首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complications of chemotherapy, such as appearance of multidrug resistance, have persuaded researchers to consider phage therapy as a new method to combat bacterial infections. In vitro experiments were performed to assess the therapeutic value of genetically modified phages for controlling gastrointestinal Escherichia coli O157:H7 cells in Luria–Bertani (LB) media and contaminated cow milk. We constructed a modified nonreplicating M13-derived phage expressing a lethal catabolite gene activator protein (CAP) that is a Glu181Gln mutant of CAP. The modified phagemid was propagated in the lethal CAP-resistant strain XA3DII. Time–kill assay experiments showed a considerable reduction in the number of surviving bacteria in both LB media and contaminated cow milk. Our further study using other test strains demonstrated that the host range of lethal phage is limited to E. coli strains that produce pili. This study provides a possible strategy for the exploitation of genetically engineered nonlytic phages as bactericidal agents by minimizing the risk of release of progeny phages and endotoxins into the environment. The phage was engineered to remain lethal to its bacterial target, but incapable of replicating therein. Furthermore, the addition of an inducer to express the lethal protein is not required.  相似文献   

2.
A novel bacteriophage protection system for Lactococcus lactis based on a genetic trap, in which a strictly phage-inducible promoter isolated from the lytic phage phi31 is used to activate a bacterial suicide system after infection, was developed. The lethal gene of the suicide system consists of the three-gene restriction cassette LlaIR+, which is lethal across a wide range of gram-positive bacteria. The phage-inducible trigger promoter (phi31P) and the LlaIR+ restriction cassette were cloned in Escherichia coli on a high-copy-number replicon to generate pTRK414H. Restriction activity was not apparent in E. coli or L. lactis prior to phage infection. In phage challenges of L. lactis(pTRK414H) with phi31, the efficiency of plaquing was lowered to 10(-4) and accompanied by a fourfold reduction in burst size. Center-of-infection assays revealed that only 15% of infected cells released progeny phage. In addition to phage phi31, the phi31P/LlaIR+ suicide cassette also inhibited four phi31-derived recombinant phages at levels at least 10-fold greater than that of phi31. The phi31P/LlaIR+-based suicide system is a genetically engineered form of abortive infection that traps and eliminates phages potentially evolving in fermentation environments by destroying the phage genome and killing the propagation host. This type of phage-triggered suicide system could be designed for any bacterium-phage combination, given a universal lethal gene and an inducible promoter which is triggered by the infecting bacteriophage.  相似文献   

3.
由于存在基因工程微生物(GEMs)不受控制地在环境中释放的风险, 利用GEMs的生物降解能力治理环境污染的方法受到了限制。在大肠杆菌JM109中构建了一个受环境污染物调控的细菌遏制系统, 该系统是由杀伤元件和调控元件组成的双质粒体系, 使细菌的存活受环境中水杨酸盐浓度的调控。当培养基含水杨酸盐时, 阻遏蛋白LacI合成, 阻止自杀基因gef表达, 细菌快速繁殖; 当水杨酸盐不存在时, 自杀基因gef的表达导致细胞杀伤, 菌体大量死亡。该遏制系统可作为模型用于具有生物修复功能的基因工程菌的构建。  相似文献   

4.
D L Mielke  M Russel 《Gene》1992,118(1):93-95
The TnphoA transposon constructed by Manoil and Beckwith [Proc. Natl. Acad. Sci. USA 82 (1985) 8129-8133] has been modified to permit easy isolation of single-stranded (ss) DNA of target plasmids. The intergenic region (IG) of filamentous phage f1, which consists of the phage origin of replication and packaging signal, was inserted into a nonessential region of TnphoA. This modified transposon should be useful for the analysis of genes cloned in plasmids that lack a filamentous phage IG. Transposition of TnphoA-IG into a plasmid carries the IG with it; subsequently, after infection with a filamentous helper phage, ss plasmid DNA suitable for sequence analysis and useful for oligodeoxyribonucleotide-mediated mutagenesis of TnphoA-generated fusions can be isolated. The utility of TnphoA-IG was confirmed by analysis of 'blue hops' into the bla (encoding beta-lactamase) and pspE (encoding phage shock protein) genes whose products are secreted into the Escherichia coli periplasm.  相似文献   

