首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Abstract. The effects of modification of photon flux density (PFD, 400-700 nm) on paraheliotropic leaf movement were examined in Phaseolus vulgaris L. under controlled environmental conditions. The cosine of the angle of incidence to directional PFD (cos(i)), a measure of leaf movement, was linearly and negatively related to PFD. That is, leaflets progressively oriented away from a direct light beam in response to increasing PFD. The minimum PFD causing paraheliotropic movement was approximately 25 μmol m−2 s−1. When PFD was varied, tissue temperature changed due to an altered energy balance. Since a change in pulvinus temperature can affect leaf movement, experiments were conducted to distinguish the effects of PFD signal and pulvinis temperature. Leaflets oriented to reduce incident PFD levels in response to increasing PFD (either white light or blue light) when pulvinis temperature was kept constant. From these results, we conclude that changes in PFD signals alone can control paraheliotropic leaf movements. Phaseolus vulgaris grown outdoors oriented their leaflets to face towards the sun in the morning and again in late afternoon, but avoided the sun's direct rays at midday. This diurnal pattern of paraheliotropic leaf movements can be explained on the basis of known paraheliotropic movements in response to PFD and air temperature.  相似文献   

2.
The main objective of the present work was to examine the effects of the red:far-red ratio (R:FR) prevailing during leaf development on the photosynthetic capacity of mature leaves. Plants of Phaseolus vulgaris L. cv. Balin de Albenga were grown from time of emergence in a controlled environment room, 25 ± 3°C, 12-h photoperiod, with different light treatments:a) high photosynthetic photon flux density (PPFD) = 800 μmol m−1 s−1+ high R:FR= 1.3;b) low PPFD= 300 μmol m−2 s−1+ high R:FR= 1.3; c) high PPFD=800 μmol m−2 s−1+ low R:FR= 0.7; d) low PPFD= 300 μmol m−2s−1+ low R:FR=0.7. With an R:FR ratio of 1.3, a decrease in irradiance during leaf growth reduced photosynthesis when measured at moderate to high PPFD; but when measured at low PPFD, leaves expanded under low irradiance actually had photosynthesis rates higher than those of leaves grown in high irradiance. A low R:FR ratio during development reduced the photosynthetic capacity of the leaves. In leaves expanded under R:FR = 0.7 and high irradiance photosynthesis was reduced by 42 to 89%, depending on the PPFD at which measurements were made, whereas for leaves developed at R:FR = 0.7 and low irradiance photosynthesis decreased by 21 to 24%, compared to leaves under R:FR = 1.3 and similar irradiance. The reduced photosynthetic capacity under R:FR = 0.7 and high irradiance. In natural environments, leaves may experience low R:FR conditions temporarily during their development, and this may affect their future photosynthetic capacity in full sunlight.  相似文献   

3.
4.
The fate of nitrate and nitrogen-15 was followed during the apparent induction phase (6h) for nitrate uptake by N-depleted dwarf bean (Phaseolus vulgaris L. ev. Witte Krombek). Experiments were done with intact plants and with detached root systems. Qualitatively and quantitatively, xylem exudation from detached roots was a bad estimate of the export of NO?3 or NO?3-15N from roots of intact plants. In vivo nitrate reductase activity (NRA) agreed well with in situ reduction, calculated as the difference between uptake and accumulation in whole plants, provided NRA was assayed with merely endogenous nitrate as substrate (‘actual’ NRA). The majority (75%) of the entering nitrate remained unmetabolized. Both nitrate reduction and nitrate accumulation occurred predominantly in the root system. Some (< 25%) of the root-reduced nitrate-N was translocated to the shoot. Nitrate uptake occurred against the concentration gradient between medium and root cells, and probably against the gradient of the electro-chemical potential of nitrate. Part of the energy expended for NO?3 absorption came from the tops, since decapitation and ringing at the stem base restricted nitrate uptake.  相似文献   

