共查询到20条相似文献,搜索用时 0 毫秒
1.
A molecular dynamics (MD) simulation has been performed for two sets of aminoglycoside antibiotics bound with an RNA duplex corresponding to the aminoacyl‐tRNA decoding site of the 16S rRNA to characterize the energetics and dynamics of binding for several aminoglycosides. The binding free energy, essential dynamics and hydration analysis have been conducted to characterize the dynamics' properties associated with the binding recognition between each set of antibiotics and the RNA duplex. We have built several dynamic models with reasonable binding free energies showing good correlation with the experimental data. We have also conducted a hydration analysis on some long residency water molecules detected as W8 and W49 sites around the U1406 · U1495 pair and which are found to be important in binding recognition and in causing some apparent stretch variations of this pair during the dynamic studies. In addition, we also find that the hydration sites with long residence time identified between the ring III of two 4,6‐linked antibiotics (tobramycin and kanamycin) and phosphate oxygen atoms of G1405/U1406 may be worthy of further exploration for rational drug design. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
2.
Binding thermodynamics of paromomycin,neomycin, neomycin‐dinucleotide and ‐diPNA conjugates to bacterial and human rRNA 下载免费PDF全文
Javier Alguacil Jordi Robles Clara Ràfols Elisabeth Bosch 《Journal of molecular recognition : JMR》2016,29(4):142-150
Isothermal titration calorimetry (ITC) is a powerful technique able to evaluate the energetics of target‐drug binding within the context of drug discovery. In this work, the interactions of RNAs reproducing bacterial and human ribosomal A‐site, with two well‐known antibiotic aminoglycosides, Paromomycin and Neomycin, as well as several Neomycin‐dinucleotide and ‐diPNA conjugates, have been evaluated by ITC and the corresponding thermodynamic quantities determined. The comparison of the thermodynamic data of aminoglycosides and their chemical analogues allowed to select Neomycin‐diPNA conjugates as the best candidates for antimicrobial activity. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
3.
Crystal structure of paromomycin docked into the eubacterial ribosomal decoding A site 总被引:19,自引:0,他引:19
BACKGROUND: Aminoglycoside antibiotics interfere with translation in both gram-positive and gram-negative bacteria by binding to the tRNA decoding A site of the 16S ribosomal RNA. RESULTS: Crystals of complexes between oligoribonucleotides incorporating the sequence of the ribosomal A site of Escherichia coli and the aminoglycoside paromomycin have been solved at 2.5 A resolution. Each RNA fragment contains two A sites inserted between Watson-Crick pairs. The paromomycin molecules interact in an enlarged deep groove created by two bulging and one unpaired adenines. In both sites, hydroxyl and ammonium side chains of the antibiotic form 13 direct hydrogen bonds to bases and backbone atoms of the A site. In the best-defined site, 8 water molecules mediate 12 other hydrogen bonds between the RNA and the antibiotics. Ring I of paromomycin stacks over base G1491 and forms pseudo-Watson-Crick contacts with A1408. Both the hydroxyl group and one ammonium group of ring II form direct and water-mediated hydrogen bonds to the U1495oU1406 pair. The bulging conformation of the two adenines A1492 and A1493 is stabilized by hydrogen bonds between phosphate oxygens and atoms of rings I and II. The hydrophilic sites of the bulging A1492 and A1493 contact the shallow groove of G=C pairs in a symmetrical complex. CONCLUSIONS: Water molecules participate in the binding specificity by exploiting the antibiotic hydration shell and the typical RNA water hydration patterns. The observed contacts rationalize the protection, mutation, and resistance data. The crystal packing mimics the intermolecular contacts induced by aminoglycoside binding in the ribosome. 相似文献
4.
5.