5.
Since tools of modern biotechnology have become available, the most commonly applied and often discussed genetically modified organisms are genetically modified crop plants, although genetic engineering is also being used successfully in organisms other than plants, including bacteria, fungi, insects, and viruses. Many of these organisms, as with crop plants, are being engineered for applications in agriculture, to control plant insect pests or diseases. This paper reviews the genetically modified non-plant organisms that have been the subject of permit approvals for environmental release by the United States Department of Agriculture/Animal and Plant Health Inspection Service since the US began regulating genetically modified organisms. This is an indication of the breadth and progress of research in the area of non-plant genetically modified organisms. This review includes three examples of promising research on non-plant genetically modified organisms for application in agriculture: (1) insects for insect pest control using improved vector systems; (2) fungal pathogens of insects to control insect pests; and (3) virus for use as transient-expression vectors for disease control in plants.  相似文献   

6.
Traditional technology of cell disruption has become one of the bottlenecks restricting the industrialization of genetic engineering products due to its high cost and low efficiency. In this study, a novel bioprocess of phage lysis coupled with salting-out extraction (SOE) was evaluated. The lysis effect of T7 phage on genetically engineered Escherichia coli expressing κ-carrageenase was investigated at different multiplicity of infection (MOI), meanwhile the phage and enzyme released into the lysate were separated by SOE. It was found that T7 phage could lyse 99.9% of host cells at MOI = 1 and release more than 90.0% of enzyme within 90 min. After phage lysis, 87.1% of T7 phage and 71.2% of κ-carrageenase could be distributed at the middle phase and the bottom phase, respectively, in the SOE system composed of 16% ammonium sulfate and 20% ethyl acetate (w/w). Furthermore, κ-carrageenase in the bottom phase could be salted out by ammonium sulfate with a yield of 40.1%. Phage lysis exhibits some advantages, such as mild operation conditions and low cost. While SOE can efficiently separate phage and intracellular products. Therefore, phage lysis coupled with SOE is expected to become a viable alternative to the classical cell disruption and intracellular product recovery.  相似文献   

7.
We have genetically modified filamentous bacteriophage to deliver genes to mammalian cells. In previous studies we showed that noncovalently attached fibroblast growth factor (FGF2) can target bacteriophage to COS-1 cells, resulting in receptor-mediated transduction with a reporter gene. Thus, bacteriophage, which normally lack tropism for mammalian cells, can be adapted for mammalian cell gene transfer. To determine the potential of using phage-mediated gene transfer as a novel display phage screening strategy, we transfected COS-1 cells with phage that were engineered to display FGF2 on their surface coat as a fusion to the minor coat protein, pIII. Immunoblot and ELISA analysis confirmed the presence of FGF2 on the phage coat. Significant transduction was obtained in COS-1 cells with the targeted FGF2-phage compared with the nontargeted parent phage. Specificity was demonstrated by successful inhibition of transduction in the presence of excess free FGF2. Having demonstrated mammalian cell transduction by phage displaying a known gene targeting ligand, it is now feasible to apply phage-mediated transduction as a screen for discovering novel ligands.  相似文献   

8.
A new temperate phage, phiBA1, was isolated from Bacillus aneurinolyticus, phiBA1 had an icosahedral head with a diameter of about 70 nm and a tail about 20 nm long and contained a circularly permuted, linear duplex DNA of about 38 x 106 daltons. This phage showed two activities: bacteriocin-like killing activity against five strains of B. aneurinolyticus and normal temperate phage activity against three other strains. phiBA1 killed sensitive cells by a single-hit process. After adsorption of phiBA1 to cells sensitive to killing, the content of intracellular ATP increased for the first 5 min and then gradually decreased. Phage DNA injected into the cell immediately after infection was degraded rapidly. Killing was also caused by heavily UV-irradiated phiBA1. Killing-resistant mutants showed normal adsorption of phiBA1 and normal injection of the DNA with its instantaneous restriction. Our results indicate that the killing action of phiBA1 is different from the phenomenon of abortive infection and suggest that the killing might be caused by a proteinaceous component of phiBA1.  相似文献   

