首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Habitat loss is the dominant threat to biodiversity and ecosystem functioning in terrestrial environments. In this study, we used an a priori classification of bird species based on their dependence on native forest habitats (forest-specialist and habitat generalists) and specific food resources (frugivores and insectivores) to evaluate their responses to forest cover reduction in landscapes in the Brazilian Atlantic Forest. From the patch-landscapes approach, we delimited 40 forest sites, and quantified the percentage of native forest within a 2 km radius around the center of each site (from 6 - 85%). At each site, we sampled birds using the point-count method. We used a null model, a generalized linear model and a four-parameter logistic model to evaluate the relationship between richness and abundance of the bird groups and the native forest amount. A piecewise model was then used to determine the threshold value for bird groups that showed nonlinear responses. The richness and abundance of the bird community as a whole were not affected by changes in forest cover in this region. However, a decrease in forest cover had a negative effect on diversity of forest-specialist, frugivorous and insectivorous birds, and a positive effect on generalist birds. The species richness and abundance of all ecological groups were nonlinearly related to forest reduction and showed similar threshold values, i.e., there were abrupt changes in individuals and species numbers when forest amount was less than approximately 50%. Forest sites within landscapes with forest cover that was less than 50% contained a different bird species composition than more extensively forested sites and had fewer forest-specialist species and higher beta-diversity. Our study demonstrated the pervasive effect of forest reduction on bird communities in one of the most important hotspots for bird conservation and shows that many vulnerable species require extensive forest cover to persist.  相似文献   

2.
《Ecography》2002,25(2):161-172
Fire is a key mechanism creating and maintaining habitat heterogeneity in Mediterranean landscapes by turning continuous woody landscapes into mosaics of forests and shrublands. Due to the long historical role of fires in the Mediterranean, we hypothesised a moderate negative effect of this type of perturbation on forest bird distribution at a landscape level. We conducted point bird censuses in Aleppo pine forest patches surrounded by burnt shrublands and studied the relationships between three ecological groups of bird species (forest canopy species, forest understorey species, and ubiquitous species) and the features of local habitat, whole patch and surrounding landscape. We used a multi-scale approach to assess the effects of landscape variables at increasing spatial scales on point bird richness. Regarding local habitat components, canopy species were positively associated with tall pines while understorey species with the cover of shrubs and plants from holm-oak forests. Forest birds were positively related to patch size and irregular forest shapes, that is, with high perimeter/size ratios. Thus, these species did not seem to perceive edges as low quality but rather favourable microhabitats. We did not detect any negative effect of isolation or cover of woodlands in the landscape on the presence of forest species after local habitat factors had been accounted for. Finally, only local habitat factors entered the model for ubiquitous species. We suggest that mosaic-like landscapes shaped by fires in the Mediterranean basin are not strongly associated with negative effects fragmentation on forest birds other than those related with habitat loss.  相似文献   

3.
The traditional shade cacao plantations (cabrucas) of southern Bahia, Brazil, are biologically rich habitats, encompassing many forest-dwelling species. However, a critical question for the conservation management of this specific region, and the highly fragmented Atlantic forest in general, is to what extent the conservation value of cabrucas relies on the presence of primary forest habitat in the landscape. We investigated the relative importance of cabrucas and forests for the conservation of five diverse biological groups (ferns, frogs, lizards, birds and bats) in two contrasting landscapes in southern Bahia, one dominated by forest with some interspersed cabrucas, and one dominated by cabrucas with interspersed forest fragments. The community structure (richness, abundance and diversity) of all biological groups differed between cabrucas and forests, although these differences varied among groups. A high number of forest species was found in the cabrucas. However, there were pronounced differences between the two landscapes with regard to the ability of cabrucas to maintain species richness. Irrespective of the biological group considered, cabrucas located in the landscape with few and small forest fragments supported impoverished assemblages compared to cabrucas located in the landscape with high forest cover. This suggests that a greater extent of native forest in the landscape positively influences the species richness of cabrucas. In the landscape with few small forest fragments interspersed into extensive areas of shade cacao plantations, the beta diversity of birds was higher than in the more forested landscape, suggesting that forest specialist species that rarely ventured into cabrucas were randomly lost from the fragments. These results stress both the importance and the vulnerability of the small forest patches remaining in landscapes dominated by shade plantations. They also point to the need to preserve sufficient areas of primary habitat even in landscapes where land use practices are generally favorable to the conservation of biodiversity.  相似文献   