5.
Isoprene is the primary biogenic hydrocarbon emitted from temperate deciduous forest ecosystems. The effects of varying photon flux density (PFD) and nitrogen growth regimes on rates of isoprene emission and net photosynthesis in potted aspen and white oak trees are reported. In both aspen and oak trees, whether rates were expressed on a leaf area or dry mass basis, (1) growth at higher PFD resulted in significantly higher rates of isoprene emission, than growth at lower PFD, (2) there is a significant positive relationship between isoprene emission rate and leaf nitrogen concentration in both sun and shade trees, and (3) there is a significant positive correlation between isoprene emission rate and photosynthetic rate in both sun and shade trees. The greater capacity for isoprene emission in sun leaves was due to both higher leaf mass per unit area and differences in the biochemical and/or physiological properties that influence isoprene emission. Positive correlations between isoprene emission rate and leaf nitrogen concentration support the existence of mechanisms that link leaf nitrogen status to isoprene synthase activity. Positive correlations between isoprene emission rate and photosynthesis rate support previous hypotheses that isoprene emission plays a role in protecting photosynthetic mechanisms during stress.  相似文献   

6.
Bean ( Phaseolus vulgaris L. cv. Golden Saxa) plants were grown under low artificial light or under natural daylight. The rate of net photosynthesis (PN) was measured at: CO2 partial pressure, p(CO2), of 0.03, 0.09 or 0.15 kPa; O2 partial pressure, p(O2), of 2, 21 or 31 kPa and at light intensities of 350 or 1000 μmol m−2 s−1 (photosynthetically active radiation). In plants which had been grown under natural light, stimulation of PN at 21 kPa p(O2) was found only at elevated p(CO2) and high light. It is proposed that this phenomenon is dependent on a high capacity of the photosynthetic apparatus to regenerate ribulose 1.5-bisphosphate.  相似文献   

7.
Amino compounds (1 mM, pH 5) were given prior to, together with, or after the addition of nitrate to study their effect on nitrate uptake and in vivo nitrate reductase activity (NRA) in roots of Phaseolus vulgaris. The effect of amino compounds varied with the amino species, the nitrate status of the plant (induced vs uninduced) and the aspect of nitrate utilization. Cysteine inhibited the nitrate uptake rate and root NRA under all conditions tested. NRA in uninduced roots was stimulated by tryptophan, and arginine inhibited NRA under all conditions tested. Uptake was inhibited by aspartate and glutamate and stimulated by leucine when these amino compounds were given prior to or after completion of the apparent induction of nitrate uptake. In the presence of β-alanine and tryptophan, induction of uptake was accelerated.  相似文献   

8.
A structural gene encoding nitrate reductase (NR) in bean ( Phaseolus vulgaris ) has been cloned and sequenced. The NR gene encodes a protein of 890 amino acids with a molecular mass of 100 kDa. Comparison to the other known NR gene from bean reveals 76% amino acid identity and comparison to NRs from other species shows amino acid identities ranging from 67 to 77%. At three positions the amino acid sequence displays differences from residues conserved in all other known NR proteins. The coding sequence is interrupted by four introns. Three of them are located at conserved positions in the region encoding the molybdenum cofactor-binding domain. The fourth intron is located in the hinge region between the heme and the FAD domain. This is the only example in which more than three introns have been found in a higher plant NR gene. The mRNA cap site was identified as an adenosine 79 nucleotides (nt) upstream of the ATG translation start codon. Northern analysis shows that the gene is nitrate inducible and highly expressed in trifoliolate leaves of 20-day-old bean plants and only weakly expressed in roots. The gene is also induced by light and sucrose in leaves of dark-adapted plants. The mRNA displays diurnal oscillation under the control of a circadian rhythm. Putative conserved GATA motifs in the promoter are discussed.  相似文献   