9.
A model conditional-suicide system to control genetically engineered microorganisms able to degrade substituted benzoates is reported. The system is based on two elements. One element consists of a fusion between the promoter of the Pseudomonas putida TOL plasmid-encoded meta-cleavage pathway operon (Pm) and the lacI gene encoding Lac repressor plus xylS, coding for the positive regulator of Pm. The other element carries a fusion between the Ptac promoter and the gef gene, which encodes a killing function. In the presence of XylS effectors, LacI protein is synthesized, preventing the expression of the killing function. In the absence of effectors, expression of the Ptac::gef cassette is no longer prevented and a high rate of cell killing is observed. The substitution of XylS for XylSthr45, a mutant regulator with altered effector specificity and increased affinity for benzoates, allows the control of populations able to degrade a wider range of benzoates at micromolar substrate concentrations. Given the wide effector specificity of the key regulators, the wild-type and mutant XylS proteins, the system should allow the control of populations able to metabolize benzoate; methyl-, dimethyl-, chloro-, dichloro-, ethyl-, and methoxybenzoates; salicylate; and methyl- and chlorosalicylates. A small population of genetically engineered microorganisms became Gef resistant; however, the mechanism of such survival remains unknown.  相似文献   

10.
Bacterial cancer therapy relies on the fact that several bacterial species are capable of targeting tumor tissue and that bacteria can be genetically engineered to selectively deliver therapeutic proteins of interest to the targeted tumors. However, the challenge of bacterial cancer therapy is the release of the therapeutic proteins from the bacteria and entry of the proteins into tumor cells. This study employed an attenuated Salmonella typhimurium to selectively deliver the mitochondrial targeting domain of Noxa (MTD) as a potential therapeutic cargo protein, and examined its anti-cancer effect. To release MTD from the bacteria, a novel bacterial lysis system of phage origin was deployed. To facilitate the entry of MTD into the tumor cells, the MTD was fused to DS4.3, a novel cell-penetrating peptide (CPP) derived from a voltage-gated potassium channel (Kv2.1). The gene encoding DS4.3-MTD and the phage lysis genes were placed under the control of PBAD, a promoter activated by L-arabinose. We demonstrated that DS4.3-MTD chimeric molecules expressed by the Salmonellae were anti-tumoral in cultured tumor cells and in mice with CT26 colon carcinoma.  相似文献   

11.
Use of genetically modified microorganisms (GEMs) for pollution abatement has been limited because of risks associated with their release in the environment. Recent developments in the area of recombinant DNA technologies have paved the way for conceptualizing "suicidal genetically engineered microorganisms" (S-GEMS) to minimize such anticipated hazards and to achieve efficient and safer bioremediation of contaminated sites. Our strategy of designing a novel S-GEM is based on the knowledge of killer-anti-killer gene(s) that would be susceptible to programmed cell death after detoxification of any given contaminated site(s).  相似文献   

12.
AIMS: The effect of phage concentration on the activity of adenylate kinase (AK) released from the cells lysed during infection was investigated in order to optimize a bioluminescent phage-mediated method for bacterial enumeration. METHODS AND RESULTS: The number of bacteria lysed by phages specific to Salmonella enteritidis and E. coli was determined using a bioluminescent method for the detection of AK released. In order to optimize the assay, the effect of phage concentration and time of infection on the amount of AK released was investigated. The release of AK was greatest at a multiplicity of infection (moi) of 10-100. CONCLUSION: The amount of AK released from Salmonella enteritidis and E. coli G2-2 cells by specific phages, SJ2 and AT20, respectively, depended on the type of bacteria, the stage of growth, the nature of phage, moi and time. SIGNIFICANCE AND IMPACT OF THE STUDY: An assay is described which allows detection of E. coli and Salmonella Enteritidis within 2 h at levels of 103 cfu ml-1.  相似文献   