The zinc-finger antiviral protein (ZAP) is a host factor that specifically inhibits the replication of certain viruses, including murine leukemia virus, Sindbis virus and Ebola virus, by targeting the viral mRNAs for degradation. ZAP directly binds to the target viral mRNA and recruits the cellular RNA degradation machinery to degrade the RNA. No significant sequence similarity or obvious common motifs have been found in the so far identified target viral mRNAs. The minimum length of the target sequence is about 500nt long. Short workable ZAP-binding RNAs should facilitate further studies on the ZAP-RNA interaction and characterization of such RNAs may provide some insights into the underlying mechanism. In this study, we used the SELEX method to isolate ZAP-binding RNA aptamers. After 21 rounds of selection, ZAP-binding aptamers were isolated. Sequence analysis revealed that they are G-rich RNAs with predicted stem-loop structures containing conserved “GGGUGG” and “GAGGG” motifs in the loop region. Insertion of the aptamer sequence into a luciferase reporter failed to render the reporter sensitive to ZAP. However, overexpression of the aptamers modestly but significantly reduced ZAP’s antiviral activity. Substitution of the conserved motifs of the aptamers significantly impaired their ZAP-binding ability and ZAP-antagonizing activity, suggesting that the RNA sequence is important for specific interaction between ZAP and the target RNA. The aptamers identified in this report should provide useful tools to further investigate the details of the interaction between ZAP and the target RNAs. 相似文献
6.
Electronic polarizability, an important physical property of biomolecules, is currently ignored in most biomolecular calculations. Yet, it is widely believed that polarization could account for a substantial fraction of the total nonbonded energy of a system. This belief is supported by studies of small complexes in vacuum. This perception is driving the development of a new class of polarizable force fields for biomolecular calculations. However, the quantification of this term for protein-ligand complexes has never been attempted. Here we explore the polarizable nature of protein-ligand complexes in order to evaluate the importance of this effect. We introduce two indexes describing the polarizability of protein binding sites. These we apply to a large range of pharmaceutically relevant complexes. We offer a recommendation of particular complexes as test systems with which to determine the effects of polarizability and as test cases with which to test the new generation of force fields. Additionally, we provide a tabulation of the amino acid composition of these binding sites and show that composition can be specific for certain classes of proteins. We also show that the relative abundance of some amino acids is different in binding sites than elsewhere in a protein's structure. 相似文献
7.
8.
9.
Li Wei-Ya Duan Yu-Qing Ma Yang-Chun Lu Xin-Hua 《Journal of biomolecular structure & dynamics》2013,31(18):4840-4851
AbstractEctopic overexpression of protein tyrosine phosphatase of liver regeneration-1 (PTP4A1, also called PRL-1) markedly enhanced hepatocellular carcinoma (HCC) cells migration and invasion. The PTP4A1 trimerization played a vital role in mediating cell proliferation and motility. Biochemical and structural studies have proved that the compound 4AX, a well-known inhibitor for PRL1, directly binds to the PTP4A1 trimer interface and obstructs trimer formation of PTP4A1. However, the molecular basis of the ligand-4AX inhibition on PTP4A1 trimer conformations remains unclear. In this study, the docking analysis and the molecular dynamics simulation (MD simulation) study were performed to investigate how the molecule binding at each interface disrupted the trimer formation. The results suggested that the ligand-4AX attaching to the binding site changed the conformation of A:Q131, A:Q135 in the AC interface, C:R18, C:P96 in the CA interface and B:Q131 in the BA interface, leading to the weak interactions between subunits and thus resulting in the disruption of the PTP4A1 trimerization. 相似文献
10.
11.
Herein, a method is described to increase the information density of sequencing experiments used to deconvolute nucleic acid selections. The method is facile and should be applicable to any selection experiment. A critical feature of this method is the use of biotinylated primers to amplify and encode a BamHI restriction site on both ends of a PCR product. After amplification, the PCR reaction is captured onto streptavidin resin, washed, and digested directly on the resin. Resin-based digestion affords clean product that is devoid of partially digested products and unincorporated PCR primers. The product's complementary ends are annealed and ligated together with T4 DNA ligase. Analysis of ligation products shows formation of concatemers of different length and little detectable monomer. Sequencing results produced data that routinely contained three to four copies of the library. This method allows for more efficient formulation of structure-activity relationships since multiple active sequences are identified from a single clone. 相似文献
12.
