首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell volume changes critically determine hepatic signal transduction and metabolism. Hepatocyte swelling by insulin contributes to p38(MAPK) activation leading to inhibition of autophagic proteolysis. Recently integrins were shown to sense hypoosmotic hepatocyte swelling. Here the role of integrins, Src, and focal adhesion kinase (FAK) in insulin signaling was investigated using the intact organ model of perfused rat liver. Insulin increases [Tyr(P)(418)]Src, [Tyr(P)(397)]FAK, and dual p38(MAPK) phosphorylation by about 2-fold. Infusion of the integrin-antagonizing hexapeptide GRGDSP or the Src inhibitor PP-2 prevented activation of Src and p38(MAPK) and, consequently, proteolysis inhibition by insulin. However, insulin-induced phosphorylation of IRbeta (Tyr(1158)) and protein kinase B (PKB, Ser(473)), as well as K(+)-uptake and cell swelling, was not reduced by the inhibitors. Both hypoosmotic swelling and insulin increase the plasma membrane levels of activated beta(1) integrin. Inhibition of insulin-induced swelling by furosemide largely abolished activation of beta(1) integrin and phosphorylation of Src, but not of PKB. Rapamycin does not affect either insulin-induced K(+)-retention and cell swelling or proteolysis inhibition, indicating that swelling-dependent proteolysis inhibition occurs independently from the mammalian target of rapamycin. The data suggest that sensing of cell swelling by integrins essentially contributes to insulin signaling, thereby defining a novel way of integrin involvement in growth factor signaling.  相似文献   

2.
We have recently shown that insulin induced myogenesis in the mouse C2C12 skeletal muscle cell line by activation of phosphatidylinositol (PI) 3-kinase/p70S6-kinase and p38-mitogen-activated protein kinase (MAPK) and downregulation of p42/p44-MAPK. This study investigated the insulin-signaling pathways involved in mitogenesis, survival, and membrane ruffling in C2C12 myoblasts, a cellular system that besides IGF-I receptors, expressed a high number of functional insulin receptors. Insulin (10 nM) rapidly stimulated beta-chain insulin receptor and IRS-1 tyrosine phosphorylation, IRS-2 being poorly and SHC not phosphorylated at all. However, an association of SHC with IRS-1 was found under insulin stimulation. Insulin stimulated IRS-1 association with p85alpha leading to the activation of PI3-kinase, and, subsequently AKT and p70S6-kinases. Moreover, both p42/p44- and p38-MAPKs resulted in phosphorylation after insulin stimulation. Insulin treatment for 24 h produced mitogenesis, as demonstrated by the increase in ((3)H)-thymidine incorporation, DNA content, the expression of PCNA and cyclin D1 proteins, and the proportion of cells in S + G2/M phases of the cell cycle. This mitogenic effect of insulin was precluded by inhibition of p70S6-kinase (either by rapamycin or by the PI3-kinase inhibitor LY294002) as well as by inhibition of p44/p42-MAPK with PD098059, but was not affected by inhibition of p38-MAPK. Serum deprivation of C2C12 myoblasts resulted in growth arrest at the GO/G1 phases of the cell cycle and apoptosis, as detected either by DNA laddering or by increase in the percentage of hypodiploid cells. Insulin rescued serum-deprived cells from apoptosis in an AKT-dependent manner, as demonstrated by the inhibition of AKT-activity by the use of LY294002 and ML-9, meanwhile neither inhibition of p70S6-kinase, nor MAPK affected insulin-induced survival. Finally, we evaluated the capacity of insulin to modulate actin cytoskeleton rearrangement. Insulin stimulation of myoblasts produced membrane ruffling and decreased actin stress fibers; this biological response being dependent of p38-MAPK, as demonstrated by the use of the p38-MAPK inhibitors SB203580 or PD169316, but independent of PI3-kinase and p42/p44-MAPK.  相似文献   

