首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In cultured macrophages (J 774 line) a decrease in iron-sulfur centers (ISC) was not observed after 5 min treatment with nitric oxide (NO) (10(-7) M NO/10(7) cells). The content of these centers was measured by electron spin resonance (ESR) spectroscopy at 16-60 K. However, the appearance of a characteristic ESR signal at g(av) = 2.03 indicated the formation of dinitrosyl iron complex (DNIC) in these cells. These findings suggest that loosely bound non-heme iron (free iron) but not iron from ISC is mainly involved in DNIC formation. ISC might release iron for DNIC formation after their destruction induced by the products of NO oxidation (NO2, N2O3, etc).  相似文献   

2.
One of the most important biological reactions of nitric oxide (nitrogen monoxide, *NO) is its reaction with transition metals, of which iron is the major target. This is confirmed by the ubiquitous formation of EPR-detectable g=2.04 signals in cells, tissues, and animals upon exposure to both exogenous and endogenous *NO. The source of the iron for these dinitrosyliron complexes (DNIC), and its relationship to cellular iron homeostasis, is not clear. Evidence has shown that the chelatable iron pool (CIP) may be at least partially responsible for this iron, but quantitation and kinetic characterization have not been reported. In the murine cell line RAW 264.7, *NO reacts with the CIP similarly to the strong chelator salicylaldehyde isonicotinoyl hydrazone (SIH) in rapidly releasing iron from the iron-calcein complex. SIH pretreatment prevents DNIC formation from *NO, and SIH added during the *NO treatment "freezes" DNIC levels, showing that the complexes are formed from the CIP, and they are stable (resistant to SIH). DNIC formation requires free *NO, because addition of oxyhemoglobin prevents formation from either *NO donor or S-nitrosocysteine, the latter treatment resulting in 100-fold higher intracellular nitrosothiol levels. EPR measurement of the CIP using desferroxamine shows quantitative conversion of CIP into DNIC by *NO. In conclusion, the CIP is rapidly and quantitatively converted to paramagnetic large molecular mass DNIC from exposure to free *NO but not from cellular nitrosothiol. These results have important implications for the antioxidative actions of *NO and its effects on cellular iron homeostasis.  相似文献   

3.
An induction of the SOS DNA repair response by physiological nitric oxide donors (dinitrosyl iron complexes (DNIC) with thiols and S-nitrosothiols (RSNO)) was studied in E. coli cells. DNIC with thiols were the most effective SOS-inducers. Being more toxic, RSNO mediated a similar response at 10-100 microM, but they were inactive at concentrations above 0.5 mM. Pretreatment of the cells with chelating agents, o-phenanthroline and picolinic acid, prevented induction of the SOS response by all NO-donors used and led to a decrease in the DNIC-type EPR signal that appeared after incubation of the cells with DNIC or S-nitrosoglutathione (GSNO). Analysis of these effects revealed a dual role of iron ions in reactivity and toxicity of the NO-donating agents. On one hand, they could stabilize GSNO in the form of less toxic DNIC, and, on the other hand, they took part in the formation of the SOS-inducing signal by NO-donating agents.  相似文献   

4.
In this report, we tested the hypothesis that cellular content of non-heme iron determined whether cytotoxic levels of nitric oxide (NO) resulted in apoptosis versus necrosis. The consequences of NO exposure on cell viability were tested in RAW264.7 cells (a cell type with low non-heme iron levels) and hepatocytes (cells with high non-heme iron content). Whereas micromolar concentrations of the NO donor S-nitroso-N-acetyl-DL-penicillamine induced apoptosis in RAW264.7 cells, millimolar concentrations were required to induce necrosis in hepatocytes. Caspase-3 activation and cytochrome c release were evident in RAW264.7 cells, but only cytochrome c release was detectable in hepatocytes following high dose S-nitroso-N-acetyl-DL-penicillamine exposure. Pretreating RAW264.7 cells with FeSO(4) increased intracellular non-heme iron to levels similar to those measured in hepatocytes and delayed NO-induced cell death, which then occurred in the absence of caspase-3 activation. Iron loading was also associated with the formation of intracellular dinitrosyl-iron complexes (DNIC) upon NO exposure. Cytosolic preparations containing DNIC as well as pure preparations of DNIC suppressed caspase activity. These data suggest that non-heme iron content is a key factor in determining the consequence of NO on cell viability by regulating the chemical fate of NO.  相似文献   