13.
On the Phe-tRNA induced binding of fluorescent oligonucleotides to the ribosomal decoding site. 下载免费PDF全文
H M Menzel 《Nucleic acids research》1977,4(8):2881-2892
Fluorescent oligonucleotides were prepared by dansylation of 5'-amino uridylates of varying chainlength. Except for the trinucleoside diphosphate, they stimulated the binding of PhetRNA TO 70S E. coli ribosomes as efficiently as underivatised oligouridylic acids of comparable chainlength. The ternary ribosomal complex [70S X Phe-tRNA X dansyl-n5'U(pU)4] was separated from excess oligonucleotide and its fluorescence spectra were measured. The quantum yield of the dansylated pentauridylate was enhanced 2.5 fold when bound to the ribosomal decoding site, but no shift of the emission spectrum was observed. The ribosomal complex is considered useful for topographic investigations by singlet energy transfer, using the functionally defined decoding site as reference point. 相似文献
14.
15.
A novel and general approach is described for generating versions of RNA-cleaving ribozymes (RNA enzymes) and DNAzymes (DNA enzymes), whose catalytic activity can be controlled by the binding of activator molecules. Variants of the RNA-cleaving 10-23 DNAzyme and 8-17 DNAzyme were created, whose catalysis was activated by up to approximately 35-fold by the binding of the effector adenosine. The design of such variants was possible even though the tertiary folding of the two DNAzymes is not known. Variants of the hammerhead ribozyme were constructed, to respond to the effectors ATP and flavin mononucleotide. Whereas in conventional allosteric ribozymes, effector-binding modulates the chemical step of catalysis, here, effectors exercise their effect upon the substrate-binding step, by stabilizing the enzyme-substrate complex. Because such an approach for controlling the activity of DNAzymes/ribozymes requires no prior knowledge of the enzyme's secondary or tertiary folding, this regulatory strategy should be generally applicable to any RNA-cleaving ribozyme or DNAzyme, natural or in vitro selected, provided substrate-recognition is achieved by Watson-Crick base-pairing. 相似文献
16.
Molecular graphics and molecular mechanics techniques have been used to study the mode of ligand binding and mechanism of action of the enzyme phospholipase A2. A substrate-enzyme complex was constructed based on the crystal structure of the apoenzyme. The complex was minimized to relieve initial strain, and the structural and energetic features of the resultant complex analyzed in detail, at the molecular and residue level. The minimized complex was then used as a basis for examining the action of the enzyme on modified substrates, binding of inhibitors to the enzyme, and possible reaction intermediate complexes. The model is compatible with the suggested mechanism of hydrolysis and with experimental data about stereoselectivity, efficiency of hydrolysis of modified substrates, and inhibitor potency. In conclusion, the model can be used as a tool in evaluating new ligands as possible substrates and in the rational design of inhibitors, for the therapeutic treatment of diseases such as rheumatoid arthritis, atherosclerosis, and asthma. 相似文献
17.
