, RCA-I, S-WGA, PWA, DSA and PHA-E. No significant differences in lectin binding were observed in the microvessels at these two sites. In summary, the present study demonstrated the expression patterns of glycoconjugates in the rat retina and that certain lectins could be used as histochemical markers for specific structural and cellular components of the rat retina.  相似文献   

18.
To identify lectin binding sites and to determine if lectin binding patterns change with age in developing neonatal porcine uterine tissues, gilts (n = 3/day) were hysterectomized on Day 0 (birth), 7, 14, 28, 42, or 56. Lectin binding was visualized in Bouin's-fixed uterine tissues with seven biotinylated lectins (ConA, DBA, PNA, RCA-I, SBA, UEA-I, and WGA) and avidin-peroxidase staining procedures. Lectin specificities were demonstrated by pre-incubating lectins with appropriate inhibitory sugars (0.2 M). Staining intensity was evaluated visually (absent, weak, moderate, or strong) for three endometrial tissues; luminal epithelium, glandular epithelium, and stroma. Staining intensities for DBA, PNA, SBA, and WGA were not affected by neonatal age. Staining with these lectins was greater in uterine epithelium (moderate or strong) than in stroma (weak). In contrast, binding patterns for ConA, UEA-I, and RCA-I were affected by neonatal age. Strong epithelial staining associated with ConA binding was observed on all days, whereas stromal ConA staining decreased in intensity from moderate to weak after Day 14. Epithelial staining with UEA-I increased from moderate to strong after Day 28, whereas stromal UEA-I staining decreased from moderate to weak after day 28. Staining with RCA-I was homogeneous for luminal epithelium and stroma but variegated for glandular epithelium on and after Day 7. These observations indicate that a variety of lectin binding sites are present in developing neonatal porcine endometrial tissues and that developmentally related alterations in the distribution and/or orientation of glycoconjugates containing alpha-D-mannose, beta-D-galactose, beta-D-acetyl-N-galactosamine, and alpha-L-fucose residues occur between birth and Day 56 as these tissues mature.  相似文献   

19.
In order to investigate the usefulness of lectin histochemistry to detail nephronal segmentation we used 12 different biotinylated lectins (Con-A, DBA, GS-I, LCA, PNA, PWN, RCA-I, RCA-II, SWGA, SBA, UEA-I, and WGA) and Avidin-Biotin-Peroxidase (ABC) system on formalin-fixed and paraffin-embedded rabbit kidney sections. Each lectin, except UEA-I which did not stain any nephron structure, shows a different staining pattern along the nephron. Con-A, LCA, and RCA-I display a diffuse staining, while BS-I, RCA-II, SWGA, PWN, DBA, SBA and PNA are selective markers for specific nephron tracts. Furthermore, it is possible, according to the WGA binding pattern, to differentiate the convoluted part of the proximal tubule into two parts, named Segment A and Segment B. Lectin histochemistry on formalin-fixed and paraffin-embedded rabbit kidney sections displays a specific binding pattern along the rabbit nephron and shows interesting morphofunctional correlations.  相似文献   

20.
Comprehensive proteomic analyses require efficient and selective pre-fractionation to facilitate analysis of post-translationally modified peptides and proteins, and automated analysis workflows enabling the detection, identification, and structural characterization of the corresponding peptide modifications. Human serum contains a high number of glycoproteins, comprising several orders of magnitude in concentration. Thereby, isolation and subsequent identification of low-abundant glycoproteins from serum is a challenging task. selective capturing of glycopeptides and -proteins was attained by means of magnetic particles specifically functionalized with lectins or boronic acids that bind to various structural motifs. Human serum was incubated with differentially functionalized magnetic micro-particles (lectins or boronic acids), and isolated proteins were digested with trypsin. Subsequently, the resulting complex mixture of peptides and glycopeptides was subjected to LC-MALDI analysis and database searching. In parallel, a second magnetic bead capturing was performed on the peptide level to separate and analyze by LC-MALDI intact glycopeptides, both peptide sequence and glycan structure. Detection of glycopeptides was achieved by means of a software algorithm that allows extraction and characterization of potential glycopeptide candidates from large LC-MALDI-MS/MS data sets, based on N-glycopeptide-specific fragmentation patterns and characteristic fragment mass peaks, respectively. By means of fast and simple glycospecific capturing applied in conjunction with extensive LC-MALDI-MS/MS analysis and novel data analysis tools, a high number of low-abundant proteins were identified, comprising known or predicted glycosylation sites. According to the specific binding preferences of the different types of beads, complementary results were obtained from the experiments using either magnetic ConA-, LCA-, WGA-, and boronic acid beads, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号