首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evaluation of surface chemistries for antibody microarrays   总被引:1,自引:1,他引:0  
Antibody microarrays are an emerging technology that promises to be a powerful tool for the detection of disease biomarkers. The current technology for protein microarrays has been derived primarily from DNA microarrays and is not fully characterized for use with proteins. For example, there are a myriad of surface chemistries that are commercially available for antibody microarrays, but there are no rigorous studies that compare these different surfaces. Therefore, we have used a sandwich enzyme-linked immunosorbent assay (ELISA) microarray platform to analyze 17 different commercially available slide types. Full standard curves were generated for 23 different assays. We found that this approach provides a rigorous and quantitative system for comparing the different slide types based on spot size and morphology, slide noise, spot background, lower limit of detection, and reproducibility. These studies demonstrate that the properties of the slide surface affect the activity of immobilized antibodies and the quality of data produced. Although many slide types produce useful data, glass slides coated with aldehyde silane, poly-l-lysine, or aminosilane (with or without activation with a crosslinker) consistently produce superior results in the sandwich ELISA microarray analyses we performed.  相似文献   

2.
A great need exists for the systematic generation of specific antibodies to explore the human proteome. Here, we show that antibodies specific to human proteins can be generated in a high-throughput manner involving stringent affinity purification using recombinant protein epitope signature tags (PrESTs) as immunogens and affinity-ligands. The specificity of the generated affinity reagents, here called mono-specific antibodies (msAb), were validated with a novel protein microarray assay. The success rate for 464 antibodies generated towards human proteins was more than 90% as judged by the protein array assay. The antibodies were used for parallel profiling of patient biopsies using tissue microarrays generated from 48 human tissues. Comparative analysis with well-characterized monoclonal antibodies showed identical or similar specificity and expression patterns. The results suggest that a comprehensive atlas containing extensive protein expression and subcellular localization data of the human proteome can be generated in an efficient manner with mono-specific antibodies.  相似文献   

3.
Major efforts to develop antibody microarray technology to enable global proteome analysis to be performed in a facile manner are under way. In this process, the design and the properties of the substrate will play crucial roles. In the present study, we have developed novel, highly biocompatible solid supports for microarrays, using adsorbed recombinant human single-framework antibody fragments as probes. Several silicon-based supports, including planar silicon, micro- and macroporous silicon, and nitrocellulose-coated variants thereof, were designed and evaluated in a stepwise procedure. The surfaces were scored based on biocompatibility and probe binding capacity as judged by spot morphology, signal intensities, signal to noise ratios, dynamic range, sensitivity, and reproducibility. A set of five commercially available substrates, selected to represent a set of supports providing different surface and coupling chemistries, was used as reference surfaces. The results showed that several well-performing silicon-based supports could be designed; in particular, a nitrocellulose-coated macroporous variant, MAP3-NC7, received the highest scores. In comparison, MAP3-NC7 displayed properties equal to or better than those of the reference substrates. Taken together, designed surfaces based on silicon can undoubtedly meet the requirements of the next generation of solid supports for antibody microarrays.  相似文献   

4.
Generating global protein expression profiles, including also membrane proteins, will be crucial for our understanding of biological processes in health and disease. In this study, we have expanded our antibody microarray technology platform and designed the first human recombinant antibody microarray for membrane proteins targeting crude cell lysates and tissue extracts. We have optimized all key technological parameters and successfully developed a setup for extracting, labeling and analyzing non-fractionated membrane proteomes under non-denaturing conditions. Finally, the platform was also extended and shown to be compatible with simultaneous profiling of both membrane proteins and water-soluble proteins.  相似文献   

5.
Recombinant peptide technology offers a promising means alternative to chemical synthesis and natural extraction of peptides. The bottleneck in the process of recombinant peptide production is the paucity of efficient purification protocols to eliminate heterogeneity of the desired preparation. Here, we introduce a combination strategy to facilitate purification of recombinant therapeutic peptide via native chemical ligation and chemical cleavage on a solid support. In this study, one promising therapeutic peptide called for type-2 diabetes, GLP-1(7-37), was prepared with high yield and purity without an expensive HPLC purification. Furthermore, this method is also useful for the preparation of isotopically labeled NMR peptide samples. Hopefully, this strategy combining chemical ligation with chemical cleavage on a solid support will ameliorate the production of important recombinant pharmaceutical peptides.  相似文献   