We use spectroscopic and calorimetric techniques to characterize the binding of the aminoglycoside antibiotics neomycin, paromomycin, and ribostamycin to a RNA oligonucleotide that models the A-site of Escherichia coli 16S rRNA. Our results reveal the following significant features: (i) Aminoglycoside binding enhances the thermal stability of the A-site RNA duplex, with the extent of this thermal enhancement decreasing with increasing pH and/or Na(+) concentration. (ii) The RNA binding enthalpies of the aminoglycosides become more exothermic (favorable) with increasing pH, an observation consistent with binding-linked protonation of one or more drug amino groups. (iii) Isothermal titration calorimetry (ITC) studies conducted as a function of buffer reveal that aminoglycoside binding to the host RNA is linked to the uptake of protons, with the number of linked protons being dependent on pH. Specifically, increasing the pH results in a corresponding increase in the number of linked protons. (iv) ITC studies conducted at 25 and 37 degrees C reveal that aminoglycoside-RNA complexation is associated with a negative heat capacity change (Delta C(p)), the magnitude of which becomes greater with increasing pH. (v) The observed RNA binding affinities of the aminoglycosides decrease with increasing pH and/or Na(+) concentration. In addition, the thermodynamic forces underlying these RNA binding affinities also change as a function of pH. Specifically, with increasing pH, the enthalpic contribution to the observed RNA binding affinity increases, while the corresponding entropic contribution to binding decreases. (vi) The affinities of the aminoglycosides for the host RNA follow the hierarchy neomycin > paromomycin > ribostamycin. The enhanced affinity of neomycin relative to either paromomycin or ribostamycin is primarily, if not entirely, enthalpic in origin. (vii) The salt dependencies of the RNA binding affinities of neomycin and paromomycin are consistent with at least three drug NH(3)(+) groups participating in electrostatic interactions with the host RNA. In the aggregate, our results reveal the impact of specific alterations in aminoglycoside structure on the thermodynamics of binding to an A-site model RNA oligonucleotide. Such systematic comparative studies are critical first steps toward establishing the thermodynamic database required for enhancing our understanding of the molecular forces that dictate and control aminoglycoside recognition of RNA. 相似文献
18.
Dissection of the 16S rRNA binding site for ribosomal protein S4 总被引:4,自引:0,他引:4
The ribosomal protein S4 from Escherichia coli is essential for initiation of assembly of 30S ribosomal subunits. We have undertaken the identification of specific features required in the 16S rRNA for S4 recognition by synthesizing mutants bearing deletions within a 460 nucleotide region which contains the minimum S4 binding site. We made a set of large nested deletions in a subdomain of the molecule, as well as individual deletions of nine hairpins, and used a nitrocellulose filter binding assay to calculate association constants. Some small hairpins can be eliminated with only minor effects on S4 recognition, while three hairpins scattered throughout the domain (76-90, 376-389 and 456-476) are essential for specific interaction. The loop sequence of hairpin 456-476 is important for S4 binding, and may be directly recognized by the protein. Some of the essential features are in phylogenetically variable regions; consistent with this, Mycoplasma capricolum rRNA is only weakly recognized by S4, and no specific binding to Xenopus laevis rRNA can be detected. 相似文献
19.
Free energy calculations for theophylline binding to an RNA aptamer: Comparison of MM-PBSA and thermodynamic integration methods 总被引:1,自引:0,他引:1
We have applied the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method (J. Srinivasan, T. E. Cheatham, P. Cieplak, P. A. Kollman, and D. A. Case, Journal of the American Chemical Society, 1998, Vol. 120, pp. 9401-9409) to study the interaction of an RNA aptamer with theophylline and its analogs. The MM-PBSA free energy analysis provides a reasonable absolute binding free energy for the RNA aptamer-theophylline complex formation. Energetic analysis reveals that the van der Waals interaction and the nonpolar contribution to solvation provide the basis for the favorable absolute free energy of complex. This trend is similar to other protein-ligand interactions studied previously. The MM-PBSA method also ranks the relative binding energies of five theophylline analogs approximately correctly, but not as well as the more conventional thermodynamic integration calculations, which were carried out to convert theophylline into its analogs. The comparison of MM-PBSA with TI suggests that the MM-PBSA method has some difficulties with the first-solvation-shell energetics. 相似文献
20.
EDEN-BP (embryo deadenylation element-binding protein) binds specifically to the EDEN motif in the 3′-untranslated regions of maternal mRNAs and targets these mRNAs for deadenylation and translational repression in Xenopus laevis embryos. EDEN-BP contains three RNA recognition motifs (RRMs) and is related to the elav family of RNA-binding proteins. In the present study we show that the two N-terminal RRMs of EDEN-BP are necessary for the interaction with EDEN as well as a part of the linker region (between RRM2 and RRM3). Using a band shift assay we show that two different complexes are formed according to the size and, therefore, the functional nature of the EDEN motif. Finally, we show that EDEN-BP can form a dimer in a two-hybrid assay. Accordingly, we suggest that the functional configuration of EDEN-BP is a dimer. 相似文献