3.
Inhibition of autophagic proteolysis by hypoosmotic or amino acid-induced hepatocyte swelling requires osmosignaling toward p38MAPK; however, the upstream osmosensing and signaling events are unknown. These were studied in the intact perfused rat liver with a preserved in situ environment of hepatocytes. It was found that hypoosmotic hepatocyte swelling led to an activation of Src (but not FAK), Erks, and p38MAPK, which was prevented by the integrin inhibitory hexapeptide GRGDSP, but not its inactive analogue GRGESP. Src inhibition by PP-2 prevented hypoosmotic MAP kinase activation, indicating that the integrin/Src system is located upstream in the osmosignaling toward p38MAPK and Erks. Inhibition of the integrin/Src system by the RGD motif-containing peptide or PP-2 also prevented the inhibition of proteolysis and the decrease in autophagic vacuole volume, which is otherwise observed in response to hypoosmotic or glutamine/glycine-induced hepatocyte swelling. These inhibitors, however, did not affect swelling-independent proteolysis inhibition by phenylalanine. In line with a role of p38MAPK in triggering the volume regulatory decrease (RVD), PP-2 and the RGD peptide blunted RVD in response to hypoosmotic cell swelling. The data identify integrins and Src as upstream events in the osmosignaling toward MAP kinases, proteolysis, and RVD. They further point to a role of integrins as osmo- and mechanosensors in the intact liver, which may provide a link between cell volume and cell function.  相似文献   

4.
Eukaryotic initiation factor eIF2B mediates a key regulatory step in peptide-chain initiation and is acutely activated by insulin, although it is not clear how. Inhibitors of phosphatidylinositide 3-kinase blocked activation of eIF2B, although rapamycin, which inhibits the p70 S6 kinase pathway, did not. Furthermore, a dominant negative mutant of PI 3-kinase also prevented activation of eIF2B, while a Sos-mutant, which blocks MAP kinase activation, did not. The data demonstrate that a pathway distinct from MAP and p70 S6 kinases regulates eIF2B. Glycogen synthase kinase-3 (GSK-3) phosphorylates and inactivates eIF2B. In all cases, eIF2B and GSK-3 were regulated reciprocally. Dominant negative PI 3-kinase abolished the insulin-induced inhibition of GSK-3. These data strongly support the hypothesis that insulin activates eIF2B through a signalling pathway involving PI 3-kinase and inhibition of GSK-3.  相似文献   

5.
Phosphatidylinositol (PI) 3-kinase is required for insulin-stimulated translocation of GLUT4 to the surface of muscle and fat cells. Recent evidence suggests that the full stimulation of glucose uptake by insulin also requires activation of GLUT4, possibly via a p38 mitogen-activated protein kinase (p38 MAPK)-dependent pathway. Here we used L6 myotubes expressing Myc-tagged GLUT4 to examine at what level the signals regulating GLUT4 translocation and activation bifurcate. We compared the sensitivity of each process, as well as of signals leading to GLUT4 translocation (Akt and atypical protein kinase C) to PI 3-kinase inhibition. Wortmannin inhibited insulin-stimulated glucose uptake with an IC(50) of 3 nm. In contrast, GLUT4myc appearance at the cell surface was less sensitive to inhibition (IC(50) = 43 nm). This dissociation between insulin-stimulated glucose uptake and GLUT4myc translocation was not observed with LY294002 (IC(50) = 8 and 10 microm, respectively). The sensitivity of insulin-stimulated activation of PKC zeta/lambda, Akt1, Akt2, and Akt3 to wortmannin (IC(50) = 24, 30, 35, and 60 nm, respectively) correlated closely with inhibition of GLUT4 translocation. In contrast, insulin-dependent p38 MAPK phosphorylation was efficiently reduced in cells pretreated with wortmannin, with an IC(50) of 7 nm. Insulin-dependent p38 alpha and p38 beta MAPK activities were also markedly reduced by wortmannin (IC(50) = 6 and 2 nm, respectively). LY294002 or transient expression of a dominant inhibitory PI 3-kinase construct (Delta p85), however, did not affect p38 MAPK phosphorylation. These results uncover a striking correlation between PI 3-kinase, Akt, PKC zeta/lambda, and GLUT4 translocation on one hand and their segregation from glucose uptake and p38 MAPK activation on the other, based on their wortmannin sensitivity. We propose that a distinct, high affinity target of wortmannin, other than PI 3-kinase, may be necessary for activation of p38 MAPK and GLUT4 in response to insulin.  相似文献   