4.
A major conservation challenge in mosaic landscapes is to understand how trait‐specific responses to habitat edges affect bird communities, including potential cascading effects on bird functions providing ecosystem services to forests, such as pest control. Here, we examined how bird species richness, abundance and community composition varied from interior forest habitats and their edges into adjacent open habitats, within a multi‐regional sampling scheme. We further analyzed variations in Conservation Value Index (CVI), Community Specialization Index (CSI) and functional traits across the forest‐edge‐open habitat gradient. Bird species richness, total abundance and CVI were significantly higher at forest edges while CSI peaked at interior open habitats, i.e., furthest from forest edge. In addition, there were important variations in trait‐ and species‐specific responses to forest edges among bird communities. Positive responses to forest edges were found for several forest bird species with unfavorable conservation status. These species were in general insectivores, understorey gleaners, cavity nesters and long‐distance migrants, all traits that displayed higher abundance at forest edges than in forest interiors or adjacent open habitats. Furthermore, consistently with predictions, negative edge effects were recorded in some forest specialist birds and in most open‐habitat birds, showing increasing densities from edges to interior habitats. We thus suggest that increasing landscape‐scale habitat complexity would be beneficial to declining species living in mosaic landscapes combining small woodlands and open habitats. Edge effects between forests and adjacent open habitats may also favor bird functional guilds providing valuable ecosystem services to forests in longstanding fragmented landscapes.  相似文献   

5.
Habitat loss is the main driver of the current high rate of species extinction, particularly in tropical forests. Understanding the factors associated with biodiversity loss, such as the extinction of species interactions and ecological functions, is an urgent priority. Here, our aim was to evaluate how landscape‐scale forest cover influences fruit biomass comparing different tree functional groups. We sampled 20 forest fragments located within landscapes with forest cover ranging from 2 to 93 percent in the Atlantic forest of southern Bahia, Brazil. In each fragment, we established five plots of 25 × 4 m and carried out phenological observations on fleshy fruit throughout 1 year on all trees ≥5 cm dbh. We estimated fruit availability by direct counting of all fruits and derived fruit biomass from this count. We used spatial mixed linear models to evaluate the effects of forest cover on species richness, abundance, and fruit biomass. Our results indicated that forest cover was the main explanatory variable and negatively influenced the total richness and abundance of zoochoric and shade‐tolerant but not shade‐intolerant species. A linear model best explained variations in richness and abundance of total and shade‐tolerant species. We also found that forest cover was positively correlated with the fruit biomass produced by all species and by the shade‐tolerant assemblages, with linear models best explaining both relationships. The loss of shade‐tolerant species and the lower fruit production in fragments with lower landscape‐scale forest cover may have implications for the maintenance of frugivore, seed dispersal service, and plant recruitment.  相似文献   