9.
Spatial variation in photosynthetic photon flux density (PPFD) was investigated in detail at different heights within the canopy of aMiscanthus sinensis grassland to evaluate the light environment of microsites for establishment of heliophilic tree seedlings. Highly heterogeneous patterns of light distribution were revealed within the apparently uniform grass canopies, especially under direct light. The frequency distribution patterns of relative PPFD (RPFD) were compared among different solar and sky conditions. With increasing height in the canopy, the mean RPFD value and standard deviation (SD) increased, while the skewness and kurtosis of the distribution decreased. The mean RPFD and SD were higher, especially at higher solar elevation angles, under direct light than those under diffuse light conditions. The frequency distribution of RPFD was more platykurtic under direct light and at higher solar elevation angles.  相似文献   

10.
The effects of pre-treatment of salicylic acid (SA) and pathogen inoculation, Rhizoctonia solani on proline accumulation, and enzymes activities were investigated in green bean leaves and roots. The plants were grown in greenhouse conditions, and were soil drenched with SA treatments, with and without pathogen inoculation. It was observed that the highest level of free proline accumulation in leaves was in Rhizoctonia?+?400?μM SA treatment, followed by Rhizoctonia?+?200?μM SA treatment. When comparing free proline content in leaves and roots, treated with SA and Rhizoctonia?+?SA, to their controls, the accumulation levels in Rhizoctonia?+?400?μM SA treatments were significantly higher than controls. When the enzyme activities with Rhizoctonia?+?SA treatment were compared to their solely applied SA treatments, the levels of β-1,4-glucanase and chitinase activities were lower than SA treatments alone. However, the free proline accumulation in leaves was higher in Rhizoctonia?+?400?μM SA treatment than in sole SA treatments.  相似文献   

11.
The objective of the present work was to determine what impact extremely high nitrogen dosages would have on proline metabolism in order to use this amino acid as a bioindicator of N status of green bean plants (Phaseolus vulgaris L. cv. Strike). In this effort, we identified the most favourable pathway of proline synthesis under our experimental conditions. The N was applied to the nutrient solution in the form of NH4NO3 at 5.4 mmol/L (N1, optimal level), 11.6 mmol/L (N2), 17.4 mmol/L (N3), and 23.2 mmol/L (N4). Our results indicate that the application of high N dosages inPhaseolus is characterized by the accumulation of NO3, NH4+ and proline in root and foliar organs. However, although the enzymes in charge of proline biosynthesis, ornithine-δ-aminotransferase (OAT, EC 2.6.1.13) and Δ1-pyrroline-5-carboxylate synthetase (P5CS, EC 2.7.2.11/1.2.2.41) vary in behaviour depending on the N status, in our experiment, this amino acid appears to be synthesized mainly by the enzyme ornithine-δ-aminotransferase. This suggests predominance of the ornithine pathway over the glutamine pathway. Finally, under our experimental conditions, proline can be defined as a good indicator of N excess of green bean plants.  相似文献   