13.
Locally adapted residents present a formidable barrier to invasion . One solution for invaders is to kill residents . Here, we explore the comparative ecological dynamics of two distinct microbial mechanisms of killing competitors, via the release of chemicals (e.g., bacteriocins ) and via the release of parasites (e.g., temperate phage ). We compared the short-term population dynamics of susceptible E. coli K12 and isogenic carriers of phage varphi80 in experimental cultures to that anticipated by mathematical models using independently derived experimental parameters. Whereas phages are a direct burden to their carriers because of probabilistic host lysis, by killing competitor bacteria they can indirectly benefit bacterial kin made immune by carrying isogenic phage. This is similar to previously described bacteriocin-mediated effects. However, unlike chemical killing, viable phage trigger an epidemic among susceptible competitors, which become factories producing more phage. Amplification makes phage carriers able to invade well-mixed susceptibles even faster when rare, whereas chemical killers can only win in a well-mixed environment when sufficiently abundant. We demonstrate that for plausible parameters, the release of chemical toxins is superior as a resident strategy to repel invasions, whereas the release of temperate phage is superior as a strategy of invasion.  相似文献   

14.
In the past few decades, increased awareness of environmental pollution has led to the exploitation of microbial metabolic potential in the construction of several genetically engineered microorganisms (GEMs) for bioremediation purposes. At the same time, environmental concerns and regulatory constraints have limited the in situ application of GEMs, the ultimate objective behind their development. In order to address the anticipated risks due to the uncontrolled survival/dispersal of GEMs or recombinant plasmids into the environment, some attempts have been made to construct systems that would contain the released organisms. This article discusses the designing of safer genetically engineered organisms for environmental release with specific emphasis on the use of bacterial plasmid addiction systems to limit their survival thus minimizing the anticipated risk. We also conceptualize a novel strategy to construct "Suicidal Genetically Engineered Microorganisms (SGEMs)" by exploring/combining the knowledge of different plasmid addiction systems (such as antisense RNA-regulated plasmid addiction, proteic plasmid addiction etc.) and inducible degradative operons of bacteria.  相似文献   

15.
Epstein-Barr virus (EBV) is a herpesvirus commonly associated with several malignancies, particularly in immunocompromised hosts. As a strategy for stimulating immunity against EBV for the treatment of EBV-associated tumors, we have genetically engineered dendritic cells (DC) to express EBV antigens, such as latent membrane protein 2B (LMP2B), using recombinant adenovirus vectors. CD8(+) T lymphocytes from HLA-A2.1(+), EBV-seropositive healthy donors were cultured with autologous DC infected with recombinant adenovirus vector AdEGFP, encoding an enhanced green fluorescent protein (EGFP), or AdLMP2B at a multiplicity of infection of 250. After 48 h, >95% of the DC were positive for EGFP expression as assessed by fluorescence-activated cell sorting analysis, indicating efficient gene transfer. AdLMP2-transduced DC were used to stimulate CD8(+) T cells. Responder CD8(+) T cells were tested for gamma interferon (IFN-gamma) release by enzyme-linked spot (ELISPOT) assay and cytotoxic activity. Prior to in vitro stimulation, the frequencies of T-cells directed against two HLA-A2-presented LMP2 peptides (LMP2 329-337 and LMP2 426-434) were very low as assessed by IFN-gamma spot formation (T-cell frequency, <0.003%). IFN-gamma ELISPOT assays performed at day 14 showed a significant (2-log) increase of the day 0 frequency of T cells reactive against the LMP2 329-337 peptide, from 0.003 to 0.3 (P < 0.001). Moreover, specific cytolytic activity was observed against the autologous EBV B-lymphoblastoid cell lines after 21 days of stimulation of T-cell responders with AdLMP2-transduced DC (P < 0.01). In summary, autologous mature DC genetically modified with an adenovirus encoding EBV antigens stimulate the generation of EBV-specific CD8(+) effector T cells in vitro, supporting the potential application of EBV-based adenovirus vector vaccination for the immunotherapy of the EBV-associated malignancies.  相似文献   