6.
Vascular endothelial growth factor (VEGF) utilizes a phosphoinositide 3-kinase (PI 3-kinase)/Akt signaling pathway to protect endothelial cells from apoptotic death. Here we show that PI 3-kinase/Akt signaling promotes endothelial cell survival by inhibiting p38 mitogen-activated protein kinase (MAPK)-dependent apoptosis. Blockade of the PI 3-kinase or Akt pathways in conjunction with serum withdrawal stimulates p38-dependent apoptosis. Blockade of PI 3-kinase/Akt also led to enhanced VEGF activation of p38 and apoptosis. In this context, the pro-apoptotic effect of VEGF is attenuated by the p38 MAPK inhibitor SB203580. VEGF stimulation of endothelial cells or infection with an adenovirus expressing constitutively active Akt causes MEKK3 phosphorylation, which is associated with decreased MEKK3 kinase activity and down-regulation of MKK3/6 and p38 MAPK activation. Conversely, activation-deficient Akt decreases VEGF-stimulated MEKK3 phosphorylation and increases MKK/p38 activation. Activation of MKK3/6 is not dependent on Rac activation since dominant negative Rac does not decrease p38 activation triggered by inhibition of PI 3-kinase. Thus, cross-talk between the Akt and p38 MAPK pathways may regulate the level of cytoprotection versus apoptosis and is a new mechanism to explain the cytoprotective actions of Akt.  相似文献   

7.
8.
Although the significance of vascular endothelial growth factor (VEGF) and its receptors in angiogenesis is well established, the signal transduction cascades activated by VEGF and their involvement in mediating the mitogenic response of endothelial cells to VEGF are incompletely characterized. Here we demonstrate that VEGF activates mitogen-activated protein (MAP) kinases, including the extracellular signal-regulated protein kinase (ERK) and p38 MAP kinase, phosphatidylinositol 3-kinase (PI 3-kinase), and p70 S6 kinase in human umbilical vein endothelial cells (HUVEC). The activation of these enzymes was assayed by kinase phosphorylation and by kinase activity towards substrates. Studies with PI 3-kinase inhibitors revealed that activation of p70 S6 kinase was mediated by PI 3-kinase. Selective inhibition of ERK, PI 3-kinase, and p70 S6 kinase with the inhibitors PD098059, LY294002, and rapamycin, respectively, inhibited VEGF-stimulated HUVEC proliferation. In marked contrast, the p38 MAP kinase inhibitor SB203580 not only failed to inhibit but actually enhanced HUVEC proliferation; this effect was associated with the phosphorylation of Rb protein. Rb phosphorylation resulted from a decrease in the level of the cdk inhibitor p27KiP1. These results indicate that the activities of ERK, PI 3-kinase, and p70 S6 kinase are essential for VEGF-induced HUVEC proliferation. p38 MAP kinase suppresses endothelial cell proliferation by regulating cell-cycle progression.  相似文献   

9.
BACKGROUND/AIMS: The role of bile acids for insulin resistance in cholestatic liver disease is unknown. METHODS: The effect of taurolithocholic acid-3 sulfate (TLCS) on insulin signaling was studied in cultured rat hepatocytes and perfused rat liver. RESULTS: TLCS induced insulin resistance at the level of insulin receptor (IR) beta Tyr(1158) phosphorylation, phosphoinositide (PI) 3-kinase activity and protein kinase (PK)B Ser(473) phosphorylation in cultured hepatocytes. Consistently, the insulin stimulation of the PI 3-kinase-dependent K(+) uptake, hepatocyte swelling and proteolysis inhibition was blunted by TLCS in perfused rat liver. The PKC inhibitor Go6850 and tauroursodeoxycholate (TUDC) counteracted the suppression of insulin-induced IRbeta and PKB phosphorylation by TLCS. Rapamycin and dibutyryl-cAMP, which inhibited basal signaling via mammalian target of rapamycin (mTOR), restored insulin-induced PKB- but not IRbeta phosphorylation. In livers from 7 day bile duct-ligated rats PKB Ser(473) phosphorylation was decreased by about 50%. CONCLUSION: TLCS induces insulin resistance by a PKC-dependent suppression of insulin-induced IRbeta phosphorylation and the PI 3-kinase/PKB path. This can in part be compensated by a decrease of mTOR activity, which may release insulin-sensitive components downstream of the insulin receptor from tonic inhibition. The data suggest that retention of hydrophobic bile acids confers insulin resistance on the cholestatic liver.  相似文献   