6.
Antibody-based microarray is a novel proteomic technology setting a new standard for molecular profiling of non-fractionated complex proteomes. The first generation of antibody microarrays has already demonstrated its potential for generating detailed protein expression profiles, or protein atlases, of human body fluids in health and disease, paving the way for new discoveries within the field of disease proteomics. The process of designing highly miniaturized, high-density and high-performing antibody microarray set-ups have, however, proven to be challenging. In this mini-review we discuss key technological issues that must be addressed in a cross-disciplinary manner before true global proteome analysis can be performed using antibody microarrays.  相似文献   

7.
With the advent of protein and antibody microarray technology several different coatings and protocols have been published, which may be broadly divided into two types: gel-coated surfaces and plain non-gel-coated glass or plastic surfaces, some with chemical groups attached. We have screened 11 different array surfaces of both types and compared them with respect to their detection limit, inter- and intrachip variation, and storage characteristics. Five different antibodies were immobilized onto each type of microarray support, with total protein concentrations ranging from 40 fmol to 25 amol per spot. From these results, it was seen that some antibodies were more suited for use on antibody arrays. All measurements were performed in quadruplicate, and the results revealed high signal uniformity and reproducibility of most plain glass and plastic slides. Lower detection limits were obtained with polyacrylamide-coated slides, making them more suitable for the detection of very low concentrations of antigen. All microarray coatings could be stored for a period of 8 weeks; however, improved results were seen after 2 weeks of storage. In conclusion, the results indicate the need to test each antibody to be used on an antibody array and to select the microarray coating based on experimental requirements.  相似文献   

8.
Recombinant antibody fragments consisting of variable domains can be easily produced in various host cells, but there is no universal system that can be used to purify and detect them in the free form or complexed with their antigen. Protein L (PpL) is a cell wall protein isolated from Peptostreptococcus magnus, which has been reported to interact with the V-KAPPA chain of some, but not all, antibodies. Here we grafted the V-KAPPA framework region 1 (FR1) sequence of a high-affinity PpL-binding antibody onto single-chain antibody fragments (scFvs), which have no reactivity with PpL. This substitution made it possible to purify and detect scFvs using PpL conjugates. It did not hinder scFv folding and expression in recombinant bacteria, and it did not interfere with their antigen-binding function. We also identified residue 12 as being potentially able to alter PpL binding. This study, therefore, suggests a way of engineering a PpL-binding site on any scFv without interfering with its function. This could provide a universally applicable method both for the rapid purification of functional recombinant antibody fragments and for their detection even when complexed with their antigen without requiring fusion to an epitope Flag.  相似文献   

9.
Antibody-based microarray is a novel technology with great promise in biomedicine that will provide unique means to perform global proteome analysis. In the process of designing the high-density antibody microarrays required, several critical key issues have been identified that remain to be resolved. In particular, there is a great need for specific and selective approaches enabling non-purified probes to be directly purified, orientated and coupled in a generic one-step procedure directly on the chip. In this study, we report on the successful design of affinity-tagged human recombinant single-chain fragment variable antibody fragments for improved affinity coupling in array applications. By replacing the standard single-histidine (His)(6)-tag with a consecutive double-(His)(6)-tag, the binding to Ni(2+)-nitrilotriacetic acid-coated substrates was significantly improved. Surface plasmon resonance analysis showed a significantly tighter binding with at least a threefold slower dissociation. The improved binding characteristics thus enabled non-purified probes even in the format of crude expression supernatants to be directly applied thereby eliminating the need for any time-consuming pre-purification step(s) prior to the immobilization. While the double-(His)(6)-tag probes were found to be expressed equally well as compared to the single-(His)(6)-tag probes, they displayed better long-term functional on-chip stability. Taken together, the results demonstrate the generic potential of double-(His)(6)-tag recombinant antibodies for the facile fabrication of high-density antibody microarrays.  相似文献   