6.
The relative effects of tree clearing, increased livestock densities and nutrient enrichment have rarely been compared across markedly different organism types, but negative effects are generally predicted. In contrast, adoption of rotational grazing is thought to benefit biodiversity in pastures but there are few supporting data. We examined the response of native plants, birds and reptiles to livestock management in south‐eastern Australia. We selected 12 pairs of rotationally and continuously grazed farms. Two 1‐ha plots were established in native pastures on each farm, one cleared and the second still retaining woodland tree cover. Stocking rates, fertilizer histories and landscape tree cover varied among farms. The abundance and richness of all taxa was lower in cleared pastures. The less mobile organisms (reptiles and plants) were positively correlated with tree cover at landscape scales, but only when trees were present at the plot scale. This pattern was driven by a few observations in landscapes with approximately 50% tree canopy cover. Neither bird abundance nor richness was correlated with stocking rates or nutrient enrichment, but plant richness responded negatively to both. The response of reptiles varied, declining with nutrient enrichment but positively correlated with livestock densities. These responses may be partly interpreted within the context of prior filtering of species pools through long‐term grazing pressure. No taxa responded positively to rotational grazing management. We predict that reductions in livestock density and soil nutrients will directly benefit plants and less so reptiles, but not birds. Indirect benefits are predicted for birds and reptiles if management increases persistence of trees within paddocks. Although some forms of rotational grazing can increase woodland tree recruitment, rotational grazing in itself is unlikely to enhance diversity.  相似文献   

7.
The knowledge and conservation of diminishing valuable habitats in agricultural landscapes are of key importance in saving declining farmland biodiversity. One of these habitats is the traditional orchard whose role in supporting birds is still poorly known, especially in winter. We counted birds in 106 orchards differing in management intensity (abandoned, traditional, and intensive) during December 2009 and January 2010 in Wielkopolska, western Poland and measured site characteristics and composition of surrounding landscapes for every orchard. Old abandoned and traditionally managed orchards had significantly higher bird species richness than intensive ones. Irrespective of orchard type, bird species richness as well as density were positively influenced by the cover of unmown herb layer in orchards and tree diversity. Tree and fruit densities positively affected bird species richness and density mainly in abandoned orchards while in other orchard types the effect of these variables was less pronounced. Land cover diversity in a landscape had a positive effect on species richness and density mostly in abandoned orchards and we believe that this effect reflects the elevated utilization of such orchards by birds from the surrounding landscape. Thus, abandoned, as well as traditionally managed orchards seems to be especially important habitats that offer food source and refuge for wintering birds and should be protected. We propose to diversify fruit production by planting various tree species, leaving part of the herb layer unmown and several trees unharvested in intensive orchards in order to improve suitability of modern orchards for birds.  相似文献   

8.
Agricultural intensification in Europe has affected farmland bird populations negatively, both during summer and winter. Although the migratory period poses separate challenges on birds than breeding and wintering, the consequences of farming practices for birds during migration remain poorly investigated. We monitored abundance and species richness of migratory birds in autumn at matched pairs of organic and conventional farms situated either in intensively farmed open plains (homogeneous landscapes) or in small‐scale farming landscapes (heterogeneous landscapes) in southern Sweden. Total bird density did not differ between landscape types but was marginally higher on organic compared to conventional farms. When including taxonomic status in the model (passerines vs non‐passerines), we found significantly more birds on organic farms, and more non‐passerines in the homogeneous landscapes. The effect of farming practice and landscape type on density differed between functional groups. Omnivore density was higher in the homogeneous landscapes, and invertebrate feeders were marginally more abundant on organic farms. The effects of farming practice on the overall species richness and on the density of granivorous birds were landscape dependent. In the homogeneous landscapes, organic farms held a higher number of species and density of granivorous birds than conventional farms, but there was no such difference in the heterogeneous landscapes. Thus, organic farming can enhance abundance and species richness of farmland birds during migration, but the effect differs between landscape types and species. The effectiveness of organic farming was highest in the homogeneous landscape making it important to promote organic farming there. However, for some species during migration, increased heterogeneity in homogeneous landscapes may have negative effects. We propose that migratory bird diversity in homogeneous landscapes may be best preserved by keeping the landscape open, but that a reduced agricultural intensity, such as organic farming, should be encouraged.  相似文献   