10.
Insulin receptor substrate-1 (IRS-1) is a major substrate of the insulin receptor and acts as a docking protein for Src homology 2 domain containing signaling molecules that mediate many of the pleiotropic actions of insulin. Insulin stimulation elicits serine/threonine phosphorylation of IRS-1, which produces a mobility shift on SDS-PAGE, followed by degradation of IRS-1 after prolonged stimulation. We investigated the molecular mechanisms and the functional consequences of these phenomena in 3T3-L1 adipocytes. PI 3-kinase inhibitors or rapamycin, but not the MEK inhibitor, blocked both the insulin-induced electrophoretic mobility shift and degradation of IRS-1. Adenovirus-mediated expression of a membrane-targeted form of the p110 subunit of phosphatidylinositol (PI) 3-kinase (p110CAAX) induced a mobility shift and degradation of IRS-1, both of which were inhibited by rapamycin. Lactacystin, a specific proteasome inhibitor, inhibited insulin-induced degradation of IRS-1 without any effect on its electrophoretic mobility. Inhibition of the mobility shift did not significantly affect tyrosine phosphorylation of IRS-1 or downstream insulin signaling. In contrast, blockade of IRS-1 degradation resulted in sustained activation of Akt, p70 S6 kinase, and mitogen-activated protein (MAP) kinase during prolonged insulin treatment. These results indicate that insulin-induced serine/threonine phosphorylation and degradation of IRS-1 are mediated by a rapamycin-sensitive pathway, which is downstream of PI 3-kinase and independent of ras/MAP kinase. The pathway leads to degradation of IRS-1 by the proteasome, which plays a major role in down-regulation of certain insulin actions during prolonged stimulation.  相似文献   

11.
Both insulin and the cell death-inducing DNA fragmentation factor-α-like effector (CIDE) family play important roles in apoptosis and lipid droplet formation. Previously, we reported that CIDEA and CIDEC are differentially regulated by insulin and contribute separately to insulin-induced anti-apoptosis and lipid droplet formation in human adipocytes. However, the upstream signals of CIDE proteins remain unclear. Here, we investigated the signaling molecules involved in insulin regulation of CIDEA and CIDEC expression. The phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin and PI-103 blocked both insulin-induced downregulation of CIDEA and upregulation of CIDEC. The Akt inhibitor API-2 and the c-Jun N-terminal kinase (JNK) inhibitor SP600125 selectively inhibited insulin regulation of CIDEA and CIDEC expression, respectively, whereas the MAPK/ERK kinase inhibitor U0126 and the p38 inhibitor SB203580 did not. Small interfering RNA-mediated depletion of Akt1/2 prevented insulin-induced downregulation of CIDEA and inhibition of apoptosis. Depletion of JNK2, but not JNK1, inhibited insulin-induced upregulation of CIDEC and lipid droplet enlargement. Furthermore, insulin increased both Akt and JNK phosphorylation, which was abrogated by the PI3K inhibitors. These results suggest that insulin regulates CIDEA and CIDEC expression via PI3K, and it regulates expression of each protein via Akt1/2- and JNK2-dependent pathways, respectively, in human adipocytes.  相似文献   

12.
Impaired glucose tolerance precedes type 2 diabetes and is characterized by hyperinsulinemia, which develops to balance peripheral insulin resistance. To gain insight into the deleterious effects of hyperinsulinemia on skeletal muscle, we studied the consequences of prolonged insulin treatment of L6 myoblasts on insulin-dependent signaling pathways. A 24-h long insulin treatment desensitized the phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB) and p42/p44 MAPK pathways toward a second stimulation with insulin or insulin-like growth factor-1 and led to decreased insulin-induced glucose uptake. Desensitization was correlated to a reduction in insulin receptor substrate (IRS)-1 and IRS-2 protein levels, which was reversed by the PI3K inhibitor LY294002. Co-treatment of cells with insulin and LY294002, while reducing total IRS-1 phosphorylation, increased its phosphotyrosine content, enhancing IRS-1/PI3K association. PDK1, mTOR, and MAPK inhibitors did not block insulin-induced reduction of IRS-1, suggesting that the PI3K serine-kinase activity causes IRS-1 serine phosphorylation and its commitment to proteasomal degradation. Contrarily, insulin-induced IRS-2 down-regulation occurred via a PI3K/mTOR pathway. Suppression of IRS-1/2 down-regulation by LY294002 rescued the responsiveness of PKB and MAPK toward acute insulin stimulation. Conversely, adenoviral-driven expression of constitutively active PI3K induced an insulin-independent reduction in IRS-1/2 protein levels. IRS-2 appears to be the chief molecule responsible for MAPK and PKB activation by insulin, as knockdown of IRS-2 (but not IRS-1) by RNA interference severely impaired activation of both kinases. In summary, (i) PI3K mediates insulin-induced reduction of IRS-1 by phosphorylating it while a PI3K/mTOR pathway controls insulin-induced reduction of IRS-2, (ii) in L6 cells, IRS-2 is the major adapter molecule linking the insulin receptor to activation of PKB and MAPK, (iii) the mechanism of IRS-1/2 down-regulation is different in L6 cells compared with 3T3-L1 adipocytes. In conclusion, the reduction in IRS proteins via different PI3K-mediated mechanisms contributes to the development of an insulin-resistant state in L6 myoblasts.  相似文献   