5.
It has been established that, in the presence of S-nitrosothiols, cysteine, and mitochondria, dinitrosyl iron complexes (DNIC) coupled to low-molecular-weight ligands and proteins are formed. The concentration of DNIC depended on oxygen partial pressure. It was shown that, under the conditions of hypoxia, the kinetics of the formation of low-molecular DNIC was biphasic. After the replacement of anaerobic conditions of incubation with aerobic ones, the level of DNIC came down; in this case, protein dinitrosyl complexes became more stable. We proposed that iron-and sulfur-containing proteins and low-molecular-weight iron complexes are the sources of iron for DNIC formation in mitochondrial suspensions. It was shown that a combination of DNIC and S-nitrosothiols inhibited effectively the respiration of cardiomyocytes.  相似文献   

6.
No decrease in iron-sulphur centers was found in cultured macrophage cells (J774) after the treatment with nitric oxide (10(-7) M NO/10(7) cells) during 5 min. The center content was controlled by the electron spin resonance (ESR) method. The macrophages pretreated with dithionite + methyl viologen showed the formation of dinitrosyl iron complexes (DNIC) with a characteristic ESR signal at g approximately 2.03. The data suggest that loosely bound nonheme iron (free iron) mostly contributes to the formation of these complexes. Iron from iron-containing proteins does not release from these centers under the direct action of nitric oxide. The iron-sulphur centers can be destroyed by the products of nitric oxide oxidation (NO2, N2O3, etc.) as oxidizing and acid agents.  相似文献   

7.
Intralysosomal iron: a major determinant of oxidant-induced cell death   总被引:4,自引:0,他引:4  
As a result of continuous digestion of iron-containing metalloproteins, the lysosomes within normal cells contain a pool of labile, redox-active, low-molecular-weight iron, which may make these organelles particularly susceptible to oxidative damage. Oxidant-mediated destabilization of lysosomal membranes with release of hydrolytic enzymes into the cell cytoplasm can lead to a cascade of events eventuating in cell death (either apoptotic or necrotic depending on the magnitude of the insult). To assess the importance of the intralysosomal pool of redox-active iron, we have temporarily blocked lysosomal digestion by exposing cells to the lysosomotropic alkalinizing agent, ammonium chloride (NH(4)Cl). The consequent increase in lysosomal pH (from ca. 4.5 to > 6) inhibits intralysosomal proteolysis and, hence, the continuous flow of reactive iron into this pool. Preincubation of J774 cells with 10 mM NH(4)Cl for 4 h dramatically decreased apoptotic death caused by subsequent exposure to H(2)O(2), and the protection was as great as that afforded by the powerful iron chelator, desferrioxamine (which probably localizes predominantly in the lysosomal compartment). Sulfide-silver cytochemical detection of iron revealed a pronounced decrease in lysosomal content of redox-active iron after NH(4)Cl exposure, probably due to diminished intralysosomal digestion of iron-containing material coupled with continuing iron export from this organelle. Electron paramagnetic resonance experiments revealed that hydroxyl radical formation, readily detectable in control cells following H(2)O(2) addition, was absent in cells preexposed to 10 mM NH(4)Cl. Thus, the major pool of redox-active, low-molecular-weight iron may be located within the lysosomes. In a number of clinical situations, pharmacologic strategies that minimize the amount or reactivity of intralysosomal iron should be effective in preventing oxidant-induced cell death.  相似文献   