9.
Large herbivores often have key functions in their ecosystems, and may affect ecosystem processes with cascading effects on other animals. The mechanisms often involve relocations of resources of various kinds, including reduction in resource availability following foraging and increase in resources from animal excreta. As large herbivore populations in Europe generally are intensely managed, management activities may interact with the activities of the herbivores themselves in the effect on other ecosystem components. We investigated the effects of moose (Alces alces) winter browsing, together with the effect of net nutrient input via supplementary winter feeding of moose on functional composition and species richness of birds in a boreal forest. Supplementary feeding stations for moose had a net zero effect on bird species richness and abundance, because negative effects of moose browsing were balanced by positive effects of nutrient input. Sites with a similar browsing intensity as at feeding stations but without nutrient input had lower abundance and species richness than feeding stations. Functional groups of bird species showed differing responses: birds nesting at or below browsing height were negatively affected by moose browsing, whereas species nesting above the browsing zone were positively affected by moose browsing. Insect-eating species responded negatively to moose browsing on birch but positively to nutrient input at feeding stations, whereas seed-eating species responded positively to birch browsing and negatively to feeding stations. This study showed that both high levels of cervid activity and human management interventions influence bird communities.  相似文献   

10.
Capsule?Bird species richness and (for most species) abundance were positively related to the extent of shrub cover at the interface between conifer plantations and moorland, but it appears that responses to shrub development vary between different bird guilds.

Aims?To assess the bird assemblages in both winter and breeding seasons at the interface between managed conifer plantations and open moorland, where that interface had been restructured to include a mosaic of shrubs and open ground.

Methods?Timed point counts were used to sample the birds at restructured plantation – moorland interface areas and also in neighbouring plantations (post- and pre-thicket age classes) and neighbouring moorland. Associations between species richness and abundances with measures of shrub cover and composition were assessed using GLMMs.

Results?A total of 60 bird species were recorded including 29 on lists of conservation concern, most of which were associated with shrub interface habitats. Species richness and, for most species, abundance were positively related to the extent of shrub cover. Positive relationships between shrub cover in interface areas and the abundance of some species in neighbouring plantations and open moorland suggested a resource subsidy to birds in neighbouring habitats. In contrast, some birds tended to be less abundant in plantations next to areas with more shrub cover. These species were more abundant in the shrub itself, suggesting redistribution by species with a preference for early successional shrub habitats.

Conclusions?The long-term management of shrub, especially with regard to successional development, is a challenging aspect of forest and landscape management that deserves further study.  相似文献   

11.
The mechanisms affecting forest regeneration in human-modified landscapes are attracting increasing attention as tropical forests have been recognized as key habitats for biodiversity conservation, provision of ecosystem services, and human well-being. Here we investigate the effect of the leaf-cutting ants (LCA) Atta opaciceps on regenerating plant assemblages in Caatinga dry forest. Our study encompassed 15 Atta opaciceps colonies located in landscape patches with a gradient of forest cover from 8.7% to 87.8%, where we monitored regenerating individuals (seedlings and saplings of woody and herbaceous plants) in different habitats (nests, foraging areas, and control areas) over one year. We recorded 2,977 regenerating plant individuals, distributed among 55 species from 23 families. Herbaceous plants represented 82.1% and 58.2% of the total number of individuals and species, respectively. Species richness of both the whole and herbaceous plant assemblages increased along the forest cover gradient, but without difference between the habitats. Total plant abundance was highest in control areas followed by foraging areas and nests and this pattern held for both woody and herbaceous plants. Although forest cover did not influence the abundance of herbaceous plants and the whole plant assemblage, it positively affects woody plant abundance across control areas. Forest cover and habitat changed species composition of both the entire regenerating and the herbaceous assemblages. These results together indicate that LCA negatively impact regenerating plant assemblages, particularly in those sites with increased forest cover. As LCA proliferate in human-modified landscapes, they may prevent plant regeneration of disturbed areas.  相似文献   