13.
Activation of either the phosphatidylinositol 3-kinase (PI 3-kinase)/Akt or the p38 mitogen-activated protein kinase (MAPK) signaling pathways accelerates myogenesis but only when the reciprocal pathway is functional. We therefore examined the hypothesis that cross-activation between these signaling cascades occurs to orchestrate myogenesis. We reveal a novel and reciprocal cross-talk and activation between the PI 3-kinase/Akt and p38 MAPK pathways that is essential for efficient myoblast differentiation. During myoblast differentiation, Akt kinase activity correlated with S473 but not T308 phosphorylation and occurred 24 h after p38 activation. Inhibition or activation of p38 with SB203580, dominant-negative p38, or MKK6EE regulated Akt kinase activity. Analysis of Akt isoforms revealed a specific increase in Akt2 protein levels that coincided with AktS473 phosphorylation during myogenesis and an enrichment of S473-phosphorylated Akt2. Akt2 promoter activity and protein levels were regulated by p38 activation, thus providing a mechanism for communication. Subsequent Akt activation by S473 phosphorylation was PI 3-kinase dependent and specific for Akt2 rather than Akt1. Complementary to p38-mediated transactivation of Akt, activation or inhibition of PI 3-kinase regulated p38 activity upstream of MKK6, demonstrating reciprocal communication and positive feedback characteristic of myogenic regulation. Our findings have identified novel communication between p38 MAPK and PI 3-kinase/Akt via Akt2.  相似文献   

14.
The objective of this study was to evaluate some of the mechanisms by which norepinephrine (NE) and insulin may influence protein degradation in mouse brown adipocytes differentiated in cultures. The effects of NE and insulin, alone or in combination, on three factors known to influence proteolysis (maintenance of cell ATP and 1-phosphatidylinositol 3-kinase (PI 3-kinase) and p70 ribosomal S6-kinase (p70 S6K) activities) were examined. It was proposed that NE affects proteolysis indirectly by decreasing cell ATP from activation of uncoupling protein-1 (UCP1)-dependent mitochondrial respiration. This was tested by comparing the effects of NE and fatty acids (which directly activate UCP1) on proteolysis in brown adipocytes, as well as in pre-adipocytes and 3T3-L1 adipocytes, which do not express UCP1. An inhibitory effect of insulin on proteolysis is observed in both pre-adipocytes and differentiated cells, whereas NE and exogenously added fatty acids inhibit proteolysis only in brown adipocytes. There is a linear relationship between reductions in cell ATP and proteolysis in response to increasing concentrations of NE or fatty acids. PI 3-kinase activity is required for proteolysis, because two selective inhibitors (wortmannin and LY294002) reduce proteolysis in both pre-adipocytes and differentiated cells. This effect is not additive to that of NE, which suggests they affect the same proteolytic pathway. In contrast to NE, insulin increases PI 3-kinase activity and phosphorylation of p70 S6K. Rapamycin, which prevented insulin-dependent increase in phosphorylation of p70 S6K, increases proteolysis in brown adipocytes and antagonizes the inhibitory effect of insulin on proteolysis, but not the inhibitory effect of NE. Thus, insulin inhibits proteolysis via rapamycin-sensitive activation of p70 S6K, whereas the effect of NE appears largely to be a function of decreasing cell ATP content.  相似文献   