10.
Peptide microarrays displaying biologically active small synthetic peptides in a high-density format provide an attractive technology to probe complex samples for the presence and/or function of protein analytes. We present a new approach for manufacturing functional peptide microarrays for molecular immune diagnostics. Our method relies on the efficiency of site-specific solution-phase coupling of biotinylated synthetic peptides to NeutrAvidin (NA) and localized microdispensing of peptide-NA-complexes onto activated glass surfaces. Antibodies are captured in a sandwich manner between surface immobilized peptide probes and fluorescence-labeled secondary antibodies. Our work includes a total of 54 peptides derived from immunodominant linear epitopes of the T7 phage capsid protein, Herpes simplex virus glycoprotein D, c-myc protein, and three domains of the Human coronavirus polymerase polyprotein and their cognate mAbs. By using spacer molecules of different type and length for NA-mediated peptide presentation, we show that the incorporation of a minimum spacer length is imperative for antibody binding, whereas the peptide immobilization direction has only secondary importance for antibody affinity and binding. We further demonstrate that the peptide array is capable of detecting low-picomolar concentrations of mAbs in buffered solutions and diluted human serum with high specificity.  相似文献   

11.
Antibody microarrays have the potential to revolutionize protein expression profiling. The intensity of specific signal produced on a feature of such an array is related to the amount of analyte that is captured from the biological mixture by the immobilized antibody (the "capture agent"). This in turn is a function of the surface density and fractional activity of the capture agents. Here we investigate how these two factors are affected by the orientation of the capture agents on the surface. We compare randomly versus specifically oriented capture agents based on both full-sized antibodies and Fab' fragments. Each comparison was performed using three different antibodies and two types of streptavidin-coated monolayer surfaces. The specific orientation of capture agents consistently increases the analyte-binding capacity of the surfaces, with up to 10-fold improvements over surfaces with randomly oriented capture agents. Surface plasmon resonance revealed a dense monolayer of Fab' fragments that are on average 90% active when specifically oriented. Randomly attached Fab's could not be packed at such a high density and generally also had a lower specific activity. These results emphasize the importance of attaching proteins to surfaces such that their binding sites are oriented toward the solution phase.  相似文献   

12.
Antibody microarrays are a developing tool for global proteomic profiling. A protocol was established that permits robust analyses of protein extracts from mammalian tissues and cells rather than body fluids. The factors optimized were buffer composition for surface blocking, blocking duration, protein handling and processing, labeling parameters like type of dye, molar ratio of label versus protein, and dye removal, as well as incubation parameters such as duration, temperature, buffer, and sample agitation.  相似文献   

13.
For laboratory techniques that require well-preserved proteins, such as 2-DE, fresh tissue must be harvested and processed as fast as possible to avoid proteolytic degradation. We describe a modified method for harvesting tissue from radical prostatectomy specimens for proteome analysis and compare it with the standard technique. Cells were scraped from cut surfaces of 11 prostate specimens. A fraction of the material was smeared on a glass slide and Giemsa stained for morphological control. The sample was collected in a medium with protease inhibitors, and the protein material was prepared for 2-DE. Filtering and Percoll centrifugation were omitted. Sample locations were noted on a specimen map. From the same area, a tissue block was harvested for comparison. The block was processed with the conventional technique including mechanical disintegration, filtering and Percoll centrifugation. Quality measures of 2-DE were similar with both methods. With the scrape sampling technique, control smears showed abundant epithelial cells and a cleaner background and processing was faster than with tissue block sampling. For proteomic analysis, the scrape sample technique has several advantages over the tissue block method.  相似文献   