12.
Human activities have led to global simplification of ecosystems, among which Neotropical dry forests are some of the most threatened. Habitat loss as well as edge effects may affect insect communities. Here, we analyzed insects sampled with pan traps in 9 landscapes (at 5 scales, in 100–500 m diameter circles) comprising cultivated fields and Chaco Serrano forests, at overall community and taxonomic order level. In total 7043 specimens and 456 species of hexapods were captured, with abundance and richness being directly related to forest cover at 500 m and higher at edges in comparison with forest interior. Community composition also varied with forest cover and edge/interior location. Different responses were detected among the 8 dominant orders. Collembola, Hemiptera, and Orthoptera richness and/or abundance were positively related to forest cover at the larger scale, while Thysanoptera abundance increased with forest cover only at the edge. Hymenoptera abundance and richness were negatively related to forest cover at 100 m. Coleoptera, Diptera, and Hymenoptera were more diverse and abundant at the forest edge. The generally negative influence of forest loss on insect communities could have functional consequences for both natural and cultivated systems, and highlights the relevance of forest conservation. Higher diversity at the edges could result from the simultaneous presence of forest and matrix species, although “resource mapping” might be involved for orders that were richer and more abundant at edges. Adjacent crops could benefit from forest proximity since natural enemies and pollinators are well represented in the orders showing positive edge effects.  相似文献   

13.
Montane birds face significant threats from a warming climate, so determining the environmental factors that most strongly influence the composition of such assemblages is of critical conservation importance. Changes in temperature and other environmental conditions along elevational gradients are known to influence the species richness and abundance of bird assemblages occupying mountains. However, the role of species‐specific traits in mediating the responses of bird species to changing conditions remains poorly understood. We aimed to determine whether different bird species responded differently to changing environmental conditions in a relatively understudied biodiversity hotspot in subtropical rainforest on the east coast of Australia. We examined patterns in avian species richness and abundance along two rainforest elevational gradients using monthly point counts between September 2015 and October 2016. Environmental data on temperature, wetness, canopy cover and canopy height were collected simultaneously, and trait information on body size and feeding guild membership for each bird species was obtained from the Handbook of Australian, New Zealand and Antarctic Birds. We used a generalized linear mixed modelling (GLMM) framework to determine the drivers of species richness and abundance and to quantify species’ trait–environment interactions. GLMMs indicated that temperature alone was significantly positively correlated with species richness and abundance. Species richness declined with increasing elevation. When modelling abundance, we found that feeding guild membership did not significantly affect species’ responses to environmental conditions. In contrast, the predicted abundance of a species was found to depend on its body size, due to significant positive interactions between this trait, temperature and canopy cover. Our findings indicate that large‐bodied birds are likely to increase in abundance more rapidly than small‐bodied birds with continued climatic warming. These results underline the importance of temperature as a driving factor of avian community assembly along environmental gradients.  相似文献   

14.

Background

Managers of landscapes dedicated to forest commodity production require information about how practices influence biological diversity. Individual species and communities may be threatened if management practices truncate or simplify forest age classes that are essential for reproduction and survival. For instance, the degradation and loss of complex diverse forest in young age classes have been associated with declines in forest-associated Neotropical migrant bird populations in the Pacific Northwest, USA. These declines may be exacerbated by intensive forest management practices that reduce hardwood and broadleaf shrub cover in order to promote growth of economically valuable tree species in plantations.

Methodology and Principal Findings

We used a Bayesian hierarchical model to evaluate relationships between avian species richness and vegetation variables that reflect stand management intensity (primarily via herbicide application) on 212 tree plantations in the Coast Range, Oregon, USA. Specifically, we estimated the influence of broadleaf hardwood vegetation cover, which is reduced through herbicide applications, on bird species richness and individual species occupancy. Our model accounted for imperfect detection. We used average predictive comparisons to quantify the degree of association between vegetation variables and species richness. Both conifer and hardwood cover were positively associated with total species richness, suggesting that these components of forest stand composition may be important predictors of alpha diversity. Estimates of species richness were 35–80% lower when imperfect detection was ignored (depending on covariate values), a result that has critical implications for previous efforts that have examined relationships between forest composition and species richness.