8.
Nitrite protects various organs from ischemia–reperfusion injury by ameliorating mitochondrial dysfunction. Here we provide evidence that this protection is due to the inhibition of iron-mediated oxidative reactions caused by the release of iron ions upon hypoxia. We show in a model of isolated rat liver mitochondria that upon hypoxia, mitochondria reduce nitrite to nitric oxide (NO) in amounts sufficient to inactivate redox-active iron ions by formation of inactive dinitrosyl iron complexes (DNIC). The scavenging of iron ions in turn prevents the oxidative modification of the outer mitochondrial membrane and the release of cytochrome c during reoxygenation. This action of nitrite protects mitochondrial function. The formation of DNIC with nitrite-derived NO could also be confirmed in an ischemia–reperfusion model in liver tissue. Our data suggest that the formation of DNIC is a key mechanism of nitrite-mediated cytoprotection.  相似文献   

9.
Dinitrosyl iron complexes (DNIC) with thiol ligands were found to beneficially affect the state of the penile cavernous tissue upon its experimental denervation in rats. Histological and histochemical analysis showed that intracavernous administration of DNIC (twice weekly over six months) almost completely abolished the proliferation of endothelial cells typical of denervated cavernous tissue. On the other hand, this treatment sustained the mitotic activity of smooth myocytes and prevented the appearance of collagenase, a marker of their fibrotic transformation. The DNIC treatment had a pronounced effect on penile erection in neurotomized as well as in intact animals. Introduction of low-molecular DNIC into cavernous tissue was found to cause formation of protein-bound complexes observed by EPR and probably acting as depots of nitric oxide, ensuring steady erection.  相似文献   

10.
The interaction of peroxynitrite with thiolate dinitrosyl iron complexes (DNIC) has been examined and compared with the interaction with H2O2. Peroxynitrite oxidized DNIC containing various thiolate ligands--cysteine, glutathione, and bovine serum albumin. Analysis of the oxidation suggested a two-electron reaction and gave third-order rate constants of (9.3 +/- 0.5).109 M-2.sec-1 for DNIC with BSA, (4.0 +/- 0.3).108 M-2.sec-1 for DNIC with cysteine, and (1. 8 +/- 0.3).107 M-2.sec-1 for DNIC with glutathione at 20 degrees C and pH 7.6. Peroxynitrite was more reactive towards DNIC than towards sulfhydryls. Addition of sodium dithionite after the reaction led to significant restoration of the EPR signal of DNIC with cysteine. The reaction of glutathione DNIC with H2O2 was about 600 times slower than with ONOO- and not reversed by sodium dithionite. Thus peroxynitrite, in contrast to hydrogen peroxide, changes the pool of nitrosocompounds which can be responsible for interconversion, storage, and transportation of nitric oxide in vivo.  相似文献   

11.
Although it has been shown that hydroxyurea (HU) therapy produces measurable amounts of nitric oxide (NO) metabolites, including iron nitrosyl hemoglobin (HbNO) in patients with sickle cell disease, the in vivo mechanism for formation of these is not known. Much in vitro data and some in vivo data indicates that HU is the NO donor, but other studies suggest a role for nitric oxide synthase (NOS). In this study, we confirm that the NO-forming reactions of HU with hemoglobin (Hb) or other blood constituents is too slow to account for NO production measured in vivo. We hypothesize that, in vivo, HU is partially metabolized to hydroxylamine (HA), which quickly reacts with Hb to form methemoglobin (metHb) and HbNO. We show that addition of urease, which converts HU to HA, to a mixture of blood and HU, greatly enhances HbNO formation.  相似文献   

12.
Different nitric oxide donors and metabolites proved to have similar effects on the peroxidation in rat myocardium homogenate. PAPA-NONOate (synthetic nitric oxide donor), S-nitrosoglutathione, nitrite, and nitroxyl anion caused dose-dependent inhibition of the formation of malonic dialdehyde, a secondary product of lipid peroxidation. Dextran-bound dinitrosyl iron complexes and PAPA-NONOate were the most efficient inhibitors of lipid peroxidation. S-Nitrosoglutathione also inhibited the decline in coenzymes Q9 and Q10. Low-molecular-weight dinitrosyl iron complexes with cysteine accelerated lipid peroxidation, which could be caused by the release of iron ions upon their destruction. The antioxidant effect of nitric oxide donors appears to be due to the reduction of hemoprotein ferryl forms and the reaction of nitric oxide with lipid radicals.  相似文献   