12.
13.
Effects of atmospheric carbon dioxide enrichment on nitrogen metabolism were studied in barley primary leaves (Hordeum vulgare L. cv. Brant). Seedlings were grown in chambers under ambient (36 Pa) and elevated (100 Pa) carbon dioxide and were fertilized daily with complete nutrient solution providing 12 millimolar nitrate and 2.5 millimolar ammonium. Foliar nitrate and ammonium were 27% and 42% lower (P ≤ 0.01) in the elevated compared to ambient carbon dioxide treatments, respectively. Enhanced carbon dioxide affected leaf ammonium levels by inhibiting photorespiration. Diurnal variations of total nitrate were not observed in either treatment. Total and Mg2+inhibited nitrate reductase activities per gram fresh weight were slightly lower (P ≤ 0.01) in enhanced compared to ambient carbon dioxide between 8 and 15 DAS. Diurnal variations of total nitrate reductase activity in barley primary leaves were similar in either treatment except between 7 and 10 h of the photoperiod when enzyme activities were decreased (P ≤ 0.05) by carbon dioxide enrichment. Glutamate was similar and glutamine levels were increased by carbon dioxide enrichment between 8 and 13 DAS. However, both glutamate and glutamine were negatively impacted by elevated carbon dioxide when leaf yellowing was observed 15 and 17 DAS. The above findings showed that carbon dioxide enrichment produced only slight modifications in leaf nitrogen metabolism and that the chlorosis of barley primary leaves observed under enhanced carbon dioxide was probably not attributable to a nutritionally induced nitrogen limitation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
The characteristics of sucrose-phosphate synthase (SPS; EC 2.4.1.14) activity in leaves of Phaseolus vulgaris L. cv. Linden was studied in plants subjected to water stress and various CO2 and light treatments. When water was withheld for 3 days causing mild water stress (–0.9 MPa), the activity of SPS measured in crude extracts was reduced ca 50%. The effect of water stress was most evident when the enzyme was assayed with saturating amounts of its substrates fructose 6-phosphate and UDP glucose. Placing a water-stressed plant in an atmosphere containing 1% CO2 reversed the effect of water stress on SPS activity over 5 h even though the water stress was not relieved. Holding unstressed leaves in low CO2 partial pressure reduced the extractable activity of SPS. After 1 h of low CO2 treatment the effect of low CO2 could be reversed by 20 min of 5% CO2. However, after 24 h of low CO2 treatment, less SPS activity was recovered by the 20 min treatment. The cytosolic protein synthesis inhibitor cycloheximide prevented the slow recovery of SPS activity, but did not affect the rapid recovery of SPS. We conclude that the effect of water stress on SPS activity was a consequence of the inhibition of photosynthesis caused by stomatal closure. Responses of Phaseolus vulgaris SPS to light were similar to the response to low CO2 in that the effects were most pronounced under Vmax assay conditions. This is the first report of this type of light response of SPS in a dicotyledonous species.  相似文献   

15.
Birch ( Betula pendula Roth.) was investigated under steady-state nutrition and growth at different incident photon flux densities (PFD) and different relative addition rates of nitrogen. PFD had a strong influence on the relative growth rate at optimum nutrition and on the nitrogen productivity (growth rate per unit of nitrogen) but little effect on the formal relationships between nitrogen and growth, i.e. PFD and nitrogen nutrition are orthogonal growth factors. At a given suboptimum nitrogen (the same distance from optimum), increased PFD increased the relative growth rate and, therefore, the relative uptake rate and the required relative addition rate in accordance with the theoretical equality between these three parameters at steady-state nutrition. Correspondingly, at a given suboptimum relative addition rate, increased PFD decreased nitrogen status (larger distance from optimum) at an unchanged relative growth rate. Nutrient uptake rate, dry matter content, and partitioning of biomass and nutrients are strongly influenced by nitrogen status. PFD influences these characteristics, but only to an extent corresponding to its effect on the nitrogen status. The influence of PDF on the relative growth rate at optimum and on nitrogen productivity is well described by hyperbolic relationships, similar to reported PFD/photosynthesis relationships. These expressions for plant growth as well as the productivities of leaf area and quantum appear to be valuable characteristics of plant responses to light and nutrition. Although the calculated PFD/growth relationships indicate saturation at high values of PFD, a more realistic estimate of PFD at which saturation occurs is about 30 mol m−2 day−1, where the highest relative growth rate and nitrogen productivity were experimentally determined. No significant effect was observed because of day length differences between the present and previous experiments.  相似文献   