14.
About 70% of newly diagnosed cases of bladder cancer are low‐stage, low‐grade, non muscle‐invasive. Standard treatment is transurethral resection. About 60% of the tumors will recur, however, and in part progress to become invasive. Therefore, surveillance cystoscopy is performed after resection. However, in the USA and Europe alone, about 54 000 new patients per year undergo repeated cystoscopies over several years, who do not experience recurrence. Analysing in a pilot study resected tumors from patients with (n = 19) and without local recurrence (n = 6) after a period of 5 years by means of an antibody microarray that targeted 724 cancer‐related proteins, we identified 255 proteins with significantly differential abundance. Most are involved in the regulation and execution of apoptosis and cell proliferation. A multivariate classifier was constructed based on 20 proteins. It facilitates the prediction of recurrence with a sensitivity of 80% and a specificity of 100%. As a measure of overall accuracy, the area under the curve value was found to be 91%. After validation in additional sample cohorts with a similarly long follow‐up, such a signature could support decision making about the stringency of surveillance or even different treatment options.  相似文献   

15.
Antibody microarrays have often had limited success in detection of low abundant proteins in complex specimens. Signal amplification systems improve this situation, but still are quite laborious and expensive. However, the issue of sensitivity is more likely a matter of kinetically appropriate microarray design as demonstrated previously. Hence, we re-examined in this study the suitability of simple and inexpensive detection approaches for highly sensitive antibody microarray analysis. N-hydroxysuccinimidyl ester (NHS)- and Universal Linkage System (ULS)-based fluorescein and biotin labels used as tags for subsequent detection with anti-fluorescein and extravidin, respectively, as well as fluorescent dyes were applied for analysis of blood plasma. Parameters modifying strongly the performance of microarray detection such as labeling conditions, incubation time, concentrations of anti-fluorescein and extravidin and extent of protein labeling were analyzed and optimized in this study. Indirect detection strategies whether based on NHS- or ULS-chemistries strongly outperformed direct fluorescent labeling and enabled detection of low abundant cytokines with many dozen-fold signal-to-noise ratios. Finally, particularly sensitive detection chemistry was applied to monitoring cytokine production of stimulated peripheral T cells. Microarray data were in accord with quantitative cytokine levels measured by ELISA and Luminex, demonstrating comparable reliability and femtomolar range sensitivity of the established microarray approach.  相似文献   

16.
High-capacity surfaces can enhance analyte-binding kinetics and be beneficial for rapid immunoassays. Site-specifically immobilized, oriented recombinant single-chain Fv (scFv) and Fab antibody fragments were compared with a conventional, nonoriented monoclonal antibody (Mab) to capture antigen from serum to solid surface in a one-step, two-site thyroid-stimulating hormone (TSH) immunoassay with a 5-min incubation time. The assay used a ready-to-use dry reagent-based concept and time-resolved fluorescent measurement. TSH binding capacities were 3.0-fold (Fab) and at least 4.1-fold (scFv) higher when recombinant antibodies were used instead of Mab. Recombinant antibody fragments also produced faster kinetics (5 vs. 45-min saturation level) than Mab: 21-25% (Mab) versus 72-83% (scFv and Fab). Analytical sensitivities of the 5-min assay were 0.09 mIU/L TSH (Fab), 0.16 mIU/L TSH (scFv), and 0.26 mIU/L TSH (Mab). Between-run variabilities were 4.2-7.9% (Fab), 4.6-17.7% (scFv), and 5.5-7.2% (Mab). The assays correlated well with the AutoDELFIA hTSH (human TSH) Ultra assay (r = 0.99, n = 109). Fab was good in all aspects of immunoassay—capacity, kinetics, sensitivity, and analytical performance. As a homogeneous, stable, and small-sized binding molecule with optimized surface-coating properties as well as reduced risk for interference by heterophilic antibodies, Fab fragment is a promising and realistic immunoreagent for the future.  相似文献   

17.
Antibody-based microarrays is a novel technology with great promise for high-throughput proteomics. The process of designing high-performing arrays has, however, turned out to be challenging. Here, we have designed the next generation of a human recombinant scFv antibody microarray platform for protein expression profiling of nonfractionated biotinylated human plasma and serum proteomes. The setup, based on black polymer Maxisorb slides interfaced with a fluorescent-based read-out system, was found to provide specific, sensitive (subpicomolar (pM) range) and reproducible means for protein profiling. Further, a chip-to-chip normalization protocol critical for comparing data generated on different chips was devised. Finally, the microarray data were found to correlate well with clinical laboratory data obtained using conventional methods, as demonstrated for a set of medium abundant (micromolar (microM) to nanomolar (nM) range) protein analytes in serum and plasma samples derived from healthy and complement-deficient individuals.  相似文献   