16.
A rapid, sensitive, and convenient method for detecting a specific bacterium was developed by using a GFP phage. Here we describe a model system that utilizes the temperate Escherichia coli-restricted bacteriophage lambda, which was genetically modified to express a reporter gene for GFP to identify the colon bacillus E. coli in the specimen. E. coli infected with GFP phage was detected by GFP fluorescence after 4-6 hr of incubation. The results show that a few bacteria in a specimen can be detected under fluorescence microscopy equipped with a sensitive cooled CCD camera. When E. coli and Mycobacterium smegmatis were mixed in a solution containing GFP phage, only E. coli was infected, indicating the specificity of this method. The method has the following advantages: 1) Bacteria from biological samples need not be purified unless they contain fluorescent impurities; 2) The infection of GFP phage to bacteria is specific; 3) The fluorescence of GFP within infected bacteria enables highly sensitive detection; 4) Exogenous substrates and cofactors are not required for fluorescence. Therefore this method is suitable for any phage-bacterium system when bacteria-specific phages are available.  相似文献   

17.
A mutant of Streptococcus cremoris strain ML1 was isolated based on its resistance to acriflavine. The mutant strain showed resistance to the growth of virulent bacteriophages to which the parental strain was sensitive whereas it became sensitive to a number of other virulent phages to which the parental strain was resistant. At the same time, infection of the mutant strain by another bacteriophage sc607 resulted in killing of cells without production of progeny phages. The phage adsorption appeared normal, suggesting that the killing was a postadsorption event. Such killing of bacterial cells was prevented by chloramphenicol treatment, indicating that involvement of some protein either synthesized by phage or phage-induced cellular protein. Synthesis of ribonucleic acid was abruptly terminated after infection of the mutant strain by phage sc607 but not of the parental strain. The alteration of host specificity in the mutant to different lytic bacteriophages and especially abortive infection by phage sc607 resembles the prophage-mediated interference observed in other bacteria.  相似文献   

18.
AIMS: To determine the mechanisms of Bacillus subtilis spore killing by and resistance to aqueous ozone. METHODS AND RESULTS: Killing of B. subtilis spores by aqueous ozone was not due to damage to the spore's DNA, as wild-type spores were not mutagenized by ozone and wild-type and recA spores exhibited very similar ozone sensitivity. Spores (termed alpha-beta-) lacking the two major DNA protective alpha/beta-type small, acid-soluble spore proteins exhibited decreased ozone resistance but were also not mutagenized by ozone, and alpha-beta- and alpha-beta-recA spores exhibited identical ozone sensitivity. Killing of spores by ozone was greatly increased if spores were chemically decoated or carried a mutation in a gene encoding a protein essential for assembly of the spore coat. Ozone killing did not cause release of the spore core's large depot of dipicolinic acid (DPA), but these killed spores released all of their DPA after a subsequent normally sublethal heat treatment and also released DPA much more readily when germinated in dodecylamine than did untreated spores. However, ozone-killed spores did not germinate with either nutrients or Ca(2+)-DPA and could not be recovered by lysozyme treatment. CONCLUSIONS: Ozone does not kill spores by DNA damage, and the major factor in spore resistance to this agent appears to be the spore coat. Spore killing by ozone seems to render the spores defective in germination, perhaps because of damage to the spore's inner membrane. SIGNIFICANCE AND IMPACT OF THE STUDY: These results provide information on the mechanisms of spore killing by and resistance to ozone.  相似文献   

19.
[目的]随着合成生物学的发展,通过在细菌体内设计合成复杂、多功能的基因线路进行靶向治疗已经取得巨大进展.虽然这种使用细菌作为治疗传递系统,选择性地在体内释放有效治疗成分的方式具有极大优势,但是如何使细菌在代谢负荷增加较低的情况下有效地分泌功能蛋白并发挥作用依旧是一个难题.[方法]针对这一难题,本研究提供了一种新的策略,...  相似文献   

20.
We have engineered a system that holds potential for use as a safety switch in genetically modified yeasts. Human apoptotic factor BAX (no homolog in yeast), under the control of the FBP1 (gluconeogenesis enzyme) promoter, was conditionally expressed to induce yeast cell apoptosis after glucose depletion. Such systems might prove useful for the safe use of genetically modified organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号