16.
It is important to quantify and understand the consequences of elevated temperature and carbon dioxide (CO2) on reproductive processes and yield to develop suitable agronomic or genetic management for future climates. The objectives of this research work were (a) to quantify the effects of elevated temperature and CO2 on photosynthesis, pollen production, pollen viability, seed‐set, seed number, seeds per pod, seed size, seed yield and dry matter production of kidney bean and (b) to determine if deleterious effects of high temperature on reproductive processes and yield could be compensated by enhanced photosynthesis at elevated CO2 levels. Red kidney bean cv. Montcalm was grown in controlled environments at day/night temperatures ranging from 28/18 to 40/30 °C under ambient (350 µmol mol?1) or elevated (700 µmol mol?1) CO2 levels. There were strong negative relations between temperature over a range of 28/18–40/30 °C and seed‐set (slope, ? 6.5% °C?1) and seed number per pod (? 0.34 °C?1) under both ambient and elevated CO2 levels. Exposure to temperature > 28/18 °C also reduced photosynthesis (? 0.3 and ? 0.9 µmol m?2 s?1 °C?1), seed number (? 2.3 and ? 3.3 °C?1) and seed yield (? 1.1 and ? 1.5 g plant?1 °C?1), at both the CO2 levels (ambient and elevated, respectively). Reduced seed‐set and seed number at high temperatures was primarily owing to decreased pollen production and pollen viability. Elevated CO2 did not affect seed size but temperature > 31/21 °C linearly reduced seed size by 0.07 g °C?1. Elevated CO2 increased photosynthesis and seed yield by approximately 50 and 24%, respectively. There was no beneficial interaction of CO2 and temperature, and CO2 enrichment did not offset the negative effects of high temperatures on reproductive processes and yield. In conclusion, even with beneficial effects of CO2 enrichment, yield losses owing to high temperature (> 34/24 °C) are likely to occur, particularly if high temperatures coincide with sensitive stages of reproductive development.  相似文献   

17.
二氧化氮(NO2)是大气氮氧化物之一,是大气气溶胶颗粒形成的主要成分,降低大气NO2浓度可减轻空气中的雾霾.大气NO2通过干沉降和湿沉降两种方式降落到植物叶片.植物吸收NO2后主要通过两种代谢途径来降低空气中NO2浓度: 一是主要在细胞质和叶绿体中利用还原酶的氮代谢途径,二是在质外体和细胞质中的歧化反应.植物吸收NO2干扰了植物正常的生长和生理代谢,包括: 植物营养和生殖生长,植物体内硝酸还原酶(NaR)活性、亚硝酸还原酶(NiR)活性、氮素吸收、光合等生理代谢过程.对目前国内外有关大气NO2影响植物生长与代谢的研究进展进行了综述,并对植物吸收NO2的生理及分子机制的未来研究方向进行了展望.  相似文献   

18.
19.
《Journal of plant physiology》2014,171(10):868-875
Gaseous nitrogen dioxide (NO2) can disturb normal plant growth and trigger complex physiological responses. NO2-induced responses are influenced by biotic or abiotic factors. In this study, we investigated the effects of exogenous sodium sulfide (Na2S, 5 mmol L−1) on epidermis and stomata related physico-chemical responses of hybrid poplar cuttings (Pouplus alba × P. berolinensis) to gaseous NO2 (4 μl 1−1) for three time periods (0, 14 and 48 h). We also investigated hydrogen sulfide (H2S), nitrate-nitrogen and nitrate reductase activity (NR) in control and Na2S treated plants. Our results showed that NO2 exposure for 48 h led to the decline of NR, maximal PSII quantum yield (Fv/Fm), net photosynthetic rate (Pn), and dark respiration rate (Rd). The maximum rate for the post-illumination carbon dioxide burst (PIB) occurred in 48-h exposed leaves 13–15 s after darkening. Moreover, NO2 exposure resulted in a significant increase in nitrogen percentage (from 0 to 33%) and a decrease in the macro and micro-elements of leaf surface. Spraying Na2S aqueous solution on the leaf surfaces significantly increased the thicknesses of palisade/spongy tissue and H2S content. Na2S pretreatment alleviated NO2-caused toxic effects as indicated by increased NR and higher values of Pn, Fv/Fm, and actual photochemical efficiency in light (ФPSII) compared with the control. Na2S pretreatment had no significant impacts on PIB-based photorespiration or elements composition of a leaf surface.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号