13.
Formation of dinitrosyl iron complexes (DNICs), which can be described by general formula Fe(NO)2(L)2, where L is carbonyl-, nitrosyl- or imino- complexing ligand, was observed in many kinds of living organisms, in a wide spectrum of physiological conditions associated with inflammation, ischemia/reperfusion and cancer. Accumulation of DNICs coincides with intensified production of nitric oxide in macrophages, neurons, endothelial cells, Langerhans' cells and hepatocytes. Low-molecular thiol-containing DNICs (DNIC-(RS)2) show vasodilatory action and they are proposed to play a role of nitric oxide transducers and stabilizers. DNICs have been shown to modulate redox potential of the cell via inhibition of glutathione-dependent enzymes, such as glutathione reductase, S-transferase and peroxidase. Although there is a convincing experimental evidence for their NO and NO+ donating function, the nature of DNICs formed in biological systems, their stability and biological role is still a matter of discussion.  相似文献   

14.
Exogenous dinitrosyl iron complexes (DNIC) with thiolate ligands as NO and NO+ donors are capable of exerting both regulatory and cytotoxic effects on diverse biological processes similarly to those characteristic of endogenous nitric oxide. Regulatory activity of DNIC (vasodilatory, hypotensive, suppressing thrombosis, increasing erythrocyte elasticity, accelerating skin wound healing, inducing penile erection, etc.) is determined by their capacity of NO and NO+ transfer to biological targets of the latter (heme- and thiol-containing proteins, respectively) due to higher affinity of the proteins for NO and NO+ than that of DNIC. Cytotoxic activity of DNIC is provided by rapid DNIC decomposition under action of iron-chelating compounds, resulting in appearance of NO and NO+ in cells and tissues in high amounts. The latter mechanism is suggested to cause the blocking effect of DNIC as cytotoxic effectors on the development of benign endometrial tumors in rats with experimental endometriosis. It is also proposed that a similar mechanism can operate to cause at least a delay of malignant tumor proliferation under action of DNIC.  相似文献   

15.
Cultured rat embryo fibroblasts, when placed in media with 10% serum containing 20 mM NH4Cl, show an inhibition of protein degradation and, concurrently, an accumulation of numerous, large vacuoles, partially filled with cellular debris. Cells placed in a serum-free media exhibit an enhanced degradation of cell protein, which is also inhibited by NH4Cl. When these cells are removed from media containing NH4Cl and placed in fresh media, the material accumulated in these vacuoles is rapidly and quantitatively released to the media in both an acid-soluble and acid-insoluble form. NH4Cl inhibits rapidly and specifically the lysosomal proteolytic mechanism, and is without effect on the basal turnover mechanism. The lysosomal proteolytic mechanism accounts for approximately 25% of protein turnover, and, at least in low density cultures, can be stimulated to levels which account for more than half of the protein turnover in the cell. The major pathway for the degradation of fast turnover proteins appears to be separate from lysosomal mechanism.  相似文献   

16.
17.
In experiments with isolated hepatocytes, Seglen [1] has shown that in the combined presence of NH4Cl and high concentrations of valine, incorporation of this amino acid into cell protein is inhibited. He has proposed that NH4Cl, in addition to inhibiting protein degradation in lysosomes, inhibits protein synthesis in these cells as part of a general toxic effect. To determine if NH4Cl inhibits protein synthesis in cultured cells we incubated rat embryo fibroblasts, prelabeled with [14C]leucine, in the presence of 10 mM NH4Cl and 15 mM leucine in both growth and serum-free media. We did not detect any effect of NH4+ on protein synthesis or cell growth over a 3-day period. A partial inhibition of protein degradation was observed, particularly during the first 24 h of the experiment. In pulse-labeling experiments, NH4Cl had no effect on the incorporation of [3H]leucine in the media. High concentrations of leucine, however, reduced re-utilization of endogenously derived leucine and inhibited the transport of valine into the cellular acid-soluble pool.These experiments show that at least in cultured fibroblasts 10 mM NH4Cl shows no significant toxicity beyond an inhibition of lysosomal function. In addition these data suggest the possibility that high chase concentrations of one amino acid in the medium may be saturating a common transport mechanism, in effect reducing the transport of other amino acids utilizing this mechanism. A combined blockade by both NH4Cl and a high concentration of a single amino acid may in certain sensitive cells result in a significant reduction in protein synthesis.  相似文献   