Conclusion and Significance

Our results revealed that individual and community responses were positively associated with both conifer and hardwood cover. In our system, patterns of bird community assembly appear to be associated with stand management strategies that retain or increase hardwood vegetation while simultaneously regenerating the conifer cover in commercial tree plantations.  相似文献   

15.
Afrotropical ant-following birds are vulnerable to forest loss and disturbance, but critical habitat thresholds regarding their abundance and species richness in human-dominated landscapes, including industrial oil palm plantations, have never been assessed. We measured forest cover through Landsat imagery and recorded species richness and relative abundance of 20 ant-following birds in 48 plots of 1-km2, covering three landscapes of Southwest Cameroon: Korup National Park, smallholder agroforestry areas (with farms embedded in forest), and an industrial oil palm plantation. We evaluated differences in encounter frequency and species richness among landscapes, and the presence of critical thresholds through enhanced adaptive regression through hinges. All species were detected in Korup National Park and the agroforestry landscape, which had similar forest cover (>85%). Only nine species were found in the oil palm plantation (forest cover = 10.3 ± 3.3%). At the 1-km2 scale, the number of species and bird encounters were comparable in agroforests and the protected area: mean species richness ranged from 12.2 ± 0.6 in the park and 12.2 ± 0.6 in the agroforestry matrix to 1.0 ± 0.4 in the industrial oil palm plantation; whereas encounters decreased from 34.4 ± 3.2 to 26.1 ± 2.9 and 1.3 ± 0.4, respectively. Bird encounters decreased linearly with decreasing forest cover, down to an extinction threshold identified at 24% forest cover. Species richness declined linearly by ca. one species per 7.4% forest cover lost. We identified an extinction threshold at 52% forest cover for the most sensitive species (Criniger chloronotus, Dicrurus atripennis, and Neocossyphus poensis). Our results show that substantial proportions of forests are required to sustain complete ant-following bird assemblages in Afrotropical landscapes and confirm the high sensitivity of this bird guild to deforestation after industrial oil palm development. Securing both forest biodiversity and food production in an Afrotropical production landscape may be best attained through a combination of protected areas and wildlife-friendly agroforestry.  相似文献   

16.
It has been suggested that organic farming may benefit farmland biodiversity more in landscapes that have lost a significant part of its former landscape heterogeneity. We tested this hypothesis by comparing bird species richness and abundance during the breeding season in organic and conventional farms, matched to eliminate all differences not directly linked to the farming practice, situated in either homogeneous plains with only a little semi-natural habitat or in heterogeneous farmland landscapes with abundant field borders and semi-natural grasslands. The effect of farm management on species richness interacted with landscape structure, such that there was a positive relationship between organic farming and diversity only in homogeneous landscapes. This pattern was mainly dependent on the species richness of passerine birds, in particular those that were invertebrate feeders. Species richness of non-passerines was positively related to organic farming independent of the landscape context. Bird abundance was positively related to landscape heterogeneity but not to farm management. This was mainly because the abundance of passerines, particularly invertebrate feeders, was positively related to landscape heterogeneity. We suggest that invertebrate feeders particularly benefit from organic farming because of improved foraging conditions through increased invertebrate abundances in otherwise depauperate homogeneous landscapes. Although many seed-eaters also benefit from increased insect abundance, they may also utilize crop seed resources in homogeneous landscapes and conventional farms. The occurrence of an interactive effect of organic farming and landscape heterogeneity on bird diversity will have consequences for the optimal allocation of resources to restore the diversity of farmland birds.  相似文献   