15.
The lipoxygenase-derived eicosanoids leukotrienes and lipoxins are well defined regulators of hemeodynamics and leukocyte recruitment in inflammatory conditions. Here, we describe a novel bioaction of lipoxin A(4) (LXA(4)), namely inhibition of leukotriene D(4) (LTD(4))-induced human renal mesangial cell proliferation, and investigate the signal transduction mechanisms involved. LXA(4) blocked LTD(4)-stimulated phosphatidylinositol 3-kinase (PI 3-kinase) activity in parallel to inhibition of LTD(4)-induced mesangial cell proliferation. Screening of a human mesangial cell cDNA library revealed expression of the recently described cys-leukotriene(1)/LTD(4) receptor. LTD(4)-induced mesangial cell proliferation required both extracellular-related signal regulated kinase (erk) and PI 3-kinase activation and may involve platelet-derived growth factor receptor transactivation. LTD(4)-stimulated the MAP kinases erk and p38 via a pertussis toxin (PTX)-sensitive pathway dependent on PI 3-kinase and protein kinase C activation. On screening a cDNA library, mesangial cells were found to express the previously described LXA(4) receptor. In contrast to LTD(4), LXA(4) showed differential activation of erk and p38. LXA(4) activation of erk was insensitive to PTX and PI 3-kinase inhibition, whereas LXA(4) activation of p38 was sensitive to PTX and could be blocked by the LTD(4) receptor antagonist SKF 104353. These data suggest that LXA(4) stimulation of the MAP kinase superfamily involves two distinct receptors: one shared with LTD(4) and coupled to a PTX-sensitive G protein (G(i)) and a second coupled via an alternative G protein, such as G(q) or G(12), to erk activation. These data expand on the spectrum of LXA(4) bioactions within an inflammatory milieu.  相似文献   

16.
The precise mechanisms underlying insulin-stimulated glucose transport still require investigation. Here we assessed the effect of SB203580, an inhibitor of the p38 MAP kinase family, on insulin-stimulated glucose transport in 3T3-L1 adipocytes and L6 myotubes. We found that SB203580, but not its inactive analogue (SB202474), prevented insulin-stimulated glucose transport in both cell types with an IC50 similar to that for inhibition of p38 MAP kinase (0.6 microM). Basal glucose uptake was not affected. Moreover, SB203580 added only during the transport assay did not inhibit basal or insulin-stimulated transport. SB203580 did not inhibit insulin-stimulated translocation of the glucose transporters GLUT1 or GLUT4 in 3T3-L1 adipocytes as assessed by immunoblotting of subcellular fractions or by immunofluorescence of membrane lawns. L6 muscle cells expressing GLUT4 tagged on an extracellular domain with a Myc epitope (GLUT4myc) were used to assess the functional insertion of GLUT4 into the plasma membrane. SB203580 did not affect the insulin-induced gain in GLUT4myc exposure at the cell surface but largely reduced the stimulation of glucose uptake. SB203580 had no effect on insulin-dependent insulin receptor substrate-1 phosphorylation, association of the p85 subunit of phosphatidylinositol 3-kinase with insulin receptor substrate-1, nor on phosphatidylinositol 3-kinase, Akt1, Akt2, or Akt3 activities in 3T3-L1 adipocytes. In conclusion, in the presence of SB203580, insulin caused normal translocation and cell surface membrane insertion of glucose transporters without stimulating glucose transport. We propose that insulin stimulates two independent signals contributing to stimulation of glucose transport: phosphatidylinositol 3-kinase leads to glucose transporter translocation and a pathway involving p38 MAP kinase leads to activation of the recruited glucose transporter at the membrane.  相似文献   

17.
18.
In the present study, we identified novel negative cross-talk between the angiotensin II subtype 2 (AT2) receptor and insulin receptor signaling in the regulation of phosphoinositide 3-kinase (PI3K), Akt, and apoptosis in rat pheochromocytoma cell line, PC12W cells, which exclusively express AT2 receptor. We demonstrated that insulin-mediated insulin receptor substrate (IRS)-2-associated PI3K activity was inhibited by AT2 receptor stimulation, whereas IRS-1-associated PI3K activity was not significantly influenced. AT2 receptor stimulation did not change insulin-induced tyrosine phosphorylation of IRS-2 or its association with the p85alpha subunit of PI3K, but led to a significant reduction of insulin-induced p85alpha phosphorylation. AT2 receptor stimulation increased the association of a protein tyrosine phosphatase, SHP-1, with IRS-2. Moreover, we demonstrated that AT2 receptor stimulation inhibited insulin-induced Akt phosphorylation and that insulin-mediated antiapoptotic effect was also blocked by AT2 receptor activation. Overexpression of a catalytically inactive dominant negative SHP-1 markedly attenuated the AT2 receptor- mediated inhibition of IRS-2-associated PI3K activity, Akt phosphorylation, and antiapoptotic effect induced by insulin. Taken together, these results indicate that AT2 receptor-mediated activation of SHP-1 and the consequent inhibition IRS-2-associated PI3K activity contributed at least partly to the inhibition of Akt phosphorylation, thereby inducing apoptosis.  相似文献   