18.
The aim of this investigation was to test the hypothesis that elevation of intracellular pH would inhibit iron uptake by reticulocytes. The experiments were performed with rabbit reticulocytes and iron bound to rabbit transferrin. Incubation of the cells with NH4Cl, (NH4)2CO3, CH3NH2 and (CH3)2NH was used in an attempt to increase intracellular pH. These substances were all found to inhibit iron uptake by reticulocytes. The mechanism of action of NH4Cl and CH3NH2 was investigated in detail. Similar results were found with both reagents. They inhibited iron uptake in a concentration-dependent manner, but produced a small increase in the cellular uptake of transferrin. The onset of action was rapid and the effect was reversible. There was no decrease in the number of transferrin-binding sites per cell and their apparent affinity for transferrin increased slightly, while the efficiency of iron removal from transferrin per binding site diminished greatly. The rate of transferrin release from reticulocytes was unaffected. NH4Cl did not affect the rate of iron release from transferrin in a cell-free system. Incubation of reticulocytes with 10 mM NH4Cl or CH3NH2 was found to produce an increase in intracellular pH of 0.05—0.15 pH units. The intracellular pH determined by used of the weak acid 5,5-dimethyl-oxazolidine-2,4-dione was significantly higher than that obtained with the weak base (CH3)2NH. By transmission electron microscopy it was shown that reticulocytes treated with NH4Cl or CH3NH2 have enlarged intracellular vesicles. The results are considered to support the hypothesis that iron release from transferrin in reticulocytes occurs as a result of protonation of the transferrin within intracellular vesicles. According to this hypothesis, weak bases such as NH3 and CH3NH2 inhibit iron release by neutralizing H+ within the vesicles.  相似文献   

19.
Persson HL 《IUBMB life》2006,58(7):395-401
A novel mechanism of radiosensitization involves radiation-enhanced autophagy of damaged mitochondria and various metalloproteins, by which iron accumulates within lysosomes. Hydrogen peroxide, formed by the radiolytic cleavage of water, generates in the presence of lysosomal redox-active iron extremely reactive hydroxyl radicals by Fenton-type chemistry. Subsequent peroxidative damage of lysosomal membranes initiates release of harmful content from ruptured lysosomes that triggers a cascade of events eventuating in DNA damage and apoptotic or necrotic cell death. This article reviews the role of lysosomal destabilization in radiation-induced cell damage and death. The potential effects of iron chelation therapy targeted to the lysosomes for protection of normal tissues against unwanted effects by radiation is also discussed.  相似文献   

20.
Using model elaborated it was shown that the retinal ischemia initiated the development of the apoptosis in the inner layers of the retina. Administration of NOS inhibitor prevented the development of the apoptosis in the retina. To ascertain if nitric oxide could induce the retinal apoptosis by itself the nontoxic donor of nitric oxide (dinitrosyl iron complex) was injected intravitreally. Administration of DNIC in low concentrations induced the development of the apoptosis in the same retinal layers as in ischemia. The injection of dinitrosyl iron complex at the higher concentration resulted in the decrease of the apoptosis level. Administration of dinitrosyl iron complex with excess of glutathione didn't lead to the development of the retinal apoptosis. The obtained data demonstrates the neurotoxic properties of the excess of nitric oxide in the retina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号