17.
18.
An assessment system suitable to support implementation of the EU Water Framework Directive's local water management plans should build on quantitative knowledge about a suite of well-documented indicator and umbrella species’ requirements for different stream orders. Assuring high communication value for improving local public awareness and participation for restoring ecological integrity in impaired headwater streams is critical. Loss and fragmentation of forests are major threats to ecological integrity. The aquatic macroinvertebrate order Plecoptera is commonly used as an indicator of the ecological integrity of streams. We measured abundance and taxonomic richness of Plecoptera in relation to land cover and water chemistry in second and third order catchments’ in 25 headwater streams in Central Europe's Carpathian Mountains. Plecoptera abundance and Plecoptera taxa richness were positively correlated to each other, as well as to forest proportion in the catchments, but negatively correlated to catchment area, inorganic carbon, alkalinity and conductivity. Segmented linear regression was then used to identify thresholds associated to forest proportion as a surrogate for catchment integrity. No threshold was found for Plecoptera abundance, but for taxa richness a threshold of 54% forest cover was found, below which Plecoptera was affected in second order streams. Using Plecoptera as a proxy for ecological integrity this study indicates that forest cover is an effective bioindicator in headwater catchments for predicting the ecological status of headwater streams. The non-linear relationship between forest cover and Plecoptera can be used as a science-based norm whereby land cover monitoring can be used to assess the ecological status of streams.  相似文献   

19.
Oil palm (Elaies guineensis) plantations are among the fastest growing agroecosystems in the Neotropics, but little is known about how Neotropical birds use oil palm habitats. To better understand the potential value of oil palm as an overwintering habitat for migratory birds, we surveyed birds in oil palm and native forest remnants in Tabasco, Mexico, from 19 December 2017 to 27 March 2018. We collected data on bird abundance and vegetative structure and used generalized linear models and multivariate analysis to assess how oil palm development influenced migrant bird diversity, community assemblages, and abundance. We found that species richness of migratory birds tended to be higher in forest patches than in oil palm, that community assemblages of migratory birds differed between native forest and oil palm plantations, and that differences in migratory bird abundance, and subsequent changes in community assemblages were driven by differences between native forest and oil palm plantations in vegetative structure. The bird community of native forest was characterized by migrant species sensitive to forest loss that forage low in the understory and in the leaf litter, whereas the bird community of oil palm plantations was represented by generalist species that occupy a wider range of foraging niches. Our results suggest that most species of migrant birds responded positively to several forest structural features and that integrating more native trees and increasing the amount of understory vegetation in oil palm plantations may increase the value of working landscapes for migratory birds.  相似文献   

20.
Neotropical fruit bats (family Phyllostomidae) facilitate forest regeneration on degraded lands by dispersing shrub and tree seeds. Accordingly, if fruit bats can be attracted to restoration sites, seed dispersal could be enhanced. We surveyed bat communities at 10 sites in southern Costa Rica to evaluate whether restoration treatments attracted more fruit bats if trees were planted on degraded farmlands in plantations or island configurations versus natural regeneration. We also compared the relative influence of tree cover at local and landscape spatial scales on bat abundances. We captured 68% more fruit bat individuals in tree plantations as in controls, whereas tree island plots were intermediate. Bat activity also responded to landscape tree cover within a 200‐m radius of restoration plots, with greater abundance but lower species richness in deforested landscapes. Fruit bat captures in controls and tree island plots declined with increasing landscape tree cover, but captures in plantations were relatively constant. Individual species responded differentially to tree cover measured at different spatial scales. We attribute restoration effects primarily to habitat structure rather than food resources because no planted trees produced fruits regularly eaten by bats. The magnitude of tree planting effects on fruit bats was less than previous studies have found for frugivorous birds, suggesting that bats may play a particularly important role in dispersing seeds in heavily deforested and naturally regenerating areas. Nonetheless, our results show that larger tree plantations in more intact landscapes are more likely to attract diverse fruit bats, potentially enhancing seed dispersal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号