18.
A common problem encountered when performing large‐scale MS proteome analysis is the loss of information due to the high percentage of unassigned spectra. To determine the causes behind this loss we have analyzed the proteome of one of the smallest living bacteria that can be grown axenically, Mycoplasma pneumoniae (729 ORFs). The proteome of M. pneumoniae cells, grown in defined media, was analyzed by MS. An initial search with both Mascot and a species‐specific NCBInr database with common contaminants (NCBImpn), resulted in around 79% of the acquired spectra not having an assignment. The percentage of non‐assigned spectra was reduced to 27% after re‐analysis of the data with the PEAKS software, thereby increasing the proteome coverage of M. pneumoniae from the initial 60% to over 76%. Nonetheless, 33 413 spectra with assigned amino acid sequences could not be mapped to any NCBInr database protein sequence. Approximately, 1% of these unassigned peptides corresponded to PTMs and 4% to M. pneumoniae protein variants (deamidation and translation inaccuracies). The most abundant peptide sequence variants (Phe‐Tyr and Ala‐Ser) could be explained by alterations in the editing capacity of the corresponding tRNA synthases. About another 1% of the peptides not associated to any protein had repetitions of the same aromatic/hydrophobic amino acid at the N‐terminus, or had Arg/Lys at the C‐terminus. Thus, in a model system, we have maximized the number of assigned spectra to 73% (51 453 out of the 70 040 initial acquired spectra). All MS data have been deposited in the ProteomeXchange with identifier PXD002779 ( http://proteomecentral.proteomexchange.org/dataset/PXD002779 ).  相似文献   

19.
Affibody molecules, 58-amino acid three-helix bundle proteins directed to different targets by combinatorial engineering of staphylococcal protein A, were used as capture ligands on protein microarrays. An evaluation of slide types and immobilization strategies was performed to find suitable conditions for microarray production. Two affibody molecules, Z(Taq) and Z(IgA), binding Taq DNA polymerase and human IgA, respectively, were synthesized by solid phase peptide synthesis using an orthogonal protection scheme, allowing incorporation of selective immobilization handles. The resulting affibody variants were used for random surface immobilization (through amino groups) or oriented surface immobilization (through cysteine or biotin coupled to the side chain of Lys58). Evaluation of the immobilization techniques was carried out using both a real-time surface plasmon resonance biosensor system and a microarray system using fluorescent detection of Cy3-labeled target protein. The results from the biosensor analyses showed that directed immobilization strategies significantly improved the specific binding activity of affibody molecules. However, in the microarray system, random immobilization onto carboxymethyl dextran slides and oriented immobilization onto thiol dextran slides resulted in equally good signal intensities, whereas biotin-mediated immobilization onto streptavidin-coated slides produced slides with lower signal intensities and higher background staining. For the best slides, the limit of detection was 3 pM for IgA and 30 pM for Taq DNA polymerase.  相似文献   

20.
Extensive X-ray crystallographic studies carried out on the catalytic-subunit of protein kinase A (PKA-C) enabled the atomic characterization of inhibitor and/or substrate peptide analogues trapped at its active site. Yet, the structural and dynamic transitions of these peptides from the free to the bound state are missing. These conformational transitions are central to understanding molecular recognition and the enzymatic cycle. NMR spectroscopy allows one to study these phenomena under functionally relevant conditions. However, the amounts of isotopically labeled peptides required for this technique present prohibitive costs for solid-phase peptide synthesis. To enable NMR studies, we have optimized both expression and purification of isotopically enriched substrate/inhibitor peptides using a recombinant fusion protein system. Three of these peptides correspond to the cytoplasmic regions of the wild-type and lethal mutants of the membrane protein phospholamban, while the fourth peptide correspond to the binding epitope of the heat-stable protein kinase inhibitor (PKI5–24). The target peptides were fused to the maltose binding protein (MBP), which is further purified using a His6 tag approach. This convenient protocol allows for the purification of milligram amounts of peptides necessary for NMR analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号