19.
The pleiotropic effects of the Kit receptor system are mediated by Kit-Ligand (KL) induced receptor autophosphorylation and its association with and activation of distinct second messengers, including phosphatidylinositol 3'-kinase (PI3-kinase), p21ras and mitogen-activated protein kinase (MAPK). To define the role of PI3-kinase, p21ras and MAPK in Kit-mediated cell proliferation, survival and adhesion in bone marrow-derived mast cells (BMMC), mutant Kit receptors were expressed in Wsh/Wsh BMMC lacking endogenous c-kit expression. The introduction of both murine Kit(S) and KitL (isoform containing a four amino acid insert) into Wsh/Wsh BMMC restored KL-induced proliferation, survival and adhesion to fibronectin, as well as activation of PI3-kinase, p21ras and MAPK, and induced expression of c-fos, junB, c-myc and c-myb mRNA. Substitution of tyrosine 719 in the kinase insert with phenylalanine (Y719F) abolished PI3-kinase activation, diminished c-fos and junB induction, and impaired KL-induced adhesion of BMMC to fibronectin. In addition, the Y719F mutation had partial effects on p21ras activation, cell proliferation and survival, while MAP kinase activation was not affected. On the other hand, Y821F substitution impaired proliferation and survival without affecting PI3-kinase, p21ras and MAPK activation, and induction of c-myc, c-myb, c-fos and c-jun mRNA, while KL-induced cell adhesion to fibronectin remained intact. In agreement with a role for PI3-kinase in Kit-mediated cell adhesion, wortmannin blocked Kit-mediated cell adhesion at concentrations known to specifically inhibit PI3-kinase. We conclude, that association of Kit with p85PI3-K, and thus with PI3-kinase activity, is necessary for a full mitogenic as well as adhesive response in mast cells. In contrast, tyrosine 821 is essential for Kit-mediated mitogenesis and survival, but not cell adhesion.  相似文献   

20.
Class IA phosphoinositide (PI) 3-kinase is composed of a p110 catalytic subunit and a p85 regulatory subunit and plays a pivotal role in insulin signaling. To explore the physiological roles of two major regulatory isoforms, p85 alpha and p85 beta, we have established brown adipose cell lines with disruption of the Pik3r1 or Pik3r2 gene. Pik3r1-/- (p85 alpha-/-) cells show a 70% reduction of p85 protein and a parallel reduction of p110. These cells have a 50% decrease in PI 3-kinase activity and a 30% decrease in Akt activity, leading to decreased insulin-induced glucose uptake and anti-apoptosis. Pik3r2-/- (p85 beta-/-) cells show a 25% reduction of p85 protein but normal levels of p85-p110 and PI 3-kinase activity, supporting the fact that p85 is more abundant than p110 in wild type. p85 beta-/- cells, however, exhibit significantly increased insulin-induced Akt activation, leading to increased anti-apoptosis. Reconstitution experiments suggest that the discrepancy between PI 3-kinase activity and Akt activity is at least in part due to the p85-dependent negative regulation of downstream signaling of PI 3-kinase. Indeed, both p85 alpha-/- cells and p85 beta-/- cells exhibit significantly increased insulin-induced glycogen synthase activation. p85 alpha-/- cells show decreased insulin-stimulated Jun N-terminal kinase activity, which is restored by expression of p85 alpha, p85 beta, or a p85 mutant that does not bind to p110, indicating the existence of p85-dependent, but PI 3-kinase-independent, signaling pathway. Furthermore, a reduction of p85 beta specifically increases insulin receptor substrate-2 phosphorylation. Thus, p85 alpha and p85 beta modulate PI 3-kinase-dependent signaling by multiple mechanisms and transmit signals independent of PI 3-